1. [1] Tianyi, Liu, et al.: 'Implementation of Training Convolutional Neural Networks', arXiv:1506.01195, 2015.
2. [2] Andrii O. Tarasenko, et al.: 'Convolutional Neural Networks as a Model of the Visual System: Past, Present, and Future', J. Cognitive neuroscience, 2020.
3. [3] Asifullah Khan1, et al.: 'A Survey of the Recent Architectures of Deep Convolutional Neural Networks', Artificial Intelligence Review, DOI: [
DOI:10.1007/s10462- 020-09825-6.]
4. [4] Min Wang, et al.: 'Factorized Convolutional Neural Networks', P. IEEE International conference on Computer Vision Workshops, P.545-553, 2017. [
DOI:10.1109/ICCVW.2017.71]
5. [5] Yufei Ma, et al. 'ALAMO: FPGA acceleration of deep learning algorithms with a modularized RTL compiler', Integration, the VLSI Journal, 2018, ELSEVIER, pp14-23. [
DOI:10.1016/j.vlsi.2017.12.009]
6. [6] Andrew G. Howard, et al. 'MobileNet: Efficient Convolutional Neural Networks for Mobile Vision Applications', arXiv:1704.0486,2017.
7. [7] Xiaocong Lian, et al. 'High-Performance FPGA-Based CNN Accelerator With Block-Floating-Point Arithmetic', IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 27, NO. 8,AUGUST 2019, pp.1874-1885. [
DOI:10.1109/TVLSI.2019.2913958]
8. [8] Yongming Shen, et al. 'Escher: A CNN Accelerator with Flexible Buffering to Minimize Off-Chip Transfer', Annual17 Volume 15- Number 2 - 2023 (12 -18) 18 IEEE Symposium on Filed-Programmable Custom Computing Machine FCCM, 2017, pp.93-100.
9. [9] Wei Dinga, et al. 'Designing Efficient Accelerator of Depthwise Separable Convolutional Neural Network on FPGA', Journal of Systems Architecture, ELSEVIER 2019, DOI:
https://doi.org/10.1016/j.sysarc.2018.12.008 [
DOI:10.1016/j.sysarc.2018.12.008.]
10. [10] Jiang Su, et al. 'Redundancy-reduced MobileNet Acceleration on Reconfigurable Logic For ImageNet Classification', International Symposium on Applied Reconfigurable Computing, 16-28, 2018. [
DOI:10.1007/978-3-319-78890-6_2]
11. [11] Yu-Hsin chen, et al. 'Efficient Processing of Deep Neural Networks: A Tutorial and Survey', pp. 2295-2329, Proceedings of the IEEE - Vol. 105, No. 12, December 2017. [
DOI:10.1109/JPROC.2017.2761740]
12. [12] H. Kopka and P. W. Daly, A Guide to L AT EX, 3rd ed. Harlow, England: Addison-Wesley, 1999.
13. [13] A. Stoutchinin, et al. 'Optimally Scheduling CNN Convolutions for Efficient Memory Access', IEEE Transaction on computer-aided design of integrated circuits and systems, Feb 2019.
14. [14] H. Sharma, et al. 'Bit Fusion: Bit-Level Dynamically Composable Architecture for Accelerating Deep Neural Networks', ISCA 2018. [15] X. Zhang, et al. "SuffleNet:An Extremly Efficient Convolutional Neural Network for Moblile devices", 2017, [
DOI:10.1109/ISCA.2018.00069]
15. arxiv:1707.01083v2.
16. [16] Y. Huang, et al. "An efficient loop tiling framework for convolutional neural network inference accelerators june", vol.16, pp.116-123, the Institue of Engineering and Thechnology, IET Circuits Devices Syst, 2022. [
DOI:10.1049/cds2.12091]
17. [17] M. Merouani, et al. "Progress Report: A Deep Learning Guided Exploration of Affine Unimodular Loop Transformations" IMPACT 2022.
18. [18] R. Li, et al. "Analytical Characterization and Design Space Exploration for Optimization of CNNs" ASPLOS '21, April 19-23, 2021, Virtual, USA. [
DOI:10.1145/3445814.3446759]
19. [19] P. Darbani, N. Rohbani, H. Beitollahi, P. Lotfi-Kamran " RASHT: A Partially Reconfigurable Architecture for Efficient Implementation of CNNs" IEEE Transactions on very large scale integration (VLSI), Vol. 30, Nr. 7, pp. 860-868, 2022. [
DOI:10.1109/TVLSI.2022.3167449]