1. A.S. Syed, D. Sierra-Sosa, A. Kumar, A. Elmaghraby, "IoT in smart cities: a survey of technologies, practices and challenges", Smart Cities, 2021. 4(2): p. 429-475.
2. V. Hodge and J. Austin, "A survey of outlier detection methodologies", Artificial intelligence review, 2004. 22(2): p. 85-126.
3. E. Theodoridis, G. Mylonas and I. Chatzigiannakis, "Developing an iot smart city framework", in IISA 2013, 2013. IEEE.
4. A. A. Cook, G. Mısırlı and Z. Fan, "Anomaly Detection for IoT Time-Series Data: A Survey," in IEEE Internet of Things Journal, vol. 7, no. 7, pp. 6481-6494, July 2020, doi: 10.1109/JIOT.2019.2958185.
5. T. Luo and S. G. Nagarajan, "Distributed Anomaly Detection Using Autoencoder Neural Networks in WSN for IoT," 2018 IEEE International Conference on Communications (ICC), Kansas City, MO, USA, 2018, pp. 1-6, doi: 10.1109/ICC.2018.842240
6. P.D. Johnson Jr, G.A. Harris and D.C. Hankerson, Introduction to information theory and data compression, 2003: Chapman and Hall/CRC.
7. A. Ayadi, O. Ghorbel, A. M. Obeid and M. Abid, "Outlier detection approaches for wireless sensor networks: A survey", Computer Networks, 2017. 129: p. 319-333.
8. M. Xie, J. Hu, S. Han and H. -H. Chen, "Scalable Hypergrid k-NN-Based Online Anomaly Detection in Wireless Sensor Networks," in IEEE Transactions on Parallel and Distributed Systems, vol. 24, no. 8, pp. 1661-1670, Aug. 2013, doi: 10.1109/TPDS.2012.261.
9. ZG. Ding, DJ. Du and MR. Fei, "An isolation principle based distributed anomaly detection method in wireless sensor networks", Int. J. Autom. Comput. 12, 402–412, 2015, https://doi.org/10.1007/s11633-014-0847-9.
10. S. Mirzaie, M.R. AvazAghaei and O. Bushehrian, "Anomaly Detection in Non-Stationary Water Distribution Grids Using Fog Computing Architecture", International Journal of Information and Communication Technology Research, 2021, 13(3): p. 12-23.
11. W. Jia, R. M. Shukla and S. Sengupta, "Anomaly Detection using Supervised Learning and Multiple Statistical Methods," 2019 18th IEEE International Conference On Machine Learning And Applications (ICMLA), Boca Raton, FL, USA, 2019, pp. 1291-1297, doi: 10.1109/ICMLA.2019.00211.
12. S. Kim, H. Cai, C. Hua, P. Gu, W. Xu and J. Park, "Collaborative Anomaly Detection for Internet of Things based on Federated Learning," 2020 IEEE/CIC International Conference on Communications in China (ICCC), Chongqing, China, 2020, pp. 623-628, doi: 10.1109/ICCC49849.2020.9238913.
13. S. Rajasegarar, C. Leckie and M. Palaniswami, "CESVM: Centered Hyperellipsoidal Support Vector Machine Based Anomaly Detection," 2008 IEEE International Conference on Communications, Beijing, China, 2008, pp. 1610-1614, doi: 10.1109/ICC.2008.311.
14. Y. Zhang, N. Meratnia, and P.J. Havinga, "Distributed online outlier detection in wireless sensor networks using ellipsoidal support vector machine", Ad hoc networks, 2013. 11(3): p. 1062-1074.
15. Y. Zhang, Y. Chen, J. Wang, Z. Pan, "Unsupervised deep anomaly detection for multi-sensor time-series signals", https://doi.org/10.48550/arXiv.2017.12626 , 2021.
16. Mosquitto Broker. [cited 2022 June 1, 2022]; Available from: https://mosquitto.org/.
17. Docker. [cited 2022 22 Aug]; Available from: https://www.docker.com/.
18. Numpy python library. [cited 2022 jul 25]; Available from: https://github.com/numpy/numpy.
19. Decimal fixed point and floating point arithmetic. [cited 2022 jul 25]; Available from: https://docs.python.org/3/library/decimal.html.
20. L. Buitinck et al. "API design for machine learning software: experiences from the scikit-learn project", https://doi.org/10.48550/arXiv.1309.0238, 2013.
21. Y. Chen , E.K. "ECG5000" Dataset. n.d. June 1, 2022]; Available from: http://www.timeseriesclassification.com/description.php?Dataset=ECG5000.
22. Pressure Sensors towards Pipeline Leakage Detection Dataset. [cited 2022 9 Aug]; Available from: https://zenodo.org/record/4769101#.YxNSQ3ZBwon.
23. Cooja Simulator, Available from: https://anrg.usc.edu/contiki/index.php/Cooja_Simulator