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Abstract— Today's advances of mobile technologies in both hardware and software have pushed the vast 

utilization of mobile devices for diverse purposes. Along with this progress, today’s mobile devices are expected to 

perform various types of applications. However, the energy challenge of mobile devices along with their limited 

computation power act as a barrier. To address this deficiency, mobile cloud computing has been proposed in which 

cloud resources are used to extend mobile devices’ capabilities. However, due to varying conditions of wireless 

channel in terms of connectivity and bandwidth, an online offloading mechanism is required which may lead to high 

decision time and energy. To address this challenge, we propose a priority-based fast computation offloading 

mechanism which finds the optimal offloading solution based on a modified branch-and-bound algorithm. Results of 

intensive simulation and testbed experiments demonstrated that our proposal can outperform all existing optimal 

counterparts in terms of energy consumption and execution time. 
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I. INTRODUCTION 

Due to nowadays advancements in mobile 
applications and technologies, mobile devices have 

become as one inseparable part of our today's life. 
This development has resulted in using mobile devices 

for more computation intensive programs, which may 

not be efficiently executable by a mobile device.  

Moreover, the execution of such applications may 
exhaust the battery lifetime of energy-constrained 

mobile devices [1, 2]. The mobile cloud computing, 
which consists in employing the cloud capabilities by 

a mobile device [3], can address these performance 

and energy consumption concerns. In this regard, 
some parts of computation intensive applications are 
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transferred from the mobile device to the cloud, which 
subsequently returns the processed information as a 

result. This process is referred to as mobile cloud 
computation offloading (MCCO) [4-7].   

Due to the variable nature of network bandwidth 
and variety of applications’ characteristics in terms of 

quality of service requirements and data amount 

required to be transferred for remote execution, 
offloading of some parts of an application may be less 

or more beneficial in different times. Consequently, 
recent works concentrate on developing decision 

planners in order to specify appropriate constituent 
parts of application (called application's units) for 

offloading. To achieve this, application's units are 

primarily extracted using static or dynamic analysis of 
the application code or in a predefined manner based 

on object, method, thread, component or service 
granularity. Then, the weighted relation graph (WRG) 

of application is constructed to describe constituent 
application’s units and their respective invocations. 

The graph is profiled in an online or offline manner 
based on the cost of local and remote execution of 

each vertex and their corresponding invocation cost. 

Finally, the offloading problem is resolved by 
alternating between local and remote execution of 

different application's unit in order to discover a 
combination which min imizes the time and energy of 

offloading.  

Due to the importance of offloading decision, a 

number of works concentrated on proposing adequate 

planners to resolve offloading partitioning problem. 
These works can be classified in optimal and near-

optimal planners according to the primary  objective of 
their decision planner. The main concern of optimal 

offloading decision planners [8-12] is to find the 
optimal solution regardless of time devoted to make 

such decision. However, near-optimal proposals [13-

16] attempt to find a partitioning as close as possible 
to the optimal solution in order to reduce the decision 

time. However, they may sometimes lead to an 
inappropriate outcome far from the optimal result 

since these algorithms suffer from their non-
determin istic nature and local optimum problem. 

Consequently, we believe that optimal solutions 
should be preferred as long as their decision time 

remains reasonable.   

In this paper, we propose a priority-based fast 
optimal computation offloading planner, called PFO, 

based on branch-and-bound algorithm. The main goal 
of PFO is to find the optimal solution for diverse 

application size in a timely manner. 

The rest of paper is organized as follows. Section 2 

provides an overview of the current literature in 

mobile cloud offloading. Section 3 presents our 
proposed PFO solution. Section 4 describes the 

evaluation environment and reports the obtained 
results. Finally, section 5 concludes the paper and 

draws future works. 

II. RELATED WOKS 

Integer Linear Programming (ILP) is employed as 
optimal offloading decision planner in a number of 

existing proposals [8-12]. Main ly, MAUI [8] uses the 

ILP to optimize the energy consumption and execution 
time of application. The weighted relation graph of 

MAUI is composed of application’s methods extracted 
in a pre-defined manner and weighted based on 

energy, CPU cycle and bandwidth. CloneCloud [9] 
employs the ILP to minimize the application's 

execution energy based on a thread-based application 

relation graph extracted through static analysis. The 
ultimate goal of Mobile Augmentation Cloud 

Services  (MACS) [10] is to minimize the energy 
consumption, memory usage and execution time of 

application. The relation graph is constructed through 
static analysis of application's services profiled based 

on service type (i.e. offloadable or not), code size and 

memory cost, just to mention a few. 

In order to reduce the decision time of ILP-based 

offloading solutions, Branch and Bound Application 
Partitioning (BBAP) [11] attempts to find the optimal 

solution using the branch-and-bound algorithm. BBAP 
creates the weighted object relation graph of 

application through static analysis and online 
profiling. It  employs the depth-first-search strategy to 

exp lore the search space. The bounding value of 

BBAP proposal is initialized based on the cost of 
graph min-cut in the least possible bandwidth, 

obtained by Stoer-Wagner algorithm [13]. 

Since the existing optimal p lanners are not capable 

to solve the offloading problem in a timely manner 
especially for h igher scale graphs, some recent 

proposals have been concentrated on near-optimal 

solutions [14-17].  

Genetic Algorithm based computation 

offloading algorithm (GACO) [16] applies the 
genetic algorithm on a weighted relation graph 

composed of services workflow obtained by static 
analysis and online profiling. GACO uses random 

initial population and a fitness function minimizing the 

energy consumption and execution time. GACO 
crossovers the genes of two parents by 

correspondingly comparing them regarding their 
sensibility to mobility and fault occurrence. It mutes a 

gene with a probability proportional to its  fault 
occurrence and mobility sensibility. These steps are 

repeated for a pre-defined iteration runs. 

The objective of Dynamic offloading algorithm 

(DOA) [18] is to find a tradeoff between energy 

consumption and execution time using 1-opt local 
search. DOA uses static analysis and bandwidth-based 

online profiling. The employed 1-opt local search 
strategy is initialized with a feasible solution from 

which other solutions are derived by changing the state 
of one node and calculating its cost. Ult imately, the 

solution with minimal cost is returned when the stop 

condition is reached. 

Min-Cut Greedy Application Partitioning  

(MCGAP) [11] performs on object granularity and 
extracts the min-cut of graph through static Stoer-

Wagner algorithm for both least possible and current 
bandwidth. Nodes assigned to remote server in the 

least possible bandwidth and to local site in the current 

bandwidth are planned for execution in their 
corresponding selected site. 
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Fig.1.  The proposed PFO model of mobile cloud computing

 

Remained nodes are assigned to the less-cost 

execution site according to decreasing order of their 
weights.  

Although the aforementioned near-optimal 

proposals can decrease the offloading  decision time 

for large scale graphs, the calculated outcome may 

differ significantly from the optimal solution. In this 

paper, we aim at  proposing a fast offloading approach 

capable to achieve the optimal solution in a same 

order of decision time as near-optimal solutions. 

III. PRIORITY-BASED FAST OPTIMAL 

COMPUTATION OFFLOADING PLANNER 

In this section, we propose our priority-based 
computation offloading solution, called PFO, which is 

capable to obtain the optimal offloading solution in a 
timely manner. We first model the offloading issue as 

an optimization problem to minimize the energy 
consumption and execution time of application. Then, 

we describe our proposed decision planner for solving 

the computation offloading model. Fig. 1 illustrates an 
overview of our proposed PFO. 

A. Offloading Model 

In our proposed PFO, the partitioning module 

extracts the application’s units through static analysis 
of component level granularity. The application's units 

and their respective relations are represented as a 
relation graph in which vertices and edges represent 

constituent components and their invocations, 
respectively. The profiling module constructs the 

WRG of application in online manner, considering the 

available bandwidth, CPU processing speed, 

component's instructions number, transmission power 

and CPU power. The execution time and energy 

consumption are modeled as follows. 

 

1) Execution time model 
Application's execution time is obtained through 

execution time of each component with respect to its 

execution site (Local or Remote) in  addition with the 
invocation time. The execution time of application is 

formulated as follows: 

 

 
 

Where xi is the exclusion factor, representing the local 

(xi = 0) or remote (xi = 1) execution site of each 
component. Local execution time  (ti

loc) of each 

component is defined based on number of instructions 
within each component (ins_numi) divided by 

processing speed of CPU (proc_speedCPU). 
Furthermore, the remote execution time  (ti

rem) of each 

component is calculated by dividing the local 

execution time of each component by cloud speed up 
factor (k). The speed up factor represents the ratio of 

remote to local site processing speed. Consequently, 
the component execution time in local and remote site 

can be formulated as follows: 



(1) 

(2) 
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Fig 2.  An example of PFO's branchin rule 



The invocation time between two linked 

components ( ) is obtained by dividing the 

transmitted data between two components to the 

available transmission bandwidth. It is worth 
mentioning that the invocation time between two 

components in the same site is assumed to be 
negligible and equal to zero. The invocation time is 

defined in the following: 

 

2) Energy consumption model 
The offloading energy consumption is derived 

from the energy consumed for executing components 

selected to be run in the mobile device and the energy 

devoted for invocations between related components 
executed in d ifferent sites. The energy consumption of 

processing components in the cloud side is considered 
equal to zero  from the view of the mobile device. 

Hence, the offloading energy consumption is 
formulated as follows: 

 

 
 

 

The local energy (ei
loc) and invocation energy ( ) 

are calculated as follows: 





B. Proposed Branch-and-Bound Decision Planner 

The proposed decision planner in PFO employs an 

optimized branch-and-bound which is capable to find 
the optimal offloading solution in a timely manner. In 

the following, we present our proposed strategy for 

branching rule, bounding function and search steps of 
PFO.  

In the branching rule step, the WRG is transformed 
to a tree in which each branch represents a possible 

combination of execution sites for different 
application’s components. To achieve this, the tree is 

initialized from an empty root. Then, two copies of 

each component within the WRG are added to each 
leaf in a tree level, one for remote (xi = 1) and one for 

local (xi = 0) execution of that component. In order to 
reduce the time of tree exp loration in the search step, 

nodes of WRG are added to the tree in descending 
order of their weights, placing nodes with higher 

weights closer to the tree root. This latter allows our 
proposed PFO to prune inappropriate branches as soon 

as possible in the search step, which can result in 

reducing the time of offloading decision. Fig. 2 depicts 
a tree constructed by the proposed branching rule. In 

this example, it is assumed that WRG has four 
components, including c (the most computation 

intensive), a1, b1 and b2 (the least one).   

Since the goal of offloading is to find a solution 

with less cost compared to the local execution, we 

initialized our bounding value with the cost of local 
execution. The time complexity for updating the 

bounding value is equal to ϴ(1) which allows to 
further reduce the decision time. 

To traverse the formed search tree, we employed 
the Depth First Search (DFS) strategy during which 

the cost of each branch is calculated according to the 

abovementioned offloading cost model. During the  

(3) 

(4) 

(5) 

(6) 

(7) 



TABLE I.  Graph specifications 

Random 

Graph 
Nodes Edges 

R1 5 7 

R2 10 30 

R3 15 60 

R4 25 230 

 

TABLE II.  Simulation parameters  

Variables values 

pCPU (W) 0.4 

pTransfer (W) 0.7 

K 3 

bwtransmit (KB/s) 10 - 100 

 

exp loration, a branch may be pruned if its cost 
becomes higher than the bounding value. A branch is 

considered as a possible solution if it is explored 
entirely without being pruned. In such a case, the 

bounding value is updated by the cost of this branch, 
which is evidently less than the previous bounding 

value. As the result of the bounding value update, the 

search strategy becomes able to prune other 
inadequate branches in the faster time and hence to 

reduce the decision time. This process is executed 
until the search space is traversed completely. 

IV. EVALUATION 

 We evaluated the performance of our proposed 

PFO using both simulations and real testbed. The main 
objective of simulation experiments was to compare 

the efficiency of PFO with other optimal decision 
planners existing in the literature under different input 

parameters. Our real testbed analysis aimed at 

studying the applicability of our proposed solution 
considering the limitation and characteristics of real 

world in terms of application specifications, mobile 
device properties, network connection quality and 

bandwidth. In the following, we describe each 
evaluation study and the obtained outcome. 

A. Simulation Results 

With regard to the simulation study, we compared 

the effectiveness of the proposed PFO with ILP and 
BBAP counterparts using MATLAB version R2013 

on a machine with 2.2 GHz Intel core i7 CPU and 8 

GB of RAM. As our simulation test cases, we 
generated a set of random graphs  as specified in table 

I, representing various relation graphs to fit with 
different possible applications. Generated relation 

graphs are weighted based on uniform distribution. 
Moreover, for each random graph, simulations are run 

33 times and their average is represented as the result 
with a 95% confidence interval. Simulation parameters 

are summarized in table II. 

For this evaluation sets , we studied the impact of 
application graph scale and transmission bandwidth on 

the execution time and energy consumption of 
application. These analysis are described hereafter. 

TABLE III.  Decision time (S) 

Random 

Graph 
PFO BBAP ILP 

R1 0.019 0.019 0.021 

R2 0.028 0.0367 0.085 

R3 0.039 0.1960 28.91 

R4 0.153 13 - 

  

TABLE IV.  Decision energy (J) 

Random 

Graph 
PFO BBAP ILP 

R1 0.007 0.007 0.008 

R2 0.009 0.014 0.034 

R3 0.013 0.078 28.91 

R4 0.049 5.2 - 

 

1) Scale of relation graph impact 
In this experiment, the transmission bandwidth is 

fixed to 100 Kbytes/s. The decision time and decision 

energy of PFO are compared to its counterparts in 
table III and table IV, respectively. As we expect, the 

decision time and decision energy increase as the size 
of graph increase. The numerical results demonstrate 

that PFO outperforms both BBAP and ILP in decision 
time and decision energy. Also, as the relation graphs 

become larger, the supremacy of PFO to its 

counterparts are more highlighted. This latter is 
achieved by means of PFO's intelligent branching rule 

and bounding function. 

2) Transmission bandwidth impact 
In this experiment, the efficiency of PFO and 

BBAP are compared in different transmission 
bandwidths, ranging from 10 Kbytes/s to 100 

Kbytes/s. We evaluate the performance of R3 and R4 

in terms of execution time and energy consumption. 
According to Fig. 3 to Fig. 6, PFO outperforms BBAP 

for both R3 and R4, independently of underlying 
bandwidth.  

As the bandwidth increases, both energy 
consumption and execution time follow a descending 

pattern, However, PFO shows better offloading gain. 

This latter is due to better pruning of the search space, 
which results in reduction of execution time and 

energy consumption. 

B. Testbed Results 

For our real use case experiment, we implemented 
the proposed PFO decision planner on a Galaxy S6 

edge as the mobile device. In addition, we employed 
Zenbook with 2.9 GHz Intel Core i7 CPU and 8 GB of 

RAM as the remote server. As a sample mobile 
application, we implemented Fibonacci algorithm on 

Android Platform since it can lead to high execution 

time and energy for high values of input parameter n. 
For our analysis, we run the Fibonacci algorithm using 

both local execution strategy and PFO solution for 
different number of input values n, ranging from 35 to 

51. Table V and VI respectively demonstrate the  

 



TABLE V.  Execution time results for fibonacci testbed (S) 

Method n = 35 n = 38 n = 42 n = 45 n = 48 n = 50 n = 51 

Local 0.3 0.98 5.68 23.40 119.82 - - 

FACO 0.5 0.67 2.33 9.04 43.92 120.10 183.11 

 

TABLE VI.  Energy consumption results for fibonacci testbed (J) 

Method n = 35 n = 38 n = 42 n = 45 n = 48 n = 50 n = 51 

Local 0.12 0.4 2.27 9.36 47.92 - - 

FACO 0.15 0.15 0.15 0.15 0.15 0.15 0.15 

 

10 20 30 40 50 60 70 80 90 100
1

1.5

2

2.5

3

3.5

Bandwidth (Kb/s)

E
x

e
c

u
ti

o
n

 T
im

e
 (

S
)

R3

 

 
Local

PFO

BBAP

 

Fig 3.  Bandwidth Impact on execution time using R3 

10 20 30 40 50 60 70 80 90 100
0.4

0.6

0.8

1

1.2

1.4

Bandwidth (Kb/s)

E
n

e
rg

y
 C

o
n

s
u

m
p

ti
o

n
 (

J
)

R3

 

 
Local

PFO

BBAP

 

Fig 4.  Bandwidth Impact on energy consumption using R3 

execution time and energy consumption obtained by 
PFO and local execution.  

Table V illustrates that as the value of n increases, 
execution time of both PFO and local execution 

increase, however PFO's execution time outperforms 

the local execution time. Moreover, the mobile device 
cannot run Fibonacci for values of n larger than 48 due 

to RAM constraints. 

Table VI shows that the local energy consumption 

has the same trend similar to local execution time, 
with an increasing trend for higher values of n. 

However, PFO's energy consumption remains steady 
with different values of n. This latter is due to the 

consideration of the energy consumption only from the 

mobile device perspective. Therefore, the energy 
consumption of an application execution remains 

intact from when all applications units are decided to 
be executed in the remote server. 
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Fig 5.  Bandwidth Impact on execution time using R4 
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Fig 6.  Bandwidth Impact on energy consumption using R4 

V. CONCLUSION 

In this paper, we proposed a priority-based 
computation offloading solution for mobile cloud 

computing which is capable to obtain optimal 

application partitioning in a t imely  manner. The 
proposed solution uses the branch-and-bound 

algorithm as its decision planner. It proposes an 
appropriate branching rule and bounding function in 

order to reduce the search space and optimize the 
resulted decision time and energy. The effectiveness of 

the proposed approach is evaluated using both 

simulations study and real tested experiment. Results 
demonstrated that the proposed solution outperforms 

other existing optimal counterparts  in terms of both 
execution time and energy consumption. 

As future work, we expect to study the impact of 
intermittent wireless connectivity and significant 

bandwidth changes occurred during initialization of 

offloading process and execution of application. 



Moreover, we intent to propose a mobility-aware 
offloading solution to optimize the effective outcome 

of offloading decision. 
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