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Abstract—We present an approach for maximum likelihood (ML) parameter estimation of the Gamma-Gamma (Г-Г)
distribution in the weak turbulence conditions of the free space optical (FSO) channels. A two-dimensional ML
(2DML) estimation approach is deployed to extend our one-dimensional Г-Г parameter estimation (1DML) method
proposed in [1]. To achieve the 2D estimation, an explicit closed form expression between the Г-Г parameters is
extracted, where the constant factors of the expression are obtained using genetic algorithm (GA). The proposed
2DML estimation is compared with the modified method of moments based on a convex optimization (modified
MOM/CVX). The numerical results demonstrate that 2DML outperforms modified MOM/CVX in terms of the mean
square error of the estimation and the variance of the estimators. Moreover, the convergence rate of the 2DML
method is high and not sensitive to the starting points.
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I. INTRODUCTION

Free space optical (FSO) communication is
advantageous in the sense that it provides high data
rate, uses unregulated license free spectrum, and is
easy-to-implement. Moreover it has inherent security
due to the narrow optical beams. However, the
reliability of FSO communications is affected by the
environment where the optical beam is propagated.
One of the main impairments of the FSO channels is
the optical turbulence, caused by the variations of the
refractive index along the propagation path due to the
temperature and pressure changes [2]. The optical
turbulence causes irradiance fluctuations (scintillation)

of the received signals and affects the FSO communi-
cations performance significantly [3], [4].

The Gamma-Gamma (Г-Г) distribution is a two-
parameter model which is accurate for a wide range of
FSO channel turbulence conditions [5]. The
parameters of the Г-Г distribution (α and β) are related
to some atmospheric parameters, such as, the
refractive index structure parameter or Rytov variance
(σ1

2) which describes the strength of the optical
turbulence. Based on the values of Rytov variance,
three levels of turbulence strength are identified for
FSO channels: weak (σ1

2≤0.3), moderate (0.3<σ1
2≤5),
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and strong (σ1
2>5) [6]. Finding a channel distribution

which fits the FSO channel statistics is required in
many applications, such as, the FSO communications
protocols performance evaluation or design [7]. To
achieve this goal, parameter estimation of the Г-Г
distribution from observed data is investigated in the
literature.

Method of moments (MOM) is a simple method to
estimate the Г-Г distribution parameters based on the
sample moments. The MOM estimator is not accurate
due to the problem of outlier samples. The fractional
moments method (FMOM) is another moment based
estimator which employs the fractional moments to
reduce the effect of outlier samples. However, the
FMOM results in invalid values of estimations for
σ1

2<1 [6]. To address this problem, a suboptimal
estimation (MOM/CVX) is proposed in [6] which
obtains good estimations of β. The estimation of α
needs some improvement, so a modified MOM/CVX
method is proposed [6]. However, in σ1

2<1, the
performance of modified MOM/CVX is reduced. A
one-dimensional Г-Г parameter estimation (1DML)
method is proposed in [1]. Maximum likelihood-based
estimation methods are asymptotically efficient, but
estimating both Г-Г parameters at the same time is
challenging due to the difficulties in obtaining ML
estimates and solving nonlinear ML equations.

In this paper, we propose an approach to determine
a two-dimensional maximum likelihood (2DML)
parameter estimation of the Г-Г distribution which
estimates α and β simultaneously for the weak
turbulence conditions, i.e., σ1

2<1. We extract the ML
equations and approximate them to obtain Maximum
likelihood (ML) estimate. Then, we use genetic
algorithm (GA) to optimize the derived expression in
terms of the mean square error (MSE). The numerical
results demonstrate that 2DML method is more
accurate in comparison to modified MOM/CVX.

The rest of the paper is organized as follows. In
section II, the Г-Г distribution is introduced briefly. In
section III, the 2DML estimator is presented. In
section IV, the GA is deployed to optimize the 2DML
method. Numerical results are presented in section V,
and the paper is concluded in section VI.

II. GAMMA-GAMMA DISTRIBUTION

The Г-Г distribution is a modulation based model
where the irradiance fluctuations are governed by two
independent Г distributions. The Г-Г distribution is a
good fit to the optical channel irradiance fluctuations
over all turbulence conditions with the given
probability density function [5]:
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where I>0 denotes the irradiance (intensity) of the
optical wave, Kv(.) is the modified Bessel function of
the second kind of order v. α>0 and β>0 are the shape
parameters and directly related to atmospheric
turbulence conditions. With the assumption of the
plane wave data, the shape parameters are [8]:
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where σ1
2=1.23Cn

2k7/6L11/6 is Rytov variance, Cn
2 is the

refractive index structure parameter which is constant
for a horizontal path communication link, k=2π/λ is the
wave number and L is the link range.

III. 2DML PARAMETER ESTIMATION OF Г-Г
DISTRIBUTION

In this section, we propose an approach to
determine ML parameter estimation of the Г-Г
distribution to extend our previous contribution [1] to
2DML parameter estimation. To achieve the ML
equations, we rewrite the Г-Г distribution as follows:
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A likelihood function for α and β can be presented
directly based on N independent and identically
distributed (iid) observed data, I={I1,I2,…,IN}, and the
probability density function given in (4):
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Accordingly the log-likelihood function is
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Taking partial derivative of the log-likelihood
function with respect to α yields:
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Now, we compute the derivative of the integral term
in (7):
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The first integral of the right hand side of (8) is
calculated by the following theorem [9].

Theorem 1: Let T be an open subset of � and X
be a measure space. Suppose :h T X  � satisfies
the following conditions:

(1) h(t, x) is a measurable function of t for each
.t T

(2) For almost all x X , the derivative ∂h(t, x)/∂t
exists for all .t T
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The second integral of the right hand side of (8) is:
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Using (7), (8), (11) and (12), we have
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where ψ(.) is digamma function and
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The partial derivative of the log-likelihood
function with respect to β is calculated with the same
approach as the one’s of α:
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Since there are no closed form solutions to the ML
equations (13) and (15), 2D numerical search
methods, such as, Nelder-Mead (NM) algorithm can
be used to obtain the maximum likelihood estimators.
The Г-Г Log-likelihood function is flat for the large
values of the shape parameters as shown in Fig. 1.
Therefore, the NM algorithm has difficulty to find the
true maximum, and cannot estimate well the shape
parameters for σ1

2<1. Moreover the 2D evaluation
techniques are computationally expensive. Thus, we
present an alternative approach to obtain the 2DML
parameter estimation.

5 10 15 20 25 30 35 40
-2.5

-2

-1.5

-1

-0.5

0

0.5
x 10

4

α

Lo
g-

lik
el

ih
oo

d
fu

nc
tio

n

σl
2=0.06

σl
2=0.07

σl
2=0.12

Fig. 1. Log-likelihood functions versus α for different values of
Rytov variance
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In [1], α is estimated based on the 1DML
parameter estimation. The method uses generalized
Newton method and the expectation maximization
(EM) algorithm to estimate α:
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where αk+1 is the new estimate, αk is the current
estimate, ψ'(.) is trigamma function, and
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Now, we need to derive a relationship between the
shape parameters to provide a 2D estimation. From
(13) and (15), we obtain:
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The terms S1 and S2 are very close to each other
for σ1

2<1. Table 1 shows the ratio of these terms for
different values of the shape parameters correspond-
ding to the σ1

2 for three sample sizes, N. Therefore,
(19) is restated as follows:
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To achieve a relationship between the shape
parameters, S1 should be converted to the polynomial
expression using the following approximations [10]:
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The approximations are close to their true values
for large arguments, |z|>>1. This situation is equivalent
to σ1

2<1. Using the above approximations, (14) and
(20), we have:
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The difference of the shape parameters and the
square root of multiplication of the shape parameters
appear in the right hand side of (23). Moreover, due to

slight deference between the shape parameters, β can
be replaced by α in the left hand side of (23). Thus, in
order to reduce the degree of the derived equation and
extract a closed form expression, (23) is approximated
as follows:
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where k, l, and p are constant factors substituted to
minimize the approximation error in the weak
turbulence conditions. We apply GA to find the best
values of constant factors in the next section.

To solve (24), we define the set of variables x1to x6:
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Therefore, (24) is restated by the following cubic
equation in one variable:
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The solution of (20) results in a representation of
parameter β with respect to the parameter α:
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A 2DML parameters estimation of the Г-Г distribution
is achieved using (17), (18) and (27) for σ1

2<1.

IV. OPTIMIZATION ALGORITHM

In this section, we introduce the genetic algorithm
briefly. Then, the optimization problem is presented
to achieve the best values of k, l, and p in (24), which
minimize the approximation error.
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TABLE I. RATIO OF S1 AND S2

σ1
2 .06 .07 .09 .12 .15 .19 .23 .4 .5 .7 1

α

β
35.03

32.88

30.21

28.17

23.82

21.98

18.25

16.58

14.936

13.35

12.16

10.63

10.38

8.86

8.43

6.92

6.79

5.34

5.02

3.34

4.39

2.56

S1/

S2

N=10000 1.0001 1.0002 1.0002 1.0005 1.0000 1.0003 0.9998 0.9998 1.0006 1.0011 1.0046

N=25000 1.0000 1.0000 1.0001 1.0002 1.0001 0.9998 1.0001 1.0002 0.9999 0.9985 1.0009

N=50000 1.0000 1.0001 1.0000 1.0000 0.9999 0.9999 1.0001 1.0002 1.0000 0.9991 1.0015

A. Genetic Algorithm Methodology
GA is known to be an intelligent search and

optimization technique which incorporates the
principles of evolution and natural selection. GA
deploys a randomization search technique that avoids
searching process being stopped when a local
optimum is attained and continues searching the
feasible region for a better local optimum [11].

In GA, each feasible solution of a problem is
named chromosomes. The initial population (the first
set of chromosomes) is generated randomly. Then, the
initial population is improved toward the optimal
solution using basic operators which generate a new
population from the current chromosomes. The basic
operations of GA are selection, crossover, and
mutation. The selection operation chooses better
chromosomes of the current generation (population)
to form a population of the parent chromosomes. By
crossover, some features of two selected
chromosomes from the parent population are
intermixed to generate new chromosomes (children).
Mutation is used for changing probabilistically an
arbitrary element of a chromosome to a new value
hoping to find new chromosomes which may have a
better fitness value.

B. Optimization Problem
The preciseness of the 2DML estimation depends

on the accuracy of the derived relationship, (23),
which is affected by the approximation error of
equation (24). We use GA to achieve parameters k, l,
and p, which minimize the approximation error.

The objective function of the optimization
problem is to minimize MSE of β which is a function
of constant factors, k, l, and p. The feasible space of
the optimization problem contains a set of M pairs of
α and β, {(α1,β1),…,( αm,βm),…,( αM,βM)}, given in
Table 1, and J is the number of iterations. The
optimization problem is represented as:
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where 1
ˆ ˆ ˆ{ }m mj mJβ β β  is obtained from (27) for

the mth values of the shape parameters for j=1,…, J
iteration. Note that the optimization process is
different from the estimation process. Thus, we
assume that the shape parameters are known to
achieve the best values of the constant factors.

V. SIMULATION AND NUMERICAL RESULTS

In this section, we apply GA to determine the best
values of k, l and p. Then, we implement the 2DML
parameter estimation of the Г-Г distribution and
compare its performance with the one's of the
modified MOM/CVX method in terms of the MSE,
variance and convergence rate metrics.

A. Genetic Algorithm Implementation and Results

To achieve an accurate relationship between the
shape parameters, constant factors are obtained by
GA. We consider a population of chromosomes, each
encoded by an M×J matrix, where each chromosome
is a feasible solution of the constant factors. An initial
population is created by allocating random numbers
to constant factors. We use a roulette-wheel selection
operator, which selects individuals with a probability
proportional to their fitness values. The crossover and
the mutation operators are implemented with the
uniform distribution functions.

GA is set up based on the numerical parameters
given in Table II and the objective function in (29).
The best constant factors obtained by the
implemented GA are:

2.23, 1.004 5.263k l and p    .  (30)

TABLE II. SIMULATION PARAMETERS OF GENETIC ALGORITHM

Parameters Values
M 11

J 1000

Crossover probability 0.7

Mutation probability 0.1

Initial population 100

The accuracy of the derived relationship (21) is
verified when the optimum constant factors are
deployed. Fig. 2. shows that for smaller values of
Rytov variance (larger values of the shape
parameters), the approximated β, derived with the
approximation given in (21) and (22), is very close to
the true value. When the values of Rytov variance
become large, the approximation error increases.
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B. 2DML Implementation and Results

We generate the Г-Г distributed data, for different
values of the shape parameters using [1]:

Gamma Gamma
I α β

αβ
 , (31)

where I is the irradiance of optical wave and Gammaα
and Gammaβ are the Г distributed random variables
with shape parameters of α and β, respectively, and
unit scale parameter. ∂Kv(y)/∂v is approximated by:

( ) ( )
( )

2
v h v h

v
K y K y

K y
v h

 



,   (32)

Where h=10-3 [1]. To evaluate the performance of the
proposed method, three different sample sizes, N,
over 1000 independent trials have been deployed. The
maximum number of iterations and the precision of
the estimation are 200 and %1, respectively, and the
starting points are provided by the MOM/CVX
method with k=0.5 for the 2DML method.

The performance of the 2DML and the modified
MOM/CVX methods are compared for σ1

2<1. Fig. 3
shows the MSE of 2DML and modified MOM/CVX.
According to the results, the accuracy of the
estimation methods improves when the sample size is
increased. Moreover, two local minimums are
observed in MSE curves of 2DML method
corresponding to σ1

2=0.5 and σ1
2<0.2, where the

approximation error is minimum (as shown in Fig. 2).
Due to the high accuracy of the approximation at
these points, the estimation error of α and β must be
decreased compared to the other adjacent points. The
MSEs of 2DML are much less than the one's of the
modified MOM/CVX, specifically for σ1

2<0.8. With
increasing Rytov variance, the shape parameters
become small and the approximations are not valid
anymore. Thus, the MSE of the 2DML method
increases when the Rytov variance becomes greater
than 1. On the other hand, the performance of the
modified MOM/CVX method significantly decreases
when the Rytov variance becomes less than 0.2.
Moreover, the performance of 2DML is more
accurate than the one's of the modified MOM/CVX
method in terms of the estimator variance as shown in
Fig. 4. The difference between the MSE and variance
curves is due to the approximation error. The
differences are small where the approximation error is
negligible, such as, in σ1

2=0.5.
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Fig. 3. (a) MSE of α and (b) MSE of β versus Rytov variance for three sample sizes
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Fig. 4. (a) variance of α and (b) variance of β versus Rytov variance for three sample sizes

The convergence rate of the 2DML method for
different starting points and different shape
parameters are evaluated in Fig. 5. In spite of
choosing random starting points, the proposed method
converges quickly to the global maximum. Therefore,
2DML is a reliable and precise estimator, although

MOM/CVX cannot provide suitable starting points in
the weak turbulence conditions. The reason lies behind
the deployment of the generalized Newton method
using a non-quadratic approximation, which decreases
the dependency on the starting points [1].

0 2 4 6 8 10
1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

Iterations

α

 init=1

 init=5

 init=20

 init=100

0 2 4 6 8 10
10

-1

10
0

10
1

10
2

Iterations

β

 init=1

 init=5

 init=20

 init=100

(a) α=5.02 and β=3.34

0 5 10 15
0

5

10

15

Iterations

α

 init=1

 init=5

 init=20

 init=100

0 5 10 15
10

-1

10
0

10
1

10
2

Iterations

β

 init=1

 init=5

 init=20

 init=100

(b) α=10.38 and β=8.86



40 Volume 5- Number 4- Autumn  2013

0 5 10 15 20
0

5

10

15

20

25

30

35

40

45

50

Iterations

α

 init=1

 init=5

 init=20

 init=100

0 5 10 15 20
10

-1

10
0

10
1

10
2

Iterations

β

 init=1

 init=5

 init=20

 init=100

(c) α=35.03 and β=32.88

Fig. 5. Convergence rate of 2DML for different initial values and three pairs of α and β parameters

VI. CONCLUSION

We proposed an approach to obtain a 2DML
parameter estimation of the Г-Г distribution for σ1

2<1.
By deriving a relationship between the shape
parameters, we extend the 1DML parameter
estimation to 2DML. The relationship is extracted by
applying some approximations and using GA.

The performance of the 2DML method is
compared with the one’s of the modified MOM/CVX
method. The numerical results demonstrate that
2DML provides high accuracy and is less sensitive to
the sample size. Moreover, the 2DML method is very
slightly dependent on the starting points.
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