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Abstract—Contextual feature extraction is studied for polarimetric synthetic aperture radar (PolSAR) image 

classification in this work. The contextual locality preserving projection (CLPP) method is proposed for generation of 

contextual feature cubes using limited training samples. The local information in neighborhood regions is used to extend 

the training set by including the spatial information. Then, a supervised transform is applied to the polarimetric-

contextual feature cube to reduce the data dimensionality while preserves the local structures and settles the samples 

belonging to the same class close together. Finally, a guided filter is applied to the classification map to degrade the 

speckle noise.  The classification results on two real L-band PolSAR data from AIRSAR show superior performance of 

CLPP for PolSAR classification in small sample size situations. 

Keywords—locality preserving projection; spatial feature extraction; classification; polarization; classification; guided 

filter. 

 

I. INTRODUCTION  

One of the main challenges in polarimetric synthetic 

aperture radar (PolSAR) classification is extraction of 

features with high discrimination ability [1]. A high 

resolution SAR image contains rich contextual 

information, which can be very effective to provide an 

accurate classification map from the ground surface 

[2]. From the other hand, a PolSAR data is the SAR 

image from the same scene acquired in multiple 

polarizations. Different polarimetric characterizations 

of different materials allow class discrimination among 

various classes.  

 
 Corresponding Author 

       In recent years, deep learning attracts much 

attention from the researchers of various fields such as 

remote sensing [3]. For SAR and PolSAR 

classification, many deep learning based methods have 

been proposed. In [4], a sparse filtering and manifold 

regularization based deep neural network is introduced 

for feature extraction and classification of PolSAR 

image. A three channel convolutional neural network, 

which utilizes the ability of unlabeled samples to 

improve the PolSAR image classification, is proposed 

in [5]. It not only utilizes a spatial weighted method for 

increasing the role of central pixel but also includes 

deep and scale polarization information to the 
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classification process. Generally, although deep 

learning based methods have shown great performance 

in the feature extraction and classification of SAR and 

PolSAR images, but, they require a sufficiently large 

training set to have a reasonable performance.  

 

 
 

Fig. 1. Block Diagram of CLPP with guided filtering 

 

To explain the scattering process of different class 

types in a PolSAR image, a decision tree based 

approach is introduced in [6] where the polarimetric 

features are utilized at the tree nodes. A multi-view 

deep forest is also suggested in [7] by involving online 

learning. To deal with imbalanced sample size in 

various classes, a cost sensitive latent space learning is 

suggested in [8], which reduces the learning bias.  

The use of textural features extractors can be very 

useful for classification of high resolution images with 

rich spatial details. Among various contextual 

operators, gray level co-occurrence matrix (GLCM) is 

well known [9]. It measures that how much probability, 

two different gray levels occur in the neighboring of a 

given pixel. The Gabor filter banks have also shown 

great success in textural feature extraction in multiple 

scales and directions [10]. The morphological 

operators analyze how much the image interacts with a 

set of structure elements with various shapes and sizes 

[11]-[12]. The output results of opening and closing 

morphological operators by reconstruction are 

concatenated together to provide a morphological 

profile (MP).  

The PolSAR image classification is a challenging 

task due to limited number of training samples and also 

contamination of SAR images to the speckle noise. In 

addition, spatial information of the PolSAR image 

should appropriately be extracted and fused with the 

polarimetric features. To deal with these difficulties of 

the PolSAR image classification, the contextual based 

locality preserving projection (CLPP) is proposed in 

this work. According to CLPP, the ability of unlabeled 

samples is utilized through implementing an initial 

classification by using polarimetric information and 

contextual features extracted by morphological filters, 

GLCM operators and Gabor filter bank. Then, the 

neighborhood information in the obtained 

classification map is used to extend the training set. 

After that, concatenation of the PolSAR cube with the 

extracted feature maps beside the enlarged training set 

are used to find a new classification map. The support 

vector machine (SVM) is used as classifier in this work 

because it has shown great efficiency in small sample 

size situations [13]. Finally, the guided filter is applied 

to the classification map to reduce the speckle noise 

and improve the classification accuracy. 

The classification results on two real PolSAR data 

show efficiency of CLPP in improvement of the 

classification performance with respect to the 

conventional MP, GLCM and Gabor feature cubes.  

 

II. PROPOSED METHOD 

A) PolSAR representation  

Each pixel of the PolSAR image is represented by its 

coherency matrix: 

                        𝑻 = [

𝑇11 𝑇12 𝑇13

𝑇12
∗ 𝑇22 𝑇23

𝑇13
∗ 𝑇23

∗ 𝑇33

]                             (1) 

                  

where (∙)∗ denotes the conjugate operator. A PolSAR 

image can be represented with a cube containing 9 

polarimetric channels where each channel is the real or 

imaginary value of each element of the coherency 

matrix [14] as follows: 

𝒇 = [𝑇11, 𝑇22, 𝑇33, 𝑅𝑒(𝑇12), 𝐼𝑚(𝑇12), 𝑅𝑒(𝑇13), 

                              𝐼𝑚(𝑇13), 𝑅𝑒(𝑇23), 𝐼𝑚(𝑇23)]                    

(2)                

where 𝑅𝑒(∙)/𝐼𝑚(∙) is the real/imaginary part of (∙) and 

𝑇𝑖𝑗 ; 𝑖, 𝑗 = 1,2,3  are the elements of the coherency 

matrix 𝑻 in (1). 

The block diagram of the proposed CLPP method 

is shown in Fig. 1. The proposed CLPP method, at first, 

produces a spatial feature cube from the PolSAR 

image. The extracted feature cube has high 

dimensionality and needs to feature reduction. For 
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dimensionality reduction, a feature projection with 

involving the class labels information is preferred. To 

this end, enough training samples are required to well 

model the polarimetric-contextual structure of the 

PolSAR data in various classes. The CLPP method is 

implemented according to the following steps: 

1- The contextual features are extracted from the 

PolSAR image by applying morphological filters, 

GLCM operators and Gabor filter banks.  

2- The contextual feature cube (MP, GLCM or Gabor) 

is given to the SVM classifier to find an initial 

classification map.  

3- The neighborhood information in the initial 

classification map is used to provide a new set of 

training samples from the original unlabeled 

samples. The result is extension of training set. 

4- A supervised locality preserving projection is used 

for dimensionality reduction of the contextual 

feature cube obtained from the first step. It involves 

the class label information of the enlarged training 

set obtained from step 3.  

5- The features extracted from step 4 and the enlarged 

training set obtained from step 3 are given to the 

SVM classifier to results in a new classification 

map.  

6- Guided filtering is applied to the classification map 

obtained in step 5 to reduce the speckle noise.  

The steps 1, 3, 4 and 6 from the above classification 

process are explained with more details in the 

following.  

 

B) Extraction of spatial feature cube 

Because, the PolSAR data is a polarimetric feature 

cube, the principal component analysis is applied to the 

PolSAR data. Some principal components (PCs) of 

PolSAR image are chosen and the contextual operators 

are applied to each PC. For example, to provide the 

GLCM feature cube, the GLCM operator is applied to 

each PC of PolSAR. Then, the GLCM feature maps 

obtained from all PCs are concatenated to the original 

PolSAR cube to results in the GLCM feature cube. The 

MP and Gabor feature cubes are obtained in a similar 

way.   

        MP: The common opening and closing 

morphological operators are constructed by the basic 

morphological operators, i.e., erosion and dilation. The 

reconstruction filters do not produce discontinuities 

and preserve the shapes observed in given images. 

With Applying 𝑛 opening operators by reconstruction 

(with 𝑛  different sizes of structure elements), and 𝑛 

closing ones, 2𝑛 output images containing shape and 

contextual information are resulted.  

   𝑀𝑃𝑛(𝐼) = {𝜑1(𝐼), … , 𝜑𝑛(𝐼), 𝐼, 𝛾1(𝐼), … , 𝛾𝑛(𝐼)}    (3)        

where 𝜑𝑖(𝐼)  and 𝛾𝑖(𝐼); 𝑖 = 1,2, … , 𝑛  are closing and 

opening filters by reconstruction, respectively.  

GLCM: GLCM is a square matrix that reveals some 

properties about spatial distribution of gray levels of 

the input image with considering relationship among 

the neighboring pixels. For each centered pixel, the 

number of pixels with a considered grey level in the 

specific distance and direction is accounted. This 

process is done for all possible gray levels. 

Corresponding to each pixel, a GLCM matrix is 

composed. Then, spatial features such as contrast, 

correlation, variance, entropy and some other ones are 

extracted from the GLCM matrix [19].  

      Gabor: A Gabor filter bank provides the 

localization characteristics in both spatial and 

frequency domains in various scales and directions. A 

Gabor filter is a sinusoidal wave multiplied by a 

Gaussian function, which is convolved with the input 

image to generate the Gabor features. 

 

C) Neighborhood information 

The initial classification map is obtained by the 

contextual feature cube containing both polarimetric 

and spatial features. The efficient SVM classifier with 

low sensitivity to the number of training samples is 

used to obtain the classification map. So, the initial 

labels assigned to the pixels are relatively high reliable. 

Let consider a local window with the length of 𝐿 × 𝐿 

around the central pixel 𝒙𝑖 in the initial classification 

map. The neighborhood pixels can be represented as: 

 

  𝑁(𝒙𝑖) = {𝒙𝑖
𝑛 ≜ (𝑝, 𝑞); 𝑝 ∈ [𝑝𝑖 − 𝑎, 𝑝𝑖 + 𝑎], 𝑞 ∈

[𝑞𝑖 − 𝑎, 𝑞𝑖 + 𝑎]}                                                                (4) 

where (𝑝𝑖 , 𝑞𝑖)  is the pixel coordinate of 𝑖 th training 

sample, 𝑎 = (𝐿 − 1)/2 , 𝒙𝑖
𝑛;  𝑛 = 1,2, … , 𝐾  is  𝑛 th 

spatial neighbor of 𝒙𝑖 , and 𝐾 = 𝐿2 − 1  denotes the 

number of neighbors. Among the neighboring pixels, 

those that have the same label as the central pixel are 

added to the training samples to enlarge the training 

set. So:  

if 𝑙𝒙𝑖
𝑛 = 𝑙𝒙𝑖

, then 𝒙𝑖
𝑛 is added to the training set  

Adding the spatial neighbors to the training set has two 

main advantages [15]: 1- involving spatial information 

to the classification process and 2- enlarging the 

training set to deal with small sample size situations.  

 

D) Supervised feature space projection  

Inspired from [15], the enlarged training set is used for 

dimensionality reduction through a feature space 

transform with preserving the local structure of data. 

An adjacency graph is constructed by using the training 

samples in the polarimetric-contextual feature space. 

Let denote Z=[𝒛1, 𝒛2, … , 𝒛𝑁] as the enlarged training 

set where 𝑁 is the number of samples in the extended 

training set. A projection matrix 𝐀  is  sought which 

transforms the sample 𝒛𝑖  (𝑖 = 1,2, … , 𝑁)  to 𝒚𝑖 =
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 𝐀𝒛𝑖  such that not only preserves the locality of data 

but also leads to close the samples with the same class 

labels in the projected feature space. In order to 

compute the projection matrix 𝐀 , the following 

optimization problem is solved: 

         𝐀 = 𝑎𝑟𝑔 min
𝐀

∑ ∑ ‖𝒚𝑖 − 𝒚𝑗‖
2

𝑤𝑖𝑗
𝑁
𝑗=1

𝑁
𝑖=1           (5) 

 

Fig. 2. OA versus the number of extracted features for Flevoland 

dataset. The results are obtained by the first PC and 𝐿 = 7. 

 

that with replacing 𝒚𝑖 =  𝐀𝒛𝑖, we have: 

𝐀 = 𝑎𝑟𝑔 min
𝐀

∑ ∑‖𝐀𝑇𝒛𝑖 − 𝐀𝑇𝒛𝑗‖
2

𝑤𝑖𝑗

𝑁

𝑗=1

𝑁

𝑖=1

 

              = 𝑎𝑟𝑔 min
𝐀

tr(𝐀𝑇𝐙𝐋𝐙𝑇𝐀)                         (6)                

𝐋 = 𝐃 − 𝐖 is the Laplacian matrix where 𝐃 denotes a 

diagonal matrix of the column sums of 𝐖  and 𝐖 

indicates the similarity matrix defined by 𝑤𝑖𝑗 =

1 (if 𝑙𝒙𝑖
= 𝑙𝒙𝑗

)  and 𝑤𝑖𝑗 = 0 (if 𝑙𝒙𝑖
≠ 𝑙𝒙𝑗

) ; 𝑖, 𝑗 =

1,2, … , 𝑁 where 𝑙𝒙𝑖
 is the class label of sample 𝒙𝑖. The 

eigenvectors associated with the smallest eigenvalues 

of the matrix 𝐙𝐋𝐙𝑇 compose the projection matrix 𝐀.  

 

E) Guided Filtering  

After feature extraction in step 4, the extracted features 

are fed to the SVM to provide a new classification map 

(initial classification map 2). Due to high value of 

speckle noise in SAR images, the guided filter is 

suggested to degrade the speckle noise and smooth the 

classification map. In a PolSAR image with 𝑀 pixels 

and 𝑛𝑐  classes, 𝑛𝑐  binary probability maps 

{𝑃𝑟𝑜𝑏1 , 𝑃𝑟𝑜𝑏2, … , 𝑃𝑟𝑜𝑏𝑛𝑐
}  are considered 

corresponding to the initial classification map 2 where 

𝑃𝑟𝑜𝑏𝑖 ∈ ℛ𝑟×𝑐 is 𝑖th binary probability map, and 𝑟/𝑐 is 

the number of rows/columns. The binary probability 

map is obtained by [16]-[17]: 

𝑃𝑟𝑜𝑏𝑖,𝑗 = {
1;                 𝒙𝑗 ∈ 𝑐𝑙𝑎𝑠𝑠 𝑖

0;    𝒙𝑗 ∈ 𝑐𝑙𝑎𝑠𝑠 𝑘; 𝑘 ≠ 𝑖
 

                    𝑖 = 1, … , 𝑛𝑐; 𝑗 = 1, … , 𝑀                     (7) 

 

In other words, 𝑃𝑟𝑜𝑏𝑖,𝑗 = 1 if  pixel 𝑗 belongs to class 

𝑖 and otherwise, 𝑃𝑟𝑜𝑏𝑖,𝑗 = 0. The probability maps are 

filtered by: 

              𝑃𝑟𝑜𝑏̂𝑖,𝑗 = ∑ 𝑊𝑖,𝑗(𝐺)𝑗 𝑃𝑟𝑜𝑏𝑖,𝑗                   (8) 

 

 

 

Fig. 3. OA for different window lengths in Flevoland dataset. The 

results are obtained by the first PC and 20 extracted features. 

 

where 𝑖 /𝑗 indicate the indix of the pixel 𝑖/𝑗; 𝐺 is the 

guidance image and 𝑊𝑖,𝑗(𝐺)  denotes the filtering 

weight computed by: 

𝑊𝑖,𝑗(𝐺) =
1

|𝑤|2
∑ (1 +

(𝐺𝑖−𝜇𝑘) (𝐺𝑗−𝜇𝑘)

𝜎𝑘
2+𝜀

)𝑘∈𝑤𝑖,𝑘∈𝑤𝑗
         (9) 

 

𝑤𝑖  represents the local window around the pixel 𝑖 ; 

𝜇𝑘/𝜎𝑘 is the mean/standard deviation of 𝐺 in 𝑤𝑘, and 

|𝑤| is the number of pixels in window 𝑤𝑘. The filter 

preserves the edges according to the guidance image 

𝐺. The first principal component of the PolSAR data is 

considered as 𝐺. The use of 𝑃𝑟𝑜𝑏̂𝑖,𝑗;   𝑖 = 1, … , 𝑛𝑐; 𝑗 =

1, … , 𝑀 not only utilizes more contextual information 

in the classification process but also leads the 

probability maps to align with the real class 

boundaries.  After guided filtering, the label of pixel 𝑗 

is obtained by applying the maximum decision rule as 

follows: 

            𝑙𝑗 = arg max
𝑖=1,…,𝑛𝑐

𝑃𝑟𝑜𝑏𝑖,𝑗 ;  𝑗 = 1, … , 𝑀          (10)        

 

III. EXPERIMENTS 

A) Datasets and parameter settings  

To assess the classification performance of CLPP, two 

real L-band PolSAR images acquired by AIRSAR are 

utilized to implement experiments. The used datasets 

are Flevoland, an 900×1024 image with 15 classes; 

and SanFrancisco, an 750×1024 image with 4 classes. 

To evaluate the sample size situation, only 10 training 

samples per class are used in both datasets. 
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TABLE I.  CLASSIFICATION RESULTS OF CLPP (WITHOUT GUIDED FILTERING) COMPARED TO FULL BAND CONTEXTUAL CUBES FOR 

FLEVOLAND DATASET. THE RESULTS ARE OBTAINED BY THREE PCS, 𝐿 = 7 AND 18 EXTRACTED FEATURES. 

No Name of class # Total 

Samples 

CLPP-MP CLPP-

GLCM 

CLPP-

Gabor 

MP GLCM Gabor 

1 Stembeans 6103 94.87 87.12 91.33 96.00 81.48 82.93 

2 Peas 9111 97.60 93.40 92.53 96.85 92.31 91.47 

3 Forest 14944 90.06 83.32 83.20 90.50 77.08 67.92 

4 Lucerne 9477 92.11 87.19 86.08 91.76 86.35 87.35 

5 Wheat 17283 97.96 79.34 78.30 90.99 80.65 79.27 

6 Beet 10050 85.71 87.37 93.07 92.00 89.94 91.13 

7 Potatoes 15292 94.96 90.68 93.92 95.47 91.97 87.52 

8 Bare soil 3078 100.00 99.94 99.94 100.00 99.97 99.84 

9 Grass 6269 99.84 76.68 91.26 99.25 66.95 74.21 

10 Rapeseed 12690 94.94 84.09 78.87 96.10 74.14 75.34 

11 Barely 7156 96.41 94.42 96.24 96.48 95.96 96.60 

12 Wheat 2 10591 83.51 76.38 80.03 70.14 73.02 69.31 

13 Wheat 3 21300 95.28 78.48 88.21 97.69 69.55 80.30 

14 Water 13476 97.20 78.87 79.02 83.36 63.61 62.32 

15 Buildings 476 96.22 77.73 76.68 94.33 78.57 77.94 

Average Accuracy 94.45 85.00 87.25 92.73 81.44 81.56 

Overall Accuracy 94.04 83.93 86.35 92.05 79.58 79.77 

Kappa 93.50 82.52 85.14 91.34 77.83 78.02 

 

TABLE II.  Z SCORES OBTAINED BY THE MCNEMARS TEST FOR FLEVOLAND DATASET (CLPP WITHOUT GUIDED FILTERING). 

 CLPP-MP CLPP-GLCM CLPP-Gabor MP GLCM Gabor 

CLPP-MP 0 104.10 88.23 34.98 131.29 130.38 

CLPP-GLCM -104.10 0 -34.73 -89.91 53.51 47.49 

CLPP-Gabor -88.23 34.73 0 -70.95 73.71 73.59 

MP -34.98 89.91 70.95 0 120.67 120.40 

GLCM -131.29 -53.51 -73.71 -120.67 0 -3.04 

Gabor -130.38 -47.49 -73.59 -120.40 3.04 0 

 

 

 

 

Figure 4.  RPL Comparison of classification maps obtained by CLPP (without guided filtering) and contextual feature cubes for Flevoland 

dataset. 
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TABLE III.  CLASSIFICATION RESULTS OF CLPP (WITHOUT GUIDED FILTERING) COMPARED TO FULL BAND CONTEXTUAL CUBES FOR 

SANFRANCISCO DATASET. THE RESULTS ARE OBTAINED BY THREE PCS, 𝐿 = 7 AND 18 EXTRACTED FEATURES. 

No Name of class # Total 

Samples 

CLPP-MP CLPP-

GLCM 

CLPP-

Gabor 

MP GLCM Gabor 

1 Mountain  61913 82.56 83.94 83.33 80.35 86.56 78.68 

2 Grass  135282 72.91 73.02 78.39 67.18 76.04 80.84 

3 Sea  348639 92.40 87.62 87.20 88.40 82.57 95.68 

4 Building  375766 77.57 66.48 64.24 81.10 65.37 64.34 

Average Accuracy 81.36 77.77 78.29 79.26 77.63 79.89 

Overall Accuracy 82.83 76.61 76.29 81.77 74.87 79.58 

Kappa 75.10 67.02 66.71 73.68 65.02 70.89 

 

TABLE IV.  Z SCORES OBTAINED BY THE MCNEMARS TEST FOR SANFRANCISCO DATASET (CLPP WITHOUT GUIDED FILTERING). 

 

 CLPP-MP CLPP-GLCM CLPP-Gabor MP GLCM Gabor 

CLPP-MP 0 139.95 146.18 33.20 170.05 78.29 

CLPP-GLCM -139.95 0 10.92 -109.12 45.24 -75.19 

CLPP-Gabor -146.18 -10.92 0 -115.12 36.61 -87.31 

MP -33.20 109.12 115.12 0 138.68 48.93 

GLCM -170.05 -45.24 -36.61 -138.68 0 -158.83 

Gabor -78.29 75.19 87.31 -48.93 158.83 0 

 

 

. 

 

 

Figure 5.  Comparison of classification maps obtained by CLPP (without guided filtering) and contextual feature cubes for SanFrancisco 

dataset. 

 

TABLE V.  CLASSIFICATION RESULTS OF CLPP (WITH GUIDED FILTERING) COMPARED TO FULL BAND CONTEXTUAL CUBES FOR 

FLEVOLAND DATASET. THE RESULTS ARE OBTAINED BY THREE PCS, 𝐿 = 7 AND 18 EXTRACTED FEATURES. 

No Name of class # Total 

Samples 

CLPP-MP CLPP-

GLCM 

CLPP-

Gabor 

MP GLCM Gabor 

1 Stembeans 6103 97.62 97.67 97.08 96.59 96.23 97.33 

2 Peas 9111 99.86 99.42 99.20 99.91 99.23 98.96 

3 Forest 14944 90.60 96.69 90.50 90.60 91.37 90.24 

4 Lucerne 9477 92.10 94.56 93.63 93.09 92.05 94.15 

5 Wheat 17283 99.37 88.08 91.41 96.45 91.66 91.78 

6 Beet 10050 87.86 97.84 98.68 93.97 97.16 97.95 

7 Potatoes 15292 98.87 99.61 99.12 98.97 99.41 99.23 

8 Bare soil 3078 100.00 100.00 100.00 100.00 100.00 100.00 

9 Grass 6269 100.00 99.54 100.00 100.00 99.94 100.00 

10 Rapeseed 12690 99.52 97.71 95.40 99.87 91.28 92.30 

11 Barely 7156 99.43 99.89 99.96 99.30 100.00 100.00 

12 Wheat 2 10591 86.39 88.89 98.70 65.87 93.36 88.24 

13 Wheat 3 21300 97.65 99.54 99.95 99.51 91.77 99.88 

14 Water 13476 98.18 83.12 83.47 82.96 66.17 64.38 

15 Buildings 476 93.70 83.19 83.19 97.27 83.19 83.19 

Average Accuracy 96.08 95.05 95.35 94.29 92.86 93.18 

Overall Accuracy 96.10 95.23 95.50 93.80 92.14 92.92 

Kappa 95.75 94.80 95.10 93.24 91.45 92.28 
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TABLE VI.  Z SCORES OBTAINED BY THE MCNEMARS TEST FOR FLEVOLAND DATASET (CLPP WITH GUIDED FILTERING). 

 CLPP-MP CLPP-GLCM CLPP-

Gabor 

MP GLCM Gabor 

CLPP-MP 0 14.95 10.83 45.37 57.79 48.66 

CLPP-GLCM -14.95 0 -7.39 27.66 55.28 46.08 

CLPP-Gabor -10.83 7.39 0 32.09 68.51 59.13 

MP -45.37 -27.66 -32.09 0 25.94 15.25 

GLCM -57.79 -55.28 -68.51 -25.94 0 -21.18 

Gabor -48.66 -46.08 -59.13 -15.25 21.18 0 

  

 
 

 

 
 

Figure 6.  Comparison of classification maps obtained by CLPP (with guided filtering) and contextual feature cubes for Flevoland dataset

TABLE VII.  CLASSIFICATION RESULTS OF CLPP (WITH GUIDED FILTERING) COMPARED TO FULL BAND CONTEXTUAL CUBES FOR 

SANFRANCISCO DATASET. THE RESULTS ARE OBTAINED BY THREE PCS, 𝐿 = 7 AND 18 EXTRACTED FEATURES. 

No Name of class # Total 

Samples 

CLPP-MP CLPP-

GLCM 

CLPP-

Gabor 

MP GLCM Gabor 

1 Mountain  61913 89.38 93.45 93.29 86.39 94.69 89.30 

2 Grass  135282 72.32 86.68 90.27 67.41 88.42 89.26 

3 Sea  348639 97.05 92.22 92.07 90.44 81.87 98.01 

4 Building  375766 86.80 79.08 72.52 90.74 76.74 73.44 

Average Accuracy 86.39 87.86 87.04 83.74 85.43 87.50 

Overall Accuracy 88.73 86.13 83.91 86.91 81.60 86.12 

Kappa 83.13 79.83 76.92 80.48 73.89 79.82 

 

TABLE VIII.  Z SCORES OBTAINED BY THE MCNEMARS TEST FOR SANFRANCISCO DATASET (CLPP WITH GUIDED FILTERING). 

 CLPP-MP CLPP-

GLCM 

CLPP-

Gabor 

MP GLCM Gabor 

CLPP-MP 0 86.04 133.37 73.35 183.98 84.90 

CLPP-GLCM -86.04 0 103.38 -20.28 154.64 0.22 

CLPP-Gabor -133.37 -103.38 0 -69.15 84.45 -91.10 

MP -73.35 20.28 69.15 0 117.19 20.44 

GLCM -183.98 -154.64 -84.45 -117.19 0 -145.58 

Gabor -84.90 -0.22 91.10 -20.44 145.58 0 
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Figure 7.  Comparison of classification maps obtained by CLPP (with guided filtering) and contextual feature cubes for SanFrancisco 

dataset.

TABLE IX.  COMPARISON OF OVERALL ACCURACY AMONG METHODS WITHOUT GUIDED FILTERING AND WITH GUIDED FILTERING. 

Dataset  
Filtering  CLPP-MP CLPP-

GLCM 

CLPP-

Gabor 

MP GLCM Gabor 

Flevoland 
Without guided filtering  94.04 83.93 86.35 92.05 79.58 79.77 

With guided filtering 96.10 95.23 95.50 93.80 92.14 92.92 

SanFrancisco 
Without guided filtering  82.83 76.61 76.29 81.77 74.87 79.58 

With guided filtering 88.73 86.13 83.91 86.91 81.60 86.12 

TABLE X.  RUNNING TIME OF DIFFERENT METHODS (SECONDS). 

Dataset  
CLPP-MP CLPP-

GLCM 

CLPP-

Gabor 

MP GLCM Gabor 

Flevoland 73.88 193.09 69.66 57.63 179.63 56.26 

SanFrancisco 50.21 218.43 60.59 44.23 214.20 56.33 

 

        

The first PC or some first PCs of the PolSAR images 

can be used to compose the contextual feature cubes 

(MP, GLCM and Gabor). The MP composed from each 

PC contains 73 channels obtained by applying 36 

opening filter and 36 closing filters by reconstruction. 

To build the GLCM matrix from each PC, the fast 

GLCM algorithm with distance 𝑑 = 1  and direction 

𝜃 = 0 with a 7 × 7 neighborhood window is just, the 

first PC of the PolSAR data is used to compute the 

contextual cubes (MP, GLCM and Gabor). Fig. 2 

shows the overall accuracy (OA) versus the number of 

extracted features in the fourth step of the CLPP 

method for Flevoland dataset. 𝐿 = 7  is fixed as the 

neighborhood window length. As seen, with increasing 

the number of extracted features, the OA is increased 

to a dimensionality and after that, it becomes stable. 

Another finding is that the best results are achieved by 

CLPP-MP where CLPP-MP means that CLPP is 

implemented with the MP contextual feature cube 

obtained in the first step. After CLPP-MP, CLPP-

Gabor and then, CLPP-GLCM are preferred in the 

Flevoland dataset. In another experiment, influence of 

the length of neighborhood window 𝐿 × 𝐿 used in the 

third step of the CLPP method is assessed. The OA 

obtained with four different window lengths are shown 

for Flevoland dataset in Fig. 3. 20 features are 

extracted in each method. For all methods (CLPP-MP, 

CLPP-GLCM and CLPP-Gabor), 𝐿 = 13 achieves the 

highest OA among the tested lengths. Note that 

increasing the window length increases the 

computation time and memory requirement. From the 

other hand, larger neighborhood windows may include 

the dissimilar samples from different classes in the 

extended training set, which may degrade the 

classification accuracy. 

B) Classification results  

Efficiency of CLPP is assessed from the classification 

accuracy point of view by using the contextual cubes  

of MP, GLCM and Gabor. Three PCs of PolSAR 

datasets are used for doing these experiments. The 

window length of neighborhood region is set as 𝐿 = 7, 

and 18 features are extracted in each method.  

At first, the classification results without applying 

the guided filter is investigated.  The classification 

results containing the class accuracies, average 

accuracy, OA and kappa coefficient are reported in 

Table I for Flevoland dataset. The associated values of 

Z scores obtained from the McNemars test are also 

represented in Table II. The ground truth map (GTM), 

Pauli RGB and classification maps are shown in Fig. 4. 

According to the obtained results, the use of CLPP 

approach generally improves the classification 
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accuracy with respect to conventional methods where 

the MP, GLCM and Gabor feature cubes are given to 

the SVM classifier with the original training samples 

and without applying the feature transformation. In 

addition, the highest accuracy is achieved by CLPP-

MP. Another finding is better performance of Gabor 

compared to the GLCM. 

The classification results for SanFrancisco dataset 

are represented in Tables III and IV and also Fig. 5. 

Similar to previous dataset, CLPP-MP ranks first. 

CLPP-MP is better than MP and CLPP-GLCM is better 

than GLCM. But, Gabor results in better classification 

results compared to CLPP-Gabor. The Z-scores of the 

McNemars test in Tables II and IV show that the 

difference between classification results of each pair of 

methods reported in Tables I and III are statistically 

significant or not. The behavior of the proposed 

algorithm is also assessed when the guided filter is 

used to smooth the classification results. The 

classification accuracies for Flevoland and 

SanFrancisco datasets are reported in Tables V and VI, 

respectively. According to the obtained results, the 

highest overall accuracy is obtained by CLPP-MP in 

both datasets. The use of CLPP improves the 

classification accuracy for GLCM in both datasets. 

But, the use of CLPP does not lead to classification 

improvement when Gabor filter bank is used for 

contextual feature extraction. The classification maps 

for two datasets are shown in Figs. 6-7. As seen, 

applying the guided filtering to the classification maps 

smooth them significantly. The McNemars test results 

reported in Table VII and VIII show significant 

difference of CLPP methods compared to conventional 

ones from the statistical point of view. 

To have a comparison among the classification 

results when guided filter is used or not, the OA of two 

datasets are briefly represented in Table IX. It can be 

found that the use of guided filtering significantly 

improves the classification results in both datasets. In 

both cases of “with guided filtering” and “without 

guided filtering”, CLPP-MP works better than MP, 

CLPP-GLCM works better than GLCM but CLPP-

Gabor works worse than Gabor. In other words, 

dimensionality reduction of Gabor features degrades 

the classification results.  

      The running time of different methods are reported 

in Table X. As seen, the use of CLPP approach 

increases the running time for three contextual feature 

cubes (MP, GLCM and Gabor). This finding is 

expected because CLPP does some revisions on the 

initial classification map obtained by the contextual 

feature cubes. According to the obtained results, 

among MP, GLCM and Gabor spatial feature 

extractors, MP is the fastest and GLCM is the slowest 

operator. Correspondingly, among CLPP-MP, CLPP-

GLCM and CLPP-Gabor methods, the CLPP-MP has 

the lowest running time while CLPP-GCLM has the 

highest running time. As a general conclusion, CLPP-

MP can be the best candid for PolSAR image 

classification because not only it provides the highest 

classification accuracy but also it implements faster 

than the other competitors.  

 

IV. CONCLUSION 

The CLPP method is proposed for PolSAR image 

classification using limited training samples. The 

CLPP method at first extracts the contextual features 

for providing an initial classification map. Then, it adds 

the neighbors with the same class labels to the training 

set. CLPP applies a supervised locality preserving 

projection on the polarimetric-contextual feature cubes 

to find the reduced feature cubes. The obtained features 

are used to provide a new classification map. Finally, 

the guided filter is optionally applied to the 

classification map to degrade the speckle noise and 

achieve a smoothed classification map. According to 

the experimental results, CLPP results in higher 

classification accuracy compared to the full channels 

contextual cubes. Among MP, GLCM and Gabor, 

generally MP ranks first and Gabor ranks second. 
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