1. [1] "Humor | English meaning." Cambridge Dictionary. https://dictionary.cambridge.org/dictionary/english/humor (last accessed February 2023).
2. [2] "Irony | English meaning." Cambridge Dictionary. https://dictionary.cambridge.org/dictionary/english/irony (last accessed February 2023).
3. [3] R. Mihalcea and C. Strapparava, "Making computers laugh: Investigations in automatic humor recognition," in Proceedings of Human Language Technology Conference and Conference on Empirical Methods in Natural Language Processing, 2005, pp. 531-538. [
DOI:10.3115/1220575.1220642]
4. [4] R. Mihalcea and S. Pulman, "Characterizing humour: An exploration of features in humorous texts," in International Conference on Intelligent Text Processing and Computational Linguistics, 2007: Springer, pp. 337-347. [
DOI:10.1007/978-3-540-70939-8_30]
5. [5] D. Yang, A. Lavie, C. Dyer, and E. Hovy, "Humor recognition and humor anchor extraction," in Proceedings of the 2015 conference on empirical methods in natural language processing, 2015, pp. 2367-2376. [
DOI:10.18653/v1/D15-1284]
6. [6] Y. Raz, "Automatic humor classification on Twitter," in Proceedings of the NAACL HLT 2012 student research workshop, 2012, pp. 66-70.
7. [7] R. Zhang and N. Liu, "Recognizing humor on twitter," in Proceedings of the 23rd ACM international conference on conference on information and knowledge management,2014, pp. 889-898. [
DOI:10.1145/2661829.2661997]
8. [8] L. De Oliveira and A. L. Rodrigo, "Humor detection in yelp reviews," Retrieved on December, vol. 15, p. 2019, 2015.
9. [9] R. Ortega-Bueno, C. E. Muniz-Cuza, J. E. M. Pagola, and P.Rosso, "UO UPV: Deep linguistic humor detection in Spanish social media," in Proceedings of the third workshop on evaluation of human language technologies for Iberian languages (IberEval 2018) co-located with 34th conference of the Spanish society for natural language processing (SEPLN 2018), 2018, pp. 204-213.
10. [10] P.-Y. Chen and V.-W. Soo, "Humor recognition using deep learning," in Proceedings of the 2018 conference of the north american chapter of the association for computational linguistics: Human language technologies, volume 2 (short papers), 2018, pp. 113-117. [
DOI:10.18653/v1/N18-2018]
11. [11] O. Weller and K. Seppi, "Humor detection: A transformer gets the last laugh," arXiv preprint arXiv:1909.00252, 2019. [
DOI:10.18653/v1/D19-1372]
12. [12] I. Annamoradnejad and G. Zoghi, "Colbert: Using bert sentence embedding for humor detection," arXiv preprint arXiv:2004.12765, 2020.
13. [13] A. Reyes, P. Rosso, and T. Veale, "A multidimensional approach for detecting irony in twitter," Language resources and evaluation, vol. 47, no. 1, pp. 239-268, 2013. [
DOI:10.1007/s10579-012-9196-x]
14. [14] F. Barbieri, H. Saggion, and F. Ronzano, "Modelling sarcasm in twitter, a novel approach," in proceedings of the 5th workshop on computational approaches to subjectivity, sentiment and social media analysis, 2014, pp. 50-58. [
DOI:10.3115/v1/W14-2609] [
PMID]
15. [15] A. Rajadesingan, R. Zafarani, and H. Liu, "Sarcasm detection on twitter: A behavioral modeling approach," in Proceedings of the eighth ACM international conference on web search and data mining, 2015, pp. 97-106. [
DOI:10.1145/2684822.2685316]
16. [16] D. Bamman and N. Smith, "Contextualized sarcasm detection on twitter," in proceedings of the international AAAI conference on web and social media, 2015, vol. 9, no. 1, pp.574-577. [
DOI:10.1609/icwsm.v9i1.14655]
17. [17] B. C. Wallace and E. Charniak, "Sparse, contextually informed models for irony detection: Exploiting user communities, entities and sentiment," in Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics and the 7th International Joint Conference on Natural Language Processing (Volume 1: Long Papers),2015, pp. 1035-1044. [
DOI:10.3115/v1/P15-1100]
18. [18] J. Pennington, R. Socher, and C. D. Manning, "Glove: Global vectors for word representation," in Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), 2014, pp. 1532-1543. [
DOI:10.3115/v1/D14-1162]
19. [19] A. Kumar, S. R. Sangwan, A. Arora, A. Nayyar, and M. Abdel-Basset, "Sarcasm detection using soft attention-based bidirectional long short-term memory model with convolution network," IEEE access, vol. 7, pp. 23319-23328,2019. [
DOI:10.1109/ACCESS.2019.2899260]
20. [20] P. Bojanowski, E. Grave, A. Joulin, and T. Mikolov, "Enriching word vectors with subword information," Transactions of the association for computational linguistics, vol. 5, pp. 135-146, 2017. [
DOI:10.1162/tacl_a_00051]
21. [21] A. Ghosh and T. Veale, "Fracking sarcasm using neural network," in Proceedings of the 7th workshop on computational approaches to subjectivity, sentiment and social media analysis, 2016, pp. 161-169. [
DOI:10.18653/v1/W16-0425] [
]
22. [22] M. Zhang, Y. Zhang, and G. Fu, "Tweet sarcasm detection using deep neural network," in Proceedings of COLING 2016, the 26th International Conference on Computational Linguistics: technical papers, 2016, pp. 2449-2460.
23. [23] B. Felbo, A. Mislove, A. Søgaard, I. Rahwan, and S. Lehmann, "Using millions of emoji occurrences to learn anydomain representations for detecting sentiment, emotion and sarcasm," arXiv preprint arXiv:1708.00524, 2017. [
DOI:10.18653/v1/D17-1169]
24. [24] "SemEval." https://semeval.github.io/ (last accessed February 2023).
25. [25] I. A. Farha, S. V. Oprea, S. Wilson, and W. Magdy, "SemEval-2022 Task 6: iSarcasmEval, Intended Sarcasm Detection in English and Arabic," in Proceedings of the 16th International Workshop on Semantic Evaluation (SemEval2022), 2022, pp. 802-814. [
DOI:10.18653/v1/2022.semeval-1.111]
26. [26] Z. B. Nezhad and M. A. Deihimi, "Sarcasm detection in Persian," Journal of Information and Communication Technology, vol. 20, no. 1, pp. 1-20, 2021. [
DOI:10.32890/jict.20.1.2021.6249]
27. [27] P. Golazizian, B. Sabeti, S. A. A. Asli, Z. Majdabadi, O.Momenzadeh, and R. Fahmi, "Irony detection in Persian language: A transfer learning approach using emoji prediction," in Proceedings of The 12th Language Resources and Evaluation Conference, 2020, pp. 2839-2845.
28. [28] "Kaggle." https://www.kaggle.com/ (last accessed February 2023) .
29. [29] SemEval. "iSarcasmEval: Intended Sarcasm Detection In English and Arabic."https://sites.google.com/view/semeval2022-isarcasmeval (last accessed February 2023).
30. [30] A. Vaswani et al., "Attention is all you need," Advances in neural information processing systems, vol. 30, 2017.Volume 15- Number 1 - 2023 (56 -62) 61
31. [31] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, "Bert:Pre-training of deep bidirectional transformers for language understanding," arXiv preprint arXiv:1810.04805, 2018.
32. [32] M. Farahani, M. Gharachorloo, M. Farahani, and M. Manthouri, "Parsbert: Transformer-based model for persian language understanding," Neural Processing Letters, vol. 53, no. 6, pp. 3831-3847, 2021. [
DOI:10.1007/s11063-021-10528-4]
33. [33] A. Conneau et al., "Unsupervised cross-lingual representation learning at scale," arXiv preprint arXiv:1911.02116, 2019.
34. [34] G. Lample and A. Conneau, "Cross-lingual language model pretraining," arXiv preprint arXiv:1901.07291, 2019.
35. [35] T. Ranasinghe, S. Gupte, M. Zampieri, and I. Nwogu, "Wlvrit at hasoc-dravidian-codemix-fire2020: Offensive language identification in code-switched youtube comments," arXiv preprint arXiv:2011.00559, 2020.
36. [36] J. Wei et al., "Finetuned language models are zero-shot learners," arXiv preprint arXiv:2109.01652, 2021.