1. [1] Banerjee, B. P., Raval, S., Cullen, P. J. 2020. UAV- hyperspectral imaging of spectrally complex environments, International Journal of Remote Sensing,41 (11): 4136-4159. [
DOI:10.1080/01431161.2020.1714771]
2. [2] He, W., Chen, Y., Yokoya, N., Li, C., Zhao, Q. 2022.Hyperspectral super-resolution via coupled tensor ring factorization, Pattern Recognition, 122 (108280). [
DOI:10.1016/j.patcog.2021.108280]
3. [3] Vivone, G. 2023. Multispectral and hyperspectral image fusion in remote sensing: A survey, Information Fusion,89: 405-417. [
DOI:10.1016/j.inffus.2022.08.032]
4. [4] Imani, M., Ghassemian, H. 2020. An overview on Spectral and Spatial Information Fusion for Hyperspectral Image Classification: Current Trends and Challenges, Information Fusion, 59: 59-83. [
DOI:10.1016/j.inffus.2020.01.007]
5. [5] Kanatsoulis, C. I., Fu, X., Sidiropoulos, N. D., Ma, W. 2018. Hyperspectral Super-Resolution: A Coupled Tensor Factorization Approach," in IEEE Transactions on Signal Processing, 66 (24): 6503-6517. [
DOI:10.1109/TSP.2018.2876362]
6. [6] Simsek, M., Polat, E. 2021. Performance evaluation of pan-sharpening and dictionary learning methods for sparse representation of hyperspectral super-resolution. SIViP 15, 1099-1106. [
DOI:10.1007/s11760-020-01836-8]
7. [7] Tang, S., Xiao, L., Huang, W., Liu, P., Wu, H. 2015. Pan-sharpening using 2D CCA, Remote Sensing Letters, 6(5): 341-350. [
DOI:10.1080/2150704X.2015.1034882]
8. [8] Dixit, A., Agarwal, S. 2020. Super-resolution mapping of hyperspectral data using Artificial Neural Network and wavelet, Remote Sensing Applications: Society and Environment, 20 (100374). [
DOI:10.1016/j.rsase.2020.100374]
9. [9] Dhara, S. K., Sen, D. 2019. Across-scale process similarity based interpolation for image super-resolution, Applied Soft Computing, 81 (105508). [
DOI:10.1016/j.asoc.2019.105508]
10. [10] Fernandez-Beltran, R., Latorre-Carmona, P., Pla, F.2017. Latent topic-based super-resolution for remote sensing, Remote Sensing Letters, 8 (6): 498-507. [
DOI:10.1080/2150704X.2017.1287974]
11. [11] Lee, M. C., Chiu, S. Y., Chang, J. W. 2017. A Deep Convolutional Neural Network based Chinese Menu Recognition App, Information Processing Letters, 128:14-20. [
DOI:10.1016/j.ipl.2017.07.010]
12. [12] Arun, P.V., Buddhiraju, K.M., Porwal, A., Chanussot, J. 2020. CNN based spectral super-resolution of remote sensing images, Signal Processing, 169 (107394). [
DOI:10.1016/j.sigpro.2019.107394]
13. [13] Wang, X., Ma, J., Jiang, J., Zhang, X.-P. 2021. Dilated projection correction network based on autoencoder for hyperspectral image super-resolution, Neural Networks. [
DOI:10.1016/j.neunet.2021.11.014] [
PMID]
14. [14] Hao, S., Wang, W., Ye, Y., Li, E., Bruzzone, L. 2018. A Deep Network Architecture for Super-Resolution- Aided Hyperspectral Image Classification With Classwise Loss, IEEE Transactions on Geoscience and Remote Sensing, 56 (8): 4650-4663. [
DOI:10.1109/TGRS.2018.2832228]
15. [15] Wang, L., Bi, T., Shi, Y. 2020. A Frequency-Separated 3D-CNN for Hyperspectral Image Super-Resolution, IEEE Access, 8: 86367-86379. [
DOI:10.1109/ACCESS.2020.2992862]
16. [16] Dong, W., Zhou, C., Wu, F., Wu, J., Shi, G., Li, X. 2021. Model-Guided Deep Hyperspectral Image Super-Volume 15- Number 2 - 2023 (19 -28) 27 Resolution," in IEEE Transactions on Image Processing, 30: 5754-5768. [
DOI:10.1109/TIP.2021.3078058] [
PMID]
17. [17] Hammouche, R., Attia, A., Akhrouf, S., Akhtar, Z.2022. Gabor filter bank with deep autoencoder based face recognition system, Expert Systems with Applications, 197 (116743). [
DOI:10.1016/j.eswa.2022.116743]
18. [18] Ghassemi, M., Ghassemian, H., Imani, M. 2021.Hyperspectral Image Classification by Optimizing Convolutional Neural Networks based on Information Theory and 3D-Gabor Filters, International Journal of Remote Sensing, 42 (11): 4383-4413. [
DOI:10.1080/01431161.2021.1892854]
19. [19] Paoletti, M.E., Haut, J.M., Plaza, J., Plaza, A. 2019. Deep learning classifiers for hyperspectral imaging: A review, ISPRS Journal of Photogrammetry and Remote Sensing, 158: 279-317. [
DOI:10.1016/j.isprsjprs.2019.09.006]
20. [20] Boggavarapu, L.N. P. K., Manoharan, P. 2020. A new framework for hyperspectral image classification using Gabor embedded patch based convolution neural network, Infrared Physics & Technology, 110 (103455). [
DOI:10.1016/j.infrared.2020.103455]
21. [21] Imani, M. 2017. RX Anomaly Detector with Rectified Background, IEEE Geoscience and Remote Sensing Letters, 14 (8): 1313-1317. [
DOI:10.1109/LGRS.2017.2710618]
22. [22] Han, X. -H., Chen, Y. -W. 2019. Deep Residual Network of Spectral and Spatial Fusion for Hyperspectral Image Super-Resolution, 2019 IEEE Fifth International Conference on Multimedia Big Data (BigMM), pp. 266-270. [
DOI:10.1109/BigMM.2019.00-13]
23. [23] Liu, D., Li, J., Yuan, Q. 2021. A Spectral Grouping and Attention-Driven Residual Dense Network for Hyperspectral Image Super-Resolution, IEEE Transactions on Geoscience and Remote Sensing, 59(9): 7711-7725. [
DOI:10.1109/TGRS.2021.3049875]
24. [24] Vassilo, K., Taha, T., Mehmood, A. 2021. Infrared Image Super Resolution with Deep Neural Networks, 2021 11th Workshop on Hyperspectral Imaging and Signal Processing: Evolution in Remote Sensing (WHISPERS), pp. 1-5. [
DOI:10.1109/WHISPERS52202.2021.9484045]
25. [25] Zhu, Z., Hou, J., Chen, J., Zeng, H., Zhou, J. 2021. Hyperspectral Image Super-Resolution via Deep Progressive Zero-Centric Residual Learning, IEEE Transactions on Image Processing, 30: 1423-1438. [
DOI:10.1109/TIP.2020.3044214] [
PMID]
26. [26] Yan, Q., Zhang, J., Feng, J. 2020. Spectral-Spatial Classification of Hyperspectral Image Using PCA and Gabor Filtering, IGARSS 2020 - 2020 IEEE International Geoscience and Remote Sensing Symposium, pp. 513-516. [
DOI:10.1109/IGARSS39084.2020.9324555]
27. [27] Imani, M. 2018. Anomaly detection from hyperspectral images using clustering based feature reduction, Journal of the Indian Society of Remote Sensing, 46(9):1389-1397. [
DOI:10.1007/s12524-018-0784-0]
28. [28] Imani, M. 2018. 3D Gabor Based Hyperspectral Anomaly Detection, AUT Journal of Modeling and Simulation, 50 (2): 189-194.
29. [29] Chang, C., Linin, C. 2008. LIBSVM-A Library for Support Vector Machines, [Online]. Available:http://www.csie.ntu.edu.tw/~cjlin/libsvm.