1. [1] S. Liu, Y. Zhao, F. Xue, B. Chen, and X. Chen, "DeepCount: Crowd Counting with WiFi via Deep Learning," arXiv, Mar.2019.
2. [2] P. F. Moshiri, H. Navidan, R. Shahbazian, S. A. Ghorashi, and D. Windridge, "Using GAN to Enhance the Accuracy of Indoor Human Activity Recognition," arXiv, Apr. 2020.
3. [3] A. Aslam, S. Hasan, and E. Curry, "Poster: Challenges with image event processing," in DEBS 2017 - Proceedings of the 11th ACM International Conference on Distributed Event-Based Systems, pp. 347-348, 2017. [
DOI:10.1145/3093742.3095095]
4. [4] M. Nabati, S. A. Ghorashi, and R. Shahbazian, "Joint Coordinate Optimization in Fingerprint-Based Indoor Positioning," in IEEE Communications Letters, vol. 25, no. 4,pp. 1192-1195, 2021. [
DOI:10.1109/LCOMM.2020.3047352]
5. [5] H. Yan, Y. Zhang, Y. Wang, and K. Xu, "WiAct: A Passive WiFi-Based Human Activity Recognition System," in IEEE Sensors Journal, vol. 20, no. 1, pp. 296-305, Jan. 2020. [
DOI:10.1109/JSEN.2019.2938245]
6. [6] Y. Xie, Z. Li, and M. Li, "Precise Power Delay Profiling with Commodity WiFi," IEEE Transactions on Mobile Computing, vol. 18, no. 6, pp. 1342-1355, Jun. 2019. [
DOI:10.1109/TMC.2018.2860991]
7. [7] S. Sen, J. Lee, K. H. Kim, and P. Congdon, "Avoiding multipath to revive inbuilding WiFi localization," in MobiSys 2013 - Proceedings of the 11th Annual International Conference on Mobile Systems, Applications, and Services, pp.249-262, 2013. [
DOI:10.1145/2462456.2464463]
8. [8] J. Liu, H. Liu, Y. Chen, Y. Wang, and C. Wang, "Wireless Sensing for Human Activity: A Survey," IEEE Communications Surveys & Tutorials, vol. 22, no. 3, pp. 1629-1645, Jul. 2020. [
DOI:10.1109/COMST.2019.2934489]
9. [9] M. Nabati, H. Navidan, R. Shahbazian, S. A. Ghorashi, and D.Windridge, "Using Synthetic Data to Enhance the Accuracy of Fingerprint-Based Localization: A Deep Learning Approach," in IEEE Sensors Letters, vol. 4, no. 4, pp. 1-4, April 2020. [
DOI:10.1109/LSENS.2020.2971555]
10. [10] Z. Chen, L. Zhang, C. Jiang, Z. Cao, and W. Cui, "WiFi CSI Based Passive Human Activity Recognition Using Attention Based BLSTM," IEEE Transaction onComputingCompuing,vol. 18, no. 11, pp. 2714-2724, Nov. 2019. [
DOI:10.1109/TMC.2018.2878233]
11. [11] A. Gumaei, M. M. Hassan, A. Alelaiwi, and H. Alsalman, "A Hybrid Deep Learning Model for Human Activity Recognition Using Multimodal Body Sensing Data," IEEE Access, vol. 7,pp. 99152-99160, 2019. [
DOI:10.1109/ACCESS.2019.2927134]
12. [12] J. Liu, C. Wang, Y. Gong, and H. Xue, "Deep fully connected model for collective activity recognition," IEEE Access, vol. 7, pp. 104308-104314, 2019. [
DOI:10.1109/ACCESS.2019.2929684]
13. [13] S. Sen, M. Dhar, and S. Banerjee, "Implementation of human action recognition using image parsing techniques," in 2018 Emerging Trends in Electronic Devices and Computational Techniques, EDCT 2018, pp. 1-6, 2018 [
DOI:10.1109/EDCT.2018.8405091]
14. [14] M. Panwar eCNN-basedNN based approach for activity recognition using a wrist-worn accelerometer," 39th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 2438-2441, 2017.Volume 15- Number 2 - 2023 (42 -48) 47
15. [15] S. Palipana, D. Rojas, P. Agrawal, and D. Pesch, "FallDeFi: Ubiquitous Fall Detection using Commodity WiFi Devices," Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies, vol. 1, no. 4, pp. 1-25, Jan. 2018 [
DOI:10.1145/3161183]
16. [16] H. Wang, D. Zhang, Y. Wang, J. Ma, Y. Wang, and S. Li, "RT- Fall: A Real-Time and Contactless Fall Detection System with Commodity WiFi Devices," IEEE Transaction on Mobile Computing, vol. 16, no. 2, pp. 511-526, Feb. 2017. [
DOI:10.1109/TMC.2016.2557795]
17. [17] M. Li et al., "When CSI meets public WiFi: Inferring your mobile phone password via WiFi signals," in Proceedings of the ACM Conference on Computer and Communications Security, vol. 24, pp. 1068-1079, 2016. [
DOI:10.1145/2976749.2978397] [
]
18. [18] H. Li, W. Yang, J. Wang, Y. Xu, and L. Huang, "WiFinger:Talk to your smart devicees with afinger-grained gesture," in UbiComp 2016 - Proceedings of the 2016 ACM International Joint Conference on Pervasive and Ubiquitous Computing, pp.250-261, 2016. [
DOI:10.1145/2971648.2971738]
19. [19] F. Wang, J. Han, S. Zhang, X. He, and D. Huang, "CSI-Net: Unified Human Body Characterization and Pose Recognition," arXiv. arXiv, 06-Oct-2018.
20. [20] X. Wu, Z. Chu, P. Yang, C. Xiang, X. Zheng, and W. Huang, "TW-See: Human activity recognition through the wall with commodity WiFi Devices," IEEE Transaction on Vehicular Technology, vol. 68, no. 1, pp. 306-319, Jan. 2019. [
DOI:10.1109/TVT.2018.2878754]
21. [21] F. Wang, J. Feng, Y. Zhao, X. Zhang, S. Zhang, and J. Han, "Joint activity recognition and indoor localization with WiFi fingerprints," IEEE Access, vol. 7, pp. 80058-80068, 2019. [
DOI:10.1109/ACCESS.2019.2923743]
22. [22] S. YousMaruiH. Narui, S. Dayal, S. Ermon,Vallee . Vallee, "A Survey on Behavior Recognition Using WiFi Channel State Information," IEEE Communication Magazine, vol. 55, no. 10, pp. 98-104, Oct. 2017. [
DOI:10.1109/MCOM.2017.1700082]
23. [23] Z. Shi, J. A. Zhang, R. Xu, and G. Fang, "Human Activity Recognition Using Deep Learning Networks with Enhanced Channel State Information," in IEEE Globecom Workshops (GC Wkshps), pp. 1-6, 2018. [
DOI:10.1109/GLOCOMW.2018.8644435]
24. [24] H. Zou, Y. Zhou, J. Yang, H. Jiang, L. Xie, and C. J. Spanos, "DeepSense: Device-Free Human Activity Recognition via Autoencoder Long-Term Recurrent Convolutional Network," in IEEE International Conference on Communications, 2018. [
DOI:10.1109/ICC.2018.8422895]
25. [25] Z. Shi, J. Andrew Zhang, R. Y. Xu, and Q. Cheng, "WiFi-based activity recognition using activity filter and enhanced correlation with deep learning," in IEEE International Conference on Communications Workshops (ICC Workshops),pp. 1-6, 2020. [
DOI:10.1109/ICCWorkshops49005.2020.9145101]
26. [26] M. Elbayad, L. Besacier, and J. Verbeek, "Pervasive attention: 2d convolutional neural networks for sequence-to-sequence prediction," arXiv. arXiv, 11-Aug-2018. [
DOI:10.18653/v1/K18-1010]
27. [27] Y. Wang, K. Wu, and L. M. Ni, "WiFall: Device-Free Fall Detection by Wireless Networks," IEEE Transaction onComputingCompuing., vol. 16, no. 2, pp. 581-594, Feb.2017. [
DOI:10.1109/TMC.2016.2557792]
28. [28] P. Fard Moshiri, R. Shahbazian, M. Nabati, and S. A. Ghorashi, "A CSI-based human activity recognition using Deep Learning," Sensors, vol. 21, no. 21, p. 7225, 2021. [
DOI:10.3390/s21217225] [
PMID] [
]
29. [29] P. F. Moshiri, M. Nabati, R. Shahbazian, and S. A. Ghorashi, "CSI-based human activity recognition using convolutional neural networks," 2021 11th International Conference on Computer Engineering and Knowledge (ICCKE), 2021. [
DOI:10.1109/ICCKE54056.2021.9721516] [
PMID] [
]