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Abstract—This paper presents a new Proportionate Normalized Least Mean Square (PNLMS) adaptive algorithm 

using a soft maximum operator for sparse system identification. To provide a high rate of convergence, soft maximum 

operator is employed along with a weighting factor, which is proportional to an estimation of output mean square 

error (MSE). Simulation results show the superiority of the proposed algorithm over its PNLMS-based counterparts. 
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I. INTRODUCTION 

In the last two decades, adaptive filters have 
achieved wide applications in many signal processing 
areas [1]. One important area is sparse system 
identification, which is employed in many applications 
including channel estimation [2], [3], echo cancelation 
[4], [5]. In a sparse system, only a few coefficients of 
the impulse response are active (non-zero) and many 
of its coefficients are almost inactive (zero or near 
zero).  

In the identification of sparse systems, 
conventional adaptive filters could be improved, so 
that the convergence rate is increased while the 
computational load even decreases. To this end, sparse 
adaptive filters have been proposed to exploit the 
sparsity of the filter coefficients [6], [7], [8]. As a 
special case, the Normalized Least Mean Square 
(NLMS) adaptive algorithm which employs a unique 
step-size for all filter coefficients has a slow 
convergence rate in identification of sparse impulse 
responses. To mitigate such deficiency, the 

Proportionate NLMS (PNLMS) algorithm has been 
proposed which updates each filter coefficient 
individually proportional to its magnitude [9]. In 
addition, some other proportionate adaptive algorithms 
have been suggested to further improve the 
performance of NLMS. One of such algorithms is 
Improved PNLMS (IPNLMS) which employs a 
combination of proportionate and non-proportionate 
updating [4], [10]. Moreover, in [11], a µ-law PNLMS 
(MPNLMS) algorithm has been proposed which 
calculates an approximation of optimal proportionate 
step-size. 

Another variant of PNLMS algorithm, so-called 

Individual Activation Factor PNLMS (IAF-PNLMS), 

employs an individual activation factor for each 

adaptive filter coefficient, as opposed to a global 

activation factor in the standard PNLMS algorithm 

[12].  The IAF-PNLMS algorithm achieves a better 

distribution of the adaptation energy over the filter 

coefficients than the standard PNLMS does. Thereby, 

for systems exhibiting high sparseness, this approach 

achieves faster convergence, outperforming both the 



PNLMS and IPNLMS algorithms. A different class of 

PNLMS algorithms has also been suggested in [13] 

which takes into account the sparseness measure of 

the estimated impulse response via a modified 

coefficient update function and adapts dynamically to 

the level of sparseness using a new sparseness-

controlled approach.  

In the weight update process, on the other hand, 
one can exploit sparsity with a sparsity promoting 
regularization term [14-16]. The method in [14] is 
based on minimizing a regularized MSE criterion. The 

proposed method in [15] employs a
0l  norm in 

combination with Least Mean Square (LMS) 
algorithm which results in an improved version of 

LMS, so-called 
0l -LMS. Moreover, 

0l norm sparsity 

promoting regularization term was employed with 
PNLMS algorithm in [16].  

In addition to
0l norm, 

1l norm penalty has also 

been utilized in conjunction with PNLMS to improve 
both convergence speed and excess MSE of adaptive 
filter [17]. Besides, the relation between basis pursuit (

1l  norm optimization) and NLMS algorithm has been 

investigated in [18] which lead to a new version of 
PNLMS. Recently, a non-uniform norm ( p norm 

like) constraint LMS algorithm has also been proposed 
[19]. Differently, Maximum a Posteriori (MAP) 
estimation formulation permits the study of a number 
of prior distributions which naturally incorporate the 
sparse property of filter coefficients [7]. Consequently, 
a MAP-LMS adaptive filter [7] and further, a 
compressed sensing block based MAP-LMS have 
been introduced [20]. 

The convergence speed of the PNLMS algorithm, 
though very high initially, however, slows down at a 
later stage, even becoming worse than NLMS. In 
[25_], this problem is addressed by introducing a 
penalty of constructed l1 norm of the coefficients in 
the PNLMS cost function which favors sparsity. This 
helps in the shrinkage of the coefficients, especially 
the inactive taps, thereby arresting the slowing down 
of convergence. 

In [21], a family of block-sparse PNLMS adaptive 
algorithms is proposed that improve the performance 
of identifying block-sparse systems. They are based on 
the optimization of a mixed norm of the adaptive 
filter’s coefficients. 

In this paper, in order to increase the convergence 
rate of PNLMS, we modify the standard PNLMS 
algorithm. To do this, a weighted soft maximum 
operator is introduced and employed instead of a hard 
maximum operator. The motivation behind this idea is 
to consider the effect of coefficients in the whole 
duration of convergence, especially for iterations in 
which some coefficients are less than the predefined 
activation thresholds. This procedure improves the 
performance of the PNLMS algorithm. 

We further weight the terms in the soft maximum 
so that the weighting factor is decreased throughout 
the convergence of algorithm. The decreasing of the 
weighting factor is linearly proportional to the 

estimated MSE. Finally, we show the superiority of 
our proposed algorithm using numerical simulations. 

II. FAMILY OF PNLMS ADAPTIVE FILTERS 

Suppose the input signal at discrete time index n  

is )(nx and sparse impulse response of the unknown 

system is 
T

Noooo www ],...,,[ 1,1,0, w  where N  is 

the length of the impulse response. As a result, the 
system output is 

)()( nny T

o xw             (1) 

where  TNnxnxnxn )1(),...,1(),()( x  is 

the tap-input vector.  Moreover, the desired signal is 

)()()( nvnynd   where )(nv  is the 

measurement noise. The noise )(nv  is assumed to be 

a zero-mean white Gaussian noise with variance 
2

v  

and uncorrelated with the input signal. The error signal 
is defined as 

)()()()( nnndne T
xw               (2) 

where
T

N nwnwnwn )](),...,(),([)( 110 w   is the 

estimated impulse response at time index n . 

A wide range of adaptive filter algorithms, 
including PNLMS, employs the following update 
formula [4]:


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where )}(),...,(),({diag)( 110 ngngngn NG  is 

the gain matrix, 0  is the step-size parameter that 

control the convergence rate of the algorithm, and 

0  is a regularization parameter that prevents the 

division by zero.  

     Equation (3) is a recursive equation derived using 
minimization of a cost function which leads to the 
minimization of the estimated MSE [27, 28]. To 

conduct the weight update, an initialize for )0( nw  

is required, e. g. 
1)0(  N0w . Then (3) is repeated to 

some steps n  which is typically large, so that the 

estimated MSE converges to a steady state. The main 
idea of the proportionate updating is to assign different 
step sizes to different coefficients based on their 
optimal magnitudes. The bigger the magnitude, the 
larger the step-size assigned [26]. The diagonal 
elements of gain matrix determine the individual step-
sizes of each filter coefficient.  

   For the standard NLMS algorithm, NNn  IG )( , 

which means all active and inactive coefficients have 
the same step-size. As a result, a slow convergence 
rate can be achieved in identification of sparse 
systems. In contrast, the active coefficients of PNLMS 
have larger step-sizes than inactive coefficients, to 
achieve a faster convergence. In the following, we 
describe a variety of the PNLMS algorithms in detail 



 

Figure 1: Values of weighted soft-max operator in 

terms of   
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and then we will propose a new PNLMS adaptive 
filter. 

A. Standard PNLMS 

     In the standard PNLMS algorithm, the gain 
elements are defined as [12] 
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where 1...,,1,0  Ni and )(ni is the 

proportionality function which is 

|))(|),(max()( nwnfn ii              (5) 

and )(nf  is the activation factor defined as  

)||)(||,max()(  nnf w            (6) 

in which ||)(|| nw ,  , and  are infinity norm, 

activation parameter, and initialization parameter, 

respectively [12]. Parameter   permits starting the 

adaptation at 0n when all filter coefficients are 

initialized to zero [12]. Parameter   prevents an 

individual coefficient from freezing when its 

magnitude is much smaller than that of the largest 

coefficient [10], [12]. 
 

B. IPNLMS 

In IPNLMS, a combination of proportionate and 

non-proportionate update is employed. The gain 

elements, therefore, are [4] 
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where relative weighting between proportionate and 

non-proportionate is controlled by a parameter 

11  r  and   is a small positive constant that 

prevents division by zero [4]. 
 

C. MPNLMS 

The MPNLMS algorithm employs a  -law 

function in definition of the activation factor and 

proportionality function which are defined, 

respectively, as [11] 

|)))((|),(max()( nwFnfn ii   ,                 (8) 

)||))((||,max()(  nFnf w           (9) 

where 

|)](||),...(||),(|[)( 110  NwFwFwFF w  and 

(.)F is a  -law logarithmic function as [11] 
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where  /1  in which  is a small positive 

number and its value is chosen based on the 
measurement noise level [11]. 

 

D. IAF-PNLMS 

 In IAF-PNLMS, individual coefficients have their 

own activation factor defined as [12] 

 

)1()1(|)(|)(  nnwnf iii          (11) 

where 10    and activation factors are initialized 

with a small positive constant, typically, 

Nfi 01.0)0(  [12]. 

III. THE PROPOSED ALGORITHM 

The main idea of our proposed algorithm is to 
employ a soft maximum operator, instead of 
maximum operator defined in (5), to improve the 
performance of PNLMS. It is notable from (5) that the 
result of maximum operator is common and 
independent from the magnitude of individual 
coefficients, for those filter coefficients which are less 
than the predefined activation thresholds. 
Consequently, in some iterations, the PNLMS 
performance is similar to the NLMS algorithm which 
has a common step-size for all coefficients. As a 
result, a low rate of convergence is derived for a 
sparse impulse response. In soft maximum, however, 
the effect of the coefficients is always considered, 
even in the initial iterations. 

A. Soft maximum operator 

The soft maximum of two variables is defined 

 

Figure 2: Comparison of max and soft-max operators 
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as[21] 

 )exp()exp(log),max(soft yxyx   .    (12) 

The soft maximum function has desirable properties 
such as infinitely differentiability and convexity [21]. 
It is also notable that, when the difference between 
two variables is large, the amount of soft maximum 
approaches that of the maximum operator. We also 
extend the concept of soft-max operator as follows: 

 )exp()1()exp(log yx           (13) 

where   is the weighted soft-max operator of x and 

y , and 10    is a weighting factor. For 

5.0 , the weighted soft-max behaves as a scaled 

soft-max.  

As will be shown in the following, the benefit of 
the weighted soft-max operator is that with selecting 

5.0 , effect of x  on the soft-max result is 

increased, either x  is minimum or maximum. On the 

other hand, selecting 5.0 , result of soft-max is 

closer to y  than those for 5.0 . We will later 

show that this property makes an additional control of 
coefficient update during the convergence; hence a 
better convergence performance is achieved.  

    In order to visualize the effect of weighted soft-

max operator, we first consider 5.0x  and 3y
as minimum and maximum values, respectively.   Fig. 

1 illustrates the effect of   on the result of soft-max 

operator. The result of soft-max for 5.0 is also 

shown in this figure. As can be seen, the result with 

5.0 which is equal to 2.386, tends the 

maximum. As can be seen, assuming 5.0 , the 

value of weighted soft-max operator is 386.2  , 

which tends the maximum value y . 

 In addition, the result of weighted soft-max is 

dependent on the amount of   such that for

15.0   , it is closer to the maximum while for

5.00   , it tends more to the minimum. For 

extremes 0 and 1 , the results of soft-max 

are equal to the minimum and the maximum values, 
respectively. 

      We further consider x  and y as two scalar 

variables having 21 values shown in Fig. 2. In this 
figure, from left to right, x  has twenty one increasing 

values from 0 to 6 while y  has twenty one decreasing 

values from 6 to 0. The results of max operator are 
shown with an extra value of 0.2 to distinguish from 

x - and y -points. The results of soft-max operator are 

also shown for 5.0 and 85.0 . As can be 

seen, the results with 5.0 tend the amounts of 

maximum of x  and y , especially in cases where the 

maximum is much bigger than the minimum. As 
opposed to the max operator, the result of soft-max, is 
affected from both maximum and minimum. The 

results of soft-max for 85.0  are closer to x than 

those for 5.0 , either x  is minimum or 

maximum. On the other hand, choosing 5.0 , the 

effect of y  on the soft-max result is increased. As a 

result, unlike max operator which its value is equal to 
the amount of maximum, the value of soft-max is a 
function of both maximum and minimum values. 

 

B. Weighting factors for the proposed algorithm 

To further improve the performance of the 
adaptive algorithm, time-varying weighting factors 

)(n  and )(1 n  are assigned to )(nwi and 

)(nf , respectively. Therefore, the weighted soft 

maximum is proposed instead of a maximum, as 

      )(exp)(1|)(|exp)(log

)(

nfnnwn

n

i

i







                                                                                  (14) 

for 1...,,1,0  Ni . 

As will be explained in the next section, to 
expedite the convergence of algorithm, the weighting 

factor )(n could be a decreasing function with time 

such that when the active coefficients )(nwi  reach to 

the final values, all proportionality functions )(ni  

approach the amount of )(nf . 

 

C. Experimental validation of the proposed 

algorithm 

To validate the steps of our proposed soft-max 
PNLMS (SM-PNLMS) algorithm, we conduct some 
simulation experiments. In the first experiment, we 
evaluate the performance of SM-PNLMS employing 

time-invariant  )(n . Similar to [12], the input 

signal is assumed to be correlated unity-variance 
AR(2) as follows, 

)()2()1()( 21 nunxbnxbnx            (15) 

where 4.01 b , 4.02 b , and )(nu  is a white 

Gaussian noise with variance 77.02 u . In 

 

Figure 3: Validation of the proposed algorithm 

0 500 1000 1500 2000

-40

-35

-30

-25

-20

-15

-10

-5

0

 

 

No. of iteration

M
is

a
lig

n
m

e
n
t 
(d

B
) =0.01

NLMS

PNLMS

=0.5

=0.99



 

Figure 6: Variation of )(n  with respect to the 

value of   
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addition, 5.0 and the measurement noise )(nv  

is white Gaussian with variance 
32 10v   to 

achieve SNR=30 dB. The sparse impulse response is 

assumed with length 100N  and includes only 

four active coefficients at locations }85,35,30,1{  

with values equal to }1.0,5.0,0.1,1.0{  .  

      For evaluation, the normalized misalignment 
measure (in dB) is employed as [12] 
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2
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||||
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ww 
 .           (16) 

The resulted normalized misalignment errors are 
averaged over 100 independent trials. Fig. 3 illustrates 
five misalignment curves which are derived from 
NLMS, standard PNLMS, and the proposed algorithm 
with time-invariant weighting factors

99.0,5.0,01.0 . The performance of NLMS 

and PNLMS are shown for comparison. It is notable 
from Fig. 3 that employing weighting factor

99.0  results in the highest convergence rate 

with the maximum steady-state misalignment error. 

On the other hand, employing 01.0  results in a 

slow convergence, close to that of the NLMS. In 
addition, the performance of the proposed algorithm 

with 5.0  is close to that of PNLMS. 

 

D. Modified version of the proposed algorithm 

As shown in Fig. 3, values of )(n  close to one, 

results in a higher convergence rate while lower values 

of )(n cause the algorithm to achieve a less steady-

state error. As a result, to expedite the convergence, 

one can reduce the weighting factor )(n  gradually 

such that all the proportionality functions )(ni

approach the scalar )(nf . As )(nf is the same for 

all coefficients, in such a case, the SM-PNLMS 
behave similar to the NLMS algorithm. As can be seen 
from Fig. 3, the NLMS algorithm achieves the 
minimum steady-state misalignment error. Therefore, 
we expect the SM-PNLMS algorithm achieves a low 

steady-state error, once the amount of )(n becomes 

low (near zero). In order to decrease the weighting 

factor, we initially employ the following linear 
function: 

)1()(  nn                        (17) 

where 10   is a constant which should be 

close to one such as to decrease the weighting factor 
slowly in accordance with the convergence time. 

     Fig. 4 illustrates the variation of misalignment for 

various amounts of  . A small  (still near one) 

means a fast transition of )(n  from one to zero, 

while a bigger  very close to one means slow 

variation of )(n . The variations of )(n  with 

respect to  are shown in Fig. 5. 

As can be seen from Fig. 4, for 99999.0  the 

algorithm acts similar to the case of time-invariant

)(n . The reason is because the variation (reduction) 

of )(n -as shown in Fig. 5- is so slow that we could 

assume that variation is negligible. On the other hand, 

for smaller  , for example 96.0 , )(n
dramatically drop to zero and hence, convergence 
behavior of the algorithms are close to that of NLMS, 
as shown in Fig. 4. 

 

Figure 4: Variation of misalignment with respect to 
the amount of   
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Figure 5: Variation of )(n  with respect to the 

value of   
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Figure 8: Variation of )(n  in terms of n  
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Figure 7: Comparison of our proposed algorithm with 
other PNLMS algorithms 

0 500 1000 1500 2000

-40

-35

-30

-25

-20

-15

-10

-5

0

 

 

M
is

a
lig

n
m

e
n
t 
(d

B
)

No. of iteration

PNLMS

NLMS

SM-PNLMS

 

Figure 9: Comparison of our proposed algorithm with 
other PNLMS algorithms 
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E. Further modification: A weighting factor based on 

an estimation of MSE 

       As mentioned in (17), the value of )(n and 

hence, the performance of algorithm strongly depends 

on the parameter   and the starting point )0(  

which is not desirable. In addition, as shown in Fig. 4,  

for  's close to one, typically 99999.0 , the 

steady-state misalignment of the proposed algorithm 

is relatively high in comparison to that of the NLMS 

and PNLMS algorithms. On the other hand, for a 

smaller  , typically 0.96 in our simulation )(n  

drop to zero very fast, before finalizing the 

convergence. As a result, the algorithm behaves 

similar to the NLMS algorithm, during the 

convergence and hence, its convergence rate is 

reduced. To mitigate this issue, )(n  could be 

reduced gradually with convergence of the algorithm. 

      To this end, we may correlate the weighting factor 

with the MSE of the adaptive filter. When the 

algorithm is in initial stages of convergence, the MSE 

is high and thus the value of )(n should be near 

one. After decreasing the MSE error floor, the amount 

of weighting factor should be decreased.  

We estimate the MSE by averaging the square error 

)(2 ne  by a one pole low-pass filter as 






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0),()1()1(

0),(
)(

2
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nnen

nne
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
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where 10   is the forgetting factor and 

typically is assumed to be close to one.  

    We then make )(n  to be a function of the 

estimated MSE, so that it could reduce gradually 

during the convergence of algorithm.  To this end, we 

define 

 )()()( max nnn               (19) 

as scaled and normalized output MSE, where 

)(log)( 10 nn    and

 )(,),0(max)(max nn   . The parameter

 is a constant which can be chosen such that to be 

inversely proportional to the amount of the estimated 

steady-state MSE. According to the definition of (19), 

)(n  starts from zero and approaches 1  on the 

mean. Accordingly, we propose to assign  )(n  as  

 )(1,0max)( nn   .           (20) 

The summation )(1 n  in (20) is to set the initial 

amount of )(n to be one. In addition, the max 

operation in (20) acts as a hard limitation to restrict 

the minimum amount of )(n  to be zero. Therefore 

during convergence, )(n starts from one and 

gradually reduces to finally reach to a value near zero 

at the end of convergence.  

 

     Fig. 6 illustrates the variation of )(n  in terms of 

n  for different values of  for the abovementioned 

simulation. The curves are obtained employing

99.0 . 

     Our extensive simulations illustrate that the 

performance of the proposed algorithm is not highly 

sensitive to the amount of  , however, a suitable 

choice to achieve a high performance is obtained 

when the amount of  is inversely proportional to the 

estimated steady-state MSE. 



 

Figure 10: The simulated acoustic room impulse 
response 
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Figure 11: Comparison of the proposed algorithm 
with other PNLMS based algorithms for a room 
impulse response. 
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     Now, if we replace the weighting factor (17) with 

the function of (20) and substitute (20) in (14), an 

improved performance for SM-PNLMS is obtained. A 

typical result using AR(2) input signal is shown in 

Fig. 7.  

    As can be seen, the convergence rate of SM-

PNLMS is better than PNLMS and NLMS so that 

misalignment of SM-PNLMS reaches -35 dB after 

570 iterations while PNLMS and NLMS reach that 

level after 881and 1054 iterations, respectively. Table 

1 illustrates the summary of the proposed algorithm. 

numerical simulations 

In this section, we employ Monte Carlo 

simulations to evaluate the performance of the  

proposed algorithm and compare it with other 

lgorithms. The results obtained by averaging over 10 

independent trials. For all simulations, a colored 

speech-like signal is used as input signal. This signal is 

obtained by passing a white Gaussian noise through a 

low-pass filter which has coefficients 

0.3574] 0.9, [0.3574, [22]. Variance of input is 

assumed to be equal to 12 x . We evaluate our 

proposed algorithm using 99.0 and 25.0
and compare it with NLMS, PNLMS, IPNLMS and 

MPNLMS. 

In the first simulation experiment, the sparse 

impulse response with length 256N is considered. 

The active coefficients are located at 

}0,200,220,50,100,121{  with the values

}2,1.0.5,0.4,-0.0.1,1.0,-0{ , respectively.  

The step-size is equal to 0.95 for all algorithms. 

The variation of )(n  in terms of n  is shown in Fig. 

8. As can be seen, it gradually reduces from its initial 
value and after around 2000 iterations; it reaches 
below 0.2 which means the algorithm approaches 
NLMS after initial convergence.  The variations of 
misalignment for algorithms are shown in Fig. 9. As 

we can see, to achieve 35 dB, the proposed SM-

PNLMS algorithm requires 4000 iterations, while the 
MPNLMS, IPNLMS, PNLMS, and NLMS require 
about 5400, 5900, 8800, 14000 iterations, respectively. 
As a result, SM-PNLMS, achieves the fastest 
convergence rate among the mentioned algorithms. 

In the next simulation, we evaluate identification 
of a simulated acoustic room impulse response (RIR) 
which is derived using image methods [23]. For this 
simulation, the dimension of the room is 

mmm 344   and the locations of the source and 

receiver are  5.1,95.0,1  meters and 

 53.1,05.1,1.1  meters, respectively. Fig. 10 shows 

the simulated RIR which is an example of sparse 
impulse responses. 

For simulation, the step-size is considered 1.2 for 
all algorithms and other specifications are same as the 
previous experiments. Fig. 11 compares the 
misalignment of the proposed SM-PNLMS algorithm 
ith its counterparts for the above RIR with length

Table 1: The proposed algorithm  
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333N . As can be seen, the proposed algorithm 

achieves a higher rate of convergence, so that its 

misalignment error reach 20 dB after 1400 

iterations while it takes 1700, 2200, and 2800 
iterations for IPNLMS, MPNLMS, and PNLMS, 
respectively. 

IV. CONCLUSIONS 

We proposed a new Proportionate Normalized 
Least Mean Square (PNLMS) adaptive algorithm for 
sparse system identification. This algorithm employs a 
weighted soft maximum operator along with a variable 
weighting factor to achieve a high convergence rate. 
We experimentally found a formula for the weighting 
factor in terms of the estimated mean square error 
(MSE). Finally, we showed the superiority of our 
proposed algorithm over its counterparts using 
numerical Monte Carlo simulations.  
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