
9

Volume 5- Number 4- Autumn 2013 (9-18)

ITRC

From Reliable Distributed System
Toward Reliable Cloud by Cat Swarm

Optimization

Reza Shojaee
School of Electrical & Computer Engineering

College of Engineering
University of Tehran

Tehran, Iran
Ur.shojaee@ut.ac.ir U

Hamid Reza Faragardi
School of Electrical & Computer Engineering College

of Engineering
University of Tehran

Tehran, Iran
Uh.faragardi@ut.ac.ir U

Nasser Yazdani
School of Electrical and Computer Engineering

College of Engineering
University of Tehran

Tehran, Iran
Uyazdani@ut.ac.ir U

Received: January 25, 2013- Accepted: August 25, 2013

Abstract—Distributed Systems (DS) are usually complex systems composed of various components and cloud is a
common type of DSs. Reliability is a major challenge for the design of cloud systems and DSs in general. In this paper
an analytical model to analyze reliability in DSs with regards to task allocation was presented. Subsequently, this
model was modified and a new model to analyze reliability in cloud systems with regards to Virtual Machine(VM)
allocation was suggested. On the other hand, optimal task allocation in DSs is an NP-hard problem, thus finding exact
solutions are limited to small-scale problems. This paper presents a new swarm intelligence technique based on Cat
Swarm Optimization (CSO) algorithm to find near optimal solution. For evaluating the algorithm, CSO is compared
with Genetic Algorithm (GA) and Particle Swarm Optimization (PSO). The experimental results show that in contrast
to PSO and GA, CSO acquires acceptable reliability in reasonable execution time.

Keywords-distributed system; reliability; cat swarm optimization; cloud computing; task allocation; analytical model.

I. INTRODUCTION

A Distributed System (DS) consists of multiple
autonomous computers that communicate through a
computer network. The computers interact with each
other in order to achieve a common goal. A computer
program that runs in a DS is a parallel application [1].

In distributed computing environment, a parallel
application is divided into many tasks, each of which
is executed by one or more computers [2]. There are
many cases in which the use of a single computer
would be possible, but the use of a DS is beneficial
for practical reasons. For example, it may be more
cost-efficient to obtain the desired level of

40 Volume 5- Number 4- Autumn 2013

performance by using a cluster of several low-end
computers, in comparison with a single high speed
computer. A DS can be more reliable than a non-
distributed system, as there is no single point of
failure. Moreover, a DS may be easier to expand and
manage than a monolithic uniprocessor system [3]. A
heterogeneous DS consists of nodes with various
computation power and memory capacities.
Moreover, connection links which couple the nodes
may provide different bandwidths. Such systems
provide many advantages over centralized ones, such
as improving performance, availability, reliability,
resource sharing and extensibility [4]. Tasks of the
parallel applications are executed concurrently on
different nodes. Distributed System reliability is
defined as probability that all the tasks run
successfully [5]. Making a distributed system reliable
is very important. The failure of a DS can result in
anything from easily repairable errors to catastrophic
meltdowns. A reliable DS is designed to be as fault
tolerant as possible. Fault tolerance deals with
making the system function in the presence of faults.
Faults can occur in any of the components of a
distributed system. Redundancy and diversity are
most effective way to achieve reliability
[6][7][8][9][10], but they enforce surplus hardware or
software costs. Another alternative is optimal task
allocation. This approach enhances system reliability
just by using optimal task allocation among
heterogeneous nodes [11][12][13].

The network topology for our problem is cycle-free
such as star, tree and bus. In this paper, we have not
considered redundancy, task precedence constraints
and transient faults. Solving the optimal task
allocation problem for maximizing reliability is
known to be NP-hard [11]; therefore, exact methods
cannot be used for finding the optimal solution for
large scale inputs. This paper presents a meta-
heuristic algorithm based on Cat Swarm Optimization
to find a near optimal solution within reasonable time.
To evaluate the algorithm, PSO, GA and CSO were
implemented, and their reliability and execution times
were compared for various numbers of tasks and
processors. Results indicate that CSO produces more
accurate solutions than PSO and GA.

Cloud computing is a large-scale distributed
computing paradigm and its applications are
accessible at anywhere and anytime. A cloud
computing system can be defined as: A scalable
distributed computing environment in which a large
set of virtualized computing resources, different
infrastructures, various development platforms and
useful software are delivered as a service to customers
as a pay-as-you-go manner usually over the Internet
[14]. Actually, it is a type of computing and is usually
considered it as a next generation of computing
systems. The virtually infinite computing resources
on the cloud provider side and the economic reason

on the consumer side have made large companies to
consider outsourcing their services to cloud. A large
number of reputable companies such as Amazon,
Google, Verizon, IBM, and Microsoft run and
maintain large scale clouds. Cloud computing
providers offer their services according to three
fundamental types: Infrastructure as a service
(IaaS),platform as a service (PaaS), and software as a
service (SaaS) where IaaS is the most basic and
prevalent type.In this paper after presenting a model
for distributed system reliability, we contemplate
reliability in IaaS cloud systems and suggest a new
model to analyze reliability in IaaS cloud systems.
This model can be employed to improve service
reliability in such systems.

The remainder of this paper is structured as
follows: Related work is summarized in Section II. In
Section III we formally defined the problem statement
for DS. CSO-based algorithm is presented in section
IV. Simulation results to evaluate reliability of DSs are
presented in section V. In section VI we introduce an
analytical model to analyze reliability in IaaS cloud
systems. Section VII reveals the simulation results for
cloud computing systems. To show the effectiveness
of CSO algorithm for both DS and IaaS cloud we
manage the section VIII. Finally, concluding remarks
and future work are presented in section IX.

II. RELATED WORK

Shatz et al.[5] defined a model to the problem
where the failure of processors or communication
links is time-dependent. Based on this scenario, the
task with longer execution time will have more failure
probability. Many algorithms have been proposed
based on this model to find optimal or near optimal
solutions. Exact algorithms can produce optimal
solutions and are usually based on branch and bound
idea. Kartik and Murthy (1995, 1997) used the branch
and bound with underestimates and reordered the
tasks according to task independence for reducing the
computations required. They proved that reliability-
oriented task allocation in distributed computing
systems is NP-Hard [11]. Thus, exact algorithms only
work in problems with small and moderate sizes.

Most studies in recent years have been focused on
developing heuristic and meta-heuristic algorithms to
solve the problem. In 2001, Vidyarthi and Tripathi
proposed a solution based on simple genetic
algorithm to find a near optimal allocation quickly
[13]. In 2006, Attiya and Hamam developed a
simulated annealing algorithm for the problem and
compared its performance with branch-and-bound
technique [9]. In 2007 Yin et al. proposed a hybrid
algorithm combining particle swarm optimization and
hill climbing heuristic [12]. In 2010 Kang, et al. used
honeybee mating optimization technique [15].
Recently, some prominent studies have been
proposed based on modified meta-heuristic
algorithms to find optimal or near optimal solutions
by proper task allocation[16][17][18]. Also, in

40Volume 5- Number 4- Autumn 2013 11

another outstanding research, maximizing reliability
in real-time distributed systems was stipulated [19].

Although, a lot of studies have been done to analyze
reliability in DSs, just a few works have taken cloud
computing reliability into account. Chen et al.[20]
proposed a security level to achieve trusted cloud.
They concentrated to provide reliable migration for
virtual machines (VMs).Wu et al. [21] introduced a
pipelined approach and a dependence estimation
algorithm to improve service reliability in cloud
systems. They incorporated an accounting approach
in their analysis. Faragardi et al. [22] present an
analytical model to evaluate reliability of cloud
computing systems. In addition, Vishwanath and
Nagappan[23]were examined hardware reliability in
Cloud Computing Systems. They investigated server
failures and hardware repairs for large data centers
and presented a detailed analysis of failure
characteristics in such systems. In 2012, Lin and
Chang[24]proposed a method to evaluate reliability of
the cloud network. They only concentrated on the
communication link reliability with considering
maintenance budget and time constraints. Some of
new researches devoted to the multi-objective
optimization in cloud[25]. In our cloud reliability
model, we focus on IaaS reliability respect to hazard
rate of server and hypervisor.

III. PROBLEM STATEMENT

In a heterogeneous DS, nodes may have different
processing speeds, memory sizes, and failure rates. In
addition, the communication links may have different
bandwidths and failure rates. Another important issue
is network topology. The network topology for our
problem is cycle-free such as star, tree and bus. Each
component of the distributed computing system (node
or communication link) can be in any of two states:
operational or failed. If a component fails during an
idle period, it will be replaced by a spare. We do not
consider this to be a critical failure. The failure of a
component follows a Poisson process (constant failure
rate). Failures of components are statistically
independent. This assumption has been widely used in
the community of computing system’s reliability
analysis [26][27][28][29]. Under these assumptions,
the reliability of a DS depends on both the number of
computing servers composing the system and their
individual likelihoods of failure. Obviously the
number of tasks is another important factor which
affects the results.

Tasks of the given application require certain
computer resources such as computational load and
memory capacity. They also communicate at a given
rate. We are given a set of Mtasks representing a
parallel application to be executed on a distributed
system with processors [9].

A. Notation
The notations used in problem formulation are
listed as follows:

M represents number of tasks.

N represents number of processors.
Ti is an ith task.
Pi is an ith processor.
CLpq is a path between node p and q.
xij equals one, if and only if Ti is assigned
to Pj in the assignment represented by X.
Otherwise xij = 0.
PHRi is hazard rate for ith processor.
Eij is execution time of Ti on Pj.
CBWij is communication bandwidth for
CLpq.
CRij is communication rate between task i
and j.
PLij is path load between Pi and Pj.
CHRpq shows communication hazard rate
for CLpq.
Memi is memory amount for Pi.
memi represents essential memory for Ti.
Li is processing load for Pi.
li is essential processing load for Ti.
Rs(X) is system reliability for assignment
X.
Rs’(X) is system reliability without
considering failure of links.
Rs”(X) is system reliability without
considering failure of nodes.
C(X) is cost of assignment X
TC(X) is total cost of assignment X

B. Principle constraints
The principle constraints for the problem are

outlined in this section.
Memory: Memory of each processor is no less
than the total amount of memory requirements
for all its assigned tasks. This constraint is
formulated by Eq. 1.
Processing load: Load of each processor is no
less than the total amount of processing load
requirements for all its assigned tasks. This
constraint is formulated by Eq. 2.
Path load: Load of each path is no less than the
total amount of communication rate
requirements for all tasks which communicate
through this path. This constraint is formulated
by Eq. 3. mem xik=1 k

For all k, 1 (1)l xik=1 k
For all k, 1 (2)

ij x x= +1
1

=1
For all paths pq, 1 (3)

C. System modeling
System is modeled in five parts. In part 1,

reliability of nodes is considered. In part 2, reliability
of paths is considered. Part 3 formulates system
reliability and in part 4, penalty functions are stated.
Total cost is suggested in last part.

40 Volume 5- Number 4- Autumn 2013

1. Reliability of nodes: We assume reliability of
a node is equal to reliability of its processor
(i.e., memory and other parts of a node are
perfect). Reliability of processor Pk can be
achieved from Eq. 4 and due to constant
hazard rate [5][30] it reduces to Eq. 5. Then,
as the total elapse time for executing the
tasks assigned to Pk by assignment X is =1 , the corresponding processor
reliability can be computed by Eq. 6. Failure
of nodes can be assumed independent
[5][30]. Thus reliability of system without
considering failure of links can be computed
by Eq. 7. Furthermore Eq. 8 is obtained from
Eq. 7.

2. Reliability of paths: Similarly, the reliability
of the path CLpq can be achieved from Eq. 9
and due to constant hazard rate it reduces to
Eq. 10. Then, as the total elapse time for
communicating the tasks assigned to nodes p
and q by assignment X
is x x (CRCBW)= +11=1 , the reliability

of path CLpq can be computed by Eq. 11. We
assume failures of paths are independent
hence reliability of system without
considering failure of nodes can be
computed by Eq. 12. Furthermore Eq. 13 is
obtained from Eq. 12.

RP (t) = ()0 (4)

RP (t) = t (5)

RP(X) = =1 (6)

RS’(X) = =1=1 (7)

RS’(X) = =1 =1 (8)

Rpq(t) = 0 (t)dt (9)

Rpq(t) = CHR t (10)

Rpq(X) =
CHR x x (CRCBW)= +11=1 (11)

Rs”
(X)=

CHR x x (CRCBW)= +11=1= +1
1

=1
(12)

Rs” (X) =
CHR= +11=1 x x (CRCBW)= +11=1

(13)

3. System reliability: Due to independence of
nodes and path failures, system reliability
can be formulated as Eq. 14. Therefore Eq.

15 is obtained from Eq. 14. Maximizing the
system reliability is equivalent to minimizing
the cost function which is defined in Eq. 16.

4. Penalty functions: Penalty function for
violating memory, processing load and path
load constraints are formulated in Eq. 17, 18
and 19 respectively.

5. Total cost: Total cost of assignment X is
equal to sum of cost X and all penalties in a
weighted manner. Each penalty has a
coefficient which shows its importance.
Total cost is formulated by Eq. 20.

Rs(X) = RS’(X). Rs” (X) (14)

Rs(X) =

(=1 + CHR= +11=1 x x (CRCBW)= +11=1)=1
(15)

C(X)= =1 +=1 CHR x x (CRCBW)= +11=1= +11=1
(16)

PM = (0, i ik k=1)=1
 (17)

PL = (0, i ik k=1)=1
 (18)

PC = {0, ()=1=1= +1=1 }
(19)

TC(X) = C(X) + PM + PL + PC
(20)

For determining coefficients two cases can be
considered: first, they should scale possible values of
PM, PL and PC to comparable ranges to guide the
search towards valid solutions and away from invalid
ones. Second, decision-maker can tune the value of
coefficient with respect to importance of
corresponding penalty function. Because of same
importance of penalty functions in our model, we
assume the coefficients are equivalent. Thus, we

. Therefore
Eq. 20 is rewritten by Eq. 21. The main goal is
minimizing Total Cost function which is determined
in Eq. 21.

TC(X) = C(X) + (PM + PL + PC)(21)

IV. CAT SWARM OPTIMIZATION

 Cat swarm optimization is a new algorithm
developed based on two major behaviors of cats,
termed as “seeking” and “tracing”. To apply CSO in
the optimization problem, the first step is to decide

40Volume 5- Number 4- Autumn 2013 13

how many cats to use. Each cat has its own M-
dimensional position, velocities for each dimension, a
fitness value representing the accommodation of the
cat to the fitness function and a seeking/tracing flag to
identify whether the cat is in seeking or tracing mode.
The final solution would be the best position for one of
the cats. CSO keeps the best solution until the end of
all iterations [31].

A. Seeking mode
 This sub model is used to model the behavior of cat
in the period which is resting but looking around and
seeking the next position to move. Four essential
parameters are defined in seeking mode as Seeking
Memory Pool (SMP), Seeking Range of the selected
Dimension (SRD), Counts of Dimension to Change
(CDC) and Self-Position Consideration (SPC). SMP
is defined as the size of seeking memory for each cat,
which indicates the points sought by each cat. SRD
declares the mutative ratio for the selected dimensions.
If a dimension is selected to mutate, the difference
between the old value and the new one cannot be out
of the range defined by SRD. CDC discloses how
many dimensions will be varied. And SPC is a
Boolean variable which decides whether the point, on
which the cat is already standing, can be one of the
candidates to move to. The seeking mode works based
on following five steps:

1. Make j copies of the present position of
catk, where j = SM. If the value of SPC is
true, let j = (SMP 1) , and then retain
the present position as one of the
candidates.

2. For each copy, according to CDC,
randomly plus or minus SRD percent of
the present values and replace the old ones.

3. Calculate the fitness values (FS) of all
candidate points.

4. If all FS are not exactly equal, calculate the
selecting probability of each candidate
point by Eq. 22, otherwise set all the
selecting probability of each candidate
point to 1.

5. Randomly pick the point to move to from
the candidate points, and replace the
position of catk.= | | , where 0 < < (22)

If the goal of the fitness function is to find the
minimum solution, let = , otherwise =

.

B. Tracing mode
 This sub model is used to model the case which cat
is tracing some targets. Once a cat enters the tracing
mode, it moves according to its velocities for each

dimension. The tracing mode can be described as
follows:

1. Update the velocities Vk,d(t) for every dimension
for the catk at the current iteration according to
Eq. 23.

2. Check if the velocities are in the range of
maximum velocity. If the new velocity is over-
range, set it to the limit.

3. Update the position of catk according to Eq. 24.vk,d(t) = vk,d(t 1)+ r1. c1. xbest ,d(t 1) xk,d(t 1) d = 1,2, . . , M (23)

Where best ,d (t 1) is the position of the cat with the
best fitness value at the previous iteration and k,d (t1) is the position of catk at the previous iteration, c1 is
a constant value and r1 is a random value between 0
and 1. xk,d (t) = xk,d (t 1) + vk,d(t) (24)

 In order to combine two above-mentioned modes
into the CSO algorithm, a mixture ratio (MR) of
joining the seeking mode and tracing mode must be
defined. Clearly, MR is a tiny value, since
observations from the behaviors of cats show that they
spend most of their waking times on resting and
slowly changing their positions. The CSO process can
be described in the following seven steps:

1. Create N cats in the process.
2. Randomly sprinkle the cats into the M-

dimensional solution space and randomly
select values, which are in the range of the
maximum velocity to the velocities of each
cat. The position of each cat is improved,
using hill climbing algorithm.

3. Then haphazardly pick a number of cats and
set them into tracing mode according to MR,
and set the others into seeking mode.

4. Evaluate the fitness value of each cat by
applying the positions of cats into the fitness
function, which represents the criteria of our
goal, and keep the best cat into memory.

5. Move the cats according to their flags. If catk

is in seeking mode, apply the cat to the
seeking mode process; otherwise apply it to
the tracing mode process.

6. Re-pick number of cats and set them into
tracing mode according to MR, then set the
other cats into seeking mode.

7. Check the termination condition, if satisfied,
terminate the program, and otherwise repeat
step 3 through step 6.

V. SIMULATION RESULTS FOR DS

 To evaluate the efficiency of the proposed
algorithm, intensive experiments have been conducted
and the algorithm was compared with PSO and GA.
PSO was originally proposed by Kennedy and
Eberhart [32], considering the social behavior of

40 Volume 5- Number 4- Autumn 2013

natural swarms such as birds, fishes, etc. Similar to
communications between swarms in the real world
based on the evolutionary computations, PSO
combines self-experiences with social experiences. In
this algorithm a swarm of particles are randomly
generated and each individual improves by referring to
experiences of itself and that of the others in the
swarm. The swarm intelligence is enriched along with
the evolution of each particle and thus the near-
optimal solutions can be found. The major
components of PSO are Particle Representation,
Swarm, Experience and Stopping Criterion. The
convergence and parameterization aspects of the PSO
are discussed in [33] and [34]. A hybrid of PSO and
hill climbing (HPSO) algorithm was applied to solve
the problem [12]. To validate the effectiveness of our
algorithm, HPSO was implemented and comparison
results are listed in Tab. II.
 The genetic algorithm was first developed by John
H. Holland in the 1960's [35]. In Genetic Algorithm
(GA) a population of strings called chromosomes
which encode candidate solutions called creatures or
individuals to an optimization problem, evolves
towards better solutions. The evolution starts from a
population of randomly generated individuals and
repeats in generations. In each generation, the fitness
of each individual is evaluated, several individuals are
selected from the current population (based on their
fitness) and combined and randomly mutated to form a
new population. Then, the new population is used in
the next iterations. The algorithm terminates when
either a maximum number of generations have been
produced or a satisfactory fitness level has been
acquired. As the basis for implementation of GA, we
assume that GA evolves with a population size of 50
chromosomes and the cross over and mutations rates
are 0.8 and 0.1, respectively. These values are
determined experimentally from the following ranges.
The population size changes from 10 to 100 by the
increase of 10. The cross over and mutation rates are

both tested in the varying range of 0 to 1 with the
increment of 0.1. Also, the maximum number of
iterations (stopping condition) is set to 80.
In a DS, many parameters should be determined in
order to compute system reliability, such as hazard
rate of each node and path, memory and processing
load of each node, network topology and etc. System
parameters are tabulated in Tab. I. These values are
similar to the ones used in [15][12][16]. Moreover, we
consider the tree as network topology in the
simulations. For each problem size (N, M), 20
simulation runs are conducted by GA, PSO and CSO.
The average values of reliability with the
corresponding confidence interval at the 95%
confidence level and execution time are tabulated in
Tab. II. Simulations have shown that CSO results in
better reliability in comparison with GA and PSO,
while it consumes less execution time. Also, reliability
column in Tab. II denotes that our algorithm has
smaller reliability deviation rather than GA and PSO

TABLE I SYSTEM PARAMETERS AND THE
CORRESPONDING VALUE RANGES

System
parameters Description Value ranges

E Task Execution Time [15, 25]

l Task Processing Load [1, 50]

L Node Processing Load [100, 200]

mem Task Memory [1, 50]

Mem Node Memory [100, 200]

CR Communication Rate [0, 25]

PL Path Load [100, 200]

PHR Processor Hazard
Rate

[0.00005,
0.00010]

CHR Communication
Hazard Rate

[0.00015,
0.00030]

CBW Communication
Bandwidth [1, 4]

TABLE II EXPERIMENTAL RESULTS FOR VARIOUS NUMBERS OF NODES AND TASKS IN TERMS OF GA, PSO AND CSO

Problem
Size GA PSO CSO

N M Reliability
Execution Time

(sec)
Reliability

Execution Time

(sec)
Reliability

Execution Time

(sec)

6 10
0.9893 ±

0.0000
4.250

0.9893 ±

0.0000
4.372

0.9893 ±

0.0000
0.8

6 15
0.9680 ±

0.0002
7.689

0.9792 ±

0.0000
5.839

0.9803 ±

0.0000
2.854

6 20
0.9429 ±

0.0018
16.426

0.9545 ±

0.0007
11.763

0.9730 ±

0.0000
7.285

6 25
0.9345 ±

0.0029
25.662

0.9408 ±

0.0015
19.451

0.9430 ±

0.0002
11.480

8 15
0.9798 ±

0.0018
18.205

0.9818 ±

0.0000
24.362

0.9818 ±

0.0000
7.051

8 20
0.9371 ±

0.0074
52.214

0.9704 ±

0.0015
47.528

0.9741 ±

0.0000
27.878

8 25
0.8982 ±

0.0133
96.859

0.9522 ±

0.0014
72.763

0.9661 ±

0.0007
55.848

8 30
0.8729 ±

0.0374
134.723

0.9311 ±

0.0025
118.763

0.9581 ±

0.0011
82.728

440Volume 5- Number 4- Autumn 2013 15

VI. RELIABILITY OF CLOUD

In this section, we strive to modify the reliability
model which is proposed in section III in order to
analyze reliability in IaaS cloud systems. As we
mentioned before, IaaS is a common type of cloud
systems in which infrastructures are served as a
service. Analyzing reliability in cloud systems is
inherently different from distributed system
reliability. In the mentioned distributed systems we
tackle with task allocation while in IaaS cloud
systems the goal is VMs allocation. There are two
major differences between the tasks and VMs from
the reliability point of view:

1. Each task has a certain execution time on
each processor while we do not consider
execution time for VMs. Consequently, if no
VM is allocated to a server, its reliability is
equal to 1 because this server has no effect on
system reliability and in this situation we can
even turn off the server in order to minimize
energy consumption.

2. In spite of distributed systems, In IaaS cloud
systems, VMs do not communicate each
other. Therefore, the reliability of links could
be neglected in the formulation. Although,
link hazard rate affect service reliability but
for system reliability analysis is not
noteworthy.

Based on virtualization concept in IaaS layer,
cloud provider installs Virtual Machine Monitor
(VMM) on servers. Each VMM could manage
number of VMs. By request of customers, one or
more VM instances are provisioned with the specific
amount of resources. VM, VMM and hardware are
three important parts of each server. Although each of
which are carefully engineered, they are still capable
of failing.We illustrate the virtualization concept of
IaaS cloud in Fig. 1.

Figure 1. System architecture for the virtualization in IaaS layer of
Cloud

Here, we introduce the principle notation of the
model:

is an ith VM.
is an ith server.

represents number of VMs.
represents number of servers.

equals one, if and only if is
assigned to in the assignment
represented by . Otherwise = 0.

is hardware hazard rate for ith
server.

is hypervisor hazard rate for ith
server.

is number of dedicated processors for
.

is number of available processors on
.

is amount of dedicated memory
for .

is total amount of memory on .
is amount of dedicated storage for
.
is total amount of storage on .

represents the state of and is equal
to 1 when this server is on and is equal to
0 when is off.

() is reliability of for assignment
.

() is cloud system reliability for
assignment .
Cc() is cost of assignment .
TCc() is total cost of assignment .

We assume server failures are independent. Thus,
system reliability of the cloud systems can be
formulated by Eq. 25. () = =1 ()(25)

To delineate state of each server (on or off) we
introduce = (0,)1 (26)

The reliability of a server can be calculated by Eq. 27
which is similar to Eq. 5. In addition, from Eq.
26,when is off, = 0 and thus =1. As a
consequence, with increasing number of off servers,
system reliability may enhance. It should be noted
that it is not the general case because the servers have
not the same reliability.

= + (27)

Furthermore, as we mentioned before the VMs have
no certain execution times and so we assign t=1. It
leads us to following formulation to calculate server
reliability:

= + (28)

Finally, from Eq. 25 and 28, system reliability of the
cloud system can be formulated by Eq. 29.

= + =1 (29)

440 Volume 5- Number 4- Autumn 2013

For maximizing we should minimize the
following term which called cost function.

Cc() = + =1 (30)

Penalty functions for violating processing capacity,
memory and storage constraints are formulated in Eq.
31, 32 and 33 respectively.= 0, =1 =1 (31)= 0, =1 =1 (32)= 0, =1 =1 (33)

Total cost of assignment() is equal to sum of
cost () and all penalties in a weighted manner.
Each penalty has a coefficient which shows its
importance. Total cost is formulated by Eq. 34.

TCc() = Cc() + c + c + c (34)

Due to same importance of penalty functions in our
model, we suppose the coefficients are equivalent.

.
Therefore Eq. 34 is rewritten by Eq. 35. The main
goal is minimizing Total Cost function which is
determined in Eq. 35.

TCc() = Cc() + c (+ +) (35)

VII. SIMULATION RESULTS FOR IAAS

To assess our CSO-based algorithm for reliability
of IaaS cloud, we implementCSO along with two well
known meta-heuristic algorithms. First, we
concentrate on GA and tune its parameters. 60
chromosomes for population size, uniform crossover
and 0.2 for mutation rate are considered as the main
parameters for GA which lead to the highest
reliability for this algorithm. Moreover, we applied a
heuristic algorithm to produce initial solution for GA.
It helps to converge the process to the best solution
rapidly. For PSO, we set 35 as the number of particles
and 0.75 as inertial constant.Furthermore, due to use
of Canonical PSOfor this problem,we adjust neighbor
component coefficient, cognitive coefficient and
social coefficient to zero, 2 and 1.8 respectively. Tab.
III shows the computed reliability for these three
algorithms. The confidence interval which is shown in
the Tab. III is based on 96% confidence level.

Acquired results reveal that CSO is more effective
and superior to the Enhanced GA and Canonical PSO
in terms of both solution quality and execution time.
Fig. 2 indicates the reliability results for 30 servers
and various number of VMs for the mentioned above
algorithms.

Figure 2. Computed IaaS reliability for 30 servers

Table IV CSO Parameter Settings for DS and IaaS Platforms

Parameter Description Values for
DS

Values for
IaaS

Number of cats
spread in solution

area

30 45

SMP Number of copies
each cat makes in

seeking mode

5 7

SRD Range of variation for
each dimension in

seeking mode

25% 25%

CDC Number of
dimensions that will
change in seeking

mode for each copy.

80% 75%

MR Percentage of cats in
tracing mode vs.

seeking mode

20% 25%

r1 A random variable
used in calculating

velocities

[0,1] [0,1]

c1 A constant variable
used in calculating

velocities

2 2

VIII. FROM DS TO IAAS BY CSO

 In this section, we tackle with the effectiveness of
CSO for both problems. The parameter settings for
CSO are tabulated into Tab. IV in terms of DS and
IaaS platforms. As mentioned before, CSO algorithm
has four main parameters in seeking mode including
CDC, SRD, SMP and SPC. CDC is the count of
tasks/VMs in which processor/server allocation will be
changed. SRD is the range of change in
processor/server allocation for each task/VM. SMP is
the size of memory for each cat which determines
number of copies made in seeking process. SPC is
always 1 which means current position is considered
in experiments. Usually, total number of cats which
spread in the solution area depends on the problem
size. Few number of cats leads to the less exploration
and more exploitation.

Although, the two platforms (DS and IaaS) have
quite different components but the conducted
simulation indicates the acceptable results which are
generated by CSO. Our investigation on the behavior
of CSO reveals that the main strong point of CSO in
comparison of PSO and GA is its seeking and tracing
mode. These modes provide an appropriate trade-off
between the exploration and exploitation of the
algorithm. Furthermore, seeking mode helps to find
better solution in a short period of time.

40Volume 5- Number 4- Autumn 2013

Table III Experimental results for various numbers of servers and VMs in terms of Enhanced GA, Canonical PSO and CSO

Problem
Size

Enhanced GA Canonical PSO CSO

 Reliability Execution Time
(sec)

Reliability Execution Time
(sec)

Reliability Execution Time
(sec)

20 100 0.9793 ±
0.0001

6.590 0.9831 ±
0.0000

5.712 0.9873 ±
0.0000

2.105

20 150 0.9618 ±
0.0001

10.839 0.9722 ±
0.0000

7.364 0.9804 ±
0.0000

5.933

20 200 0.9493 ±
0.0017

18.216 0.9542 ±
0.0014

10.981 0.9654 ±
0.0001

7.648

30 150 0.9656 ±
0.0024

24.892 0.9763 ±
0.0014

15.753 0.9799 ±
0.0001

13.746

30 200 0.9381 ±
0.0029

32.415 0.9530 ±
0.0023

19.094 0.9708 ±
0.0009

17.297

30 250 0.8814 ±
0.0065

61.198 0.9093 ±
0.0032

32.637 0.9354 ±
0.0010

29.384

30 300 0.8423 ±
0.0106

104.649 0.8827 ±
0.0058

46.260 0.9053 ±
0.0013

41.284

30 350 0.8246 ±
0.0259

194.855 0.8801 ±
0.0062

88.033 0.9014 ±
0.0019

80.472

IX. CONCLUSION

In this paper, we tackle with reliability
maximization problem in distributed systems and
cloud environment. We first investigate reliability in
distributed systems and suggest a mathematical model
to analyze reliability. The model consists of two cost
functions which manifests the unreliability caused by
execution of tasks on the nodes and the other reveals
unreliability caused by inter-process communication
time. Different penalty functions are also defined to
satisfy the application and system constraints. Based
on the model we introduce a task allocation algorithm
which is inspired from cat behavior. The
computational evaluations manifestly support the high
performance of our proposed algorithm against other
meta-heuristic algorithms which were applied for
finding optimal task allocation in DSs. Subsequently,
to analyze reliability in IaaS cloud systems, we
propose another mathematical model which
elaborately represents effect of VMs allocation on
cloud system reliability, and apply the CSO to this
problem too. The acquired results of conducted
simulation indicate that CSO has low deviation from
average reliability in all of the cases in contrast to
Enhanced GA and Canonical PSO.As a future work
we plan to extend our model in order to take PaaS and
SaaS into account.

REFERENCES

[1] G. R. Andrews, Foundations of Multithreaded, Parallel, and
Distributed Programming. Addison-Wesley, 2000.

[2] S. Dolev, Self-Stabilization. The MIT Press, 2000.
[3] R. Elmasri and S. B. Navathe, Fundamentals of Database

Systems, 3rd ed. Addison-Wesley, 2000.
[4] K. K. Aggarwal and S. Rai, “Reliability Evaluation in

Computer-Communication Networks,” IEEE Transactions on
Reliability, vol. R-30, no. 1, pp. 32–35, Apr. 1981.

[5] S. M. Shatz, S. Member, J. ping Wang, and M. Goto, “Task
Allocation for Maximizing Reliability of Distributed
Computer Systems,” vol. 11, no. 0, 1992.

[6] A. Elegbede, K. Adjallah, and F. Yalaoui, “Reliability
allocation through cost minimization,” IEEE Transactions on
Reliability, vol. 52, no. 1, pp. 106–111, Mar. 2003.

[7] C. C. Chiu, Y. S. Yeh, and J. S. Chou, “A fast algorithm for
reliability-oriented task assignment in a distributed system,”
Computer Communications, vol. 25, no. 17, pp. 1622–1630,
Nov. 2002.

[8] C. C. Hsieh, “Optimal task allocation and hardware
redundancy policies in distributed computing systems,”
European Journal of Operational Research, vol. 147, no. 2,
pp. 430–447, Jun. 2003.

[9] G. Attiya and Y. Hamam, “Task allocation for maximizing
reliability of distributed systems: A simulated annealing
approach,” Journal of Parallel and Distributed Computing,
vol. 66, no. 10, pp. 1259–1266, Oct. 2006.

[10] P. A. Tom and C. S. R. Murthy, “Algorithms for reliability-
oriented module allocation in distributed computing systems,”
Journal of Systems and Software, vol. 40, no. 2, pp. 125–138,
Feb. 1998.

[11] S. Kartik and C. Siva Ram Murthy, “Improved task-allocation
algorithms to maximize reliability of redundant distributed
computing systems,” Reliability, IEEE Transactions on, vol.
44, no. 4, pp. 575–586, 1995.

[12] P. Y. Yin, S. S. Yu, P. P. Wang, and Y. T. Wang, “Task
allocation for maximizing reliability of a distributed system
using hybrid particle swarm optimization,” Journal of
Systems and Software, vol. 80, no. 5, pp. 724–735, 2007.

[13] D. P. Vidyarthi and A. K. Tripathi, “Maximizing reliability of
distributed computing system with task allocation using
simple genetic algorithm,” Journal of Systems Architecture,
vol. 47, no. 6, pp. 549–554, 2001.

[14] M. Armbrust, A. D. Joseph, R. H. Katz, and D. A. Patterson,
“Above the Clouds�
Computing,” Science, 2009.

[15] Q. M. Kang, H. He, H. M. Song, and R. Deng, “Task
allocation for maximizing reliability of distributed computing
systems using honeybee mating optimization,” Journal of
Systems and Software, vol. 83, no. 11, pp. 2165–2174, 2010.

[16] H. R. Faragardi, R. Shojaee, and N. Yazdani, “Reliability-
Aware Task Allocation in Distributed Computing Systems
using Hybrid Simulated Annealing and Tabu Search,” in 14th
IEEE International Conference on High Performance
Computing and Communications, 2012, pp. 1088–1095.

[17] R. Shojaee, H. R. Faragardi, S. Alaee, and N. Yazdani, “A
New Cat Swarm Optimization based Algorithm for
Reliability-Oriented Task Allocation in Distributed Systems,”
in Sixth International Symposium on Telecommunications
(IST), 2012, pp. 861–866.

[18] H. R. Faragardi, R. Shojaee, M. Mirzazad-Barijough, and R.
Nosrati, “Allocation of hard real-time periodic tasks for
reliability maximization in distributed systems,” in
Computational Science and Engineering (CSE), 2012 IEEE
15th International Conference on, 2012, pp. 42–49.

40 Volume 5- Number 4- Autumn 2013

[19] H. R. Faragardi, R. Shojaee, M. A. Keshtkar, and H. Tabani,
“Optimal Task Allocation for Maximizing Reliability in
Distributed Real-time Systems,” in Computer and Information
Science (ICIS), 2013 IEEE/ACIS 12th International
Conference on, 2013.

[20] Y. Chen, Q. Shen, P. Sun, Y. Li, Z. Chen, and S. Qing,
“Reliable Migration Module in Trusted Cloud Based on
Security Level - Design and Implementation,” 2012 IEEE
26th International Parallel and Distributed Processing
Symposium Workshops & PhD Forum, pp. 2230–2236, May
2012.

[21] Z. Wu, N. Chu, and P. Su, “Improving Cloud Service
Reliability -- A System Accounting Approach,” 2012 IEEE
Ninth International Conference on Services Computing, pp.
90–97, Jun. 2012.

[22] H. R. Faragardi, R. Shojaee, H. Tabani, and A. Rajabi, “An
Analytical Model to Evaluate Reliability of Cloud Computing
Systems in the Presence of QoS Requirements,” in Computer
and Information Science (ICIS), 2013 IEEE/ACIS 12th
International Conference on, 2013.

[23] K. V. Vishwanath and N. Nagappan, “Characterizing Cloud
Computing Hardware Reliability,” 2010.

[24] Y.-K. L. and P.-C. Chang, “MAINTENANCE
RELIABILITY OF A COMPUTER NETWORK WITH
NODES FAILURE IN THE CLOUD COMPUTING
ENVIRONMENT,” International Journal of Innovative
Computing, Information and Control I, vol. 8, no. 6, pp.
4045–4058, 2012.

[25] H. R. Faragardi, A. Rajabi, and R. Shojaee, “Towards
Energy-Aware Resource Scheduling to Maximize Reliability
in Cloud Computing Systems,” in HPCC 2013, 2013.

[26] C. H. Sauer and K. M. Chandy, Computer systems
performance modeling, vol. 21. Prentice-Hall Englewood
Cliffs, NJ, 1981.

[27] J. F. Lawless, “Statistical models and methods for lifetime
data,” 1982.

[28] C. Singh, “Calculating the time-specific frequency of system
failure,” Reliability, IEEE Transactions on, vol. 28, no. 2, pp.
124–126, 1979.

[29] C. S. Raghavendra and S. V Makam, “Reliability modeling
and analysis of computer networks,” Reliability, IEEE
Transactions on, vol. 35, no. 2, pp. 156–160, 1986.

[30] S. Kartik and C. Siva Ram Murthy, “Task allocation
algorithms for maximizing reliability of distributed
computing systems,” Computers, IEEE Transactions on, vol.
46, no. 6, pp. 719–724, 1997.

[31] S. chuan Chu, P. wei Tsai, and J. shyang Pan, “LNAI 4099 -
Cat Swarm Optimization,” pp. 854–858, 2006.

[32] J. Kennedy and R. Eberhart, “Particle swarm optimization,”
in Neural Networks, 1995. Proceedings., IEEE International
Conference on, 1995, vol. 4, pp. 1942–1948.

[33] M. Clerc and J. Kennedy, “The particle swarm-explosion,
stability, and convergence in a multidimensional complex
space,” Evolutionary Computation, IEEE Transactions on,
vol. 6, no. 1, pp. 58–73, 2002.

[34] I. C. Trelea, “The particle swarm optimization algorithm:
convergence analysis and parameter selection,” Information
processing letters, vol. 85, no. 6, pp. 317–325, 2003.

[35] J. H. Holland, “Genetic algorithms,” Scientific american, vol.
267, no. 1, pp. 66–72, 1992.

Reza Shojaee received his B.Sc. and
M.Sc. degrees both in Computer
Engineering from Iran University of
Science and Technology and University of
Tehran, respectively. Now, he is a
researcher of the Router Laboratory at
University of Tehran being led by Prof.

Nasser Yazdani. His main research interests include
reliability and availability analysis, cloud computing and
analytical modeling as well.

Hamid Reza Faragardi received his
M.Sc. degrees from University of Tehran
in 2012 in Computer Engineering. He
currently is a PhD student in the real-time
department of Malardalen University. His
main research interests comprise of
dependability modeling, cloud computing
and real-time systems. His Ph.D. project

is development of AUTOSAR multicore systems and is
funded by Volvo and ABB. He could already publish more
than eight papers and articles which most of them cover
reliability and energy management together in cloud
computing systems.

Nasser Yazdani got his B.S. degree in
computer engineering from Sharif
University of Technology, Tehran, Iran.
He worked in Iran Telecommunication
Research Center as a researcher and
developer for a few years. To pursue his
education, he entered Case Western

Reserve University, USA, and graduated with a Ph.D.
degree in computer science and engineering. Then, he has
been working in different companies and research institutes
in USA. He joined the School of Electrical & Computer
Engineering of University of Tehran, in September 2000
and at present he is a full professor. His research interests
include networking, packet switching, access methods,
operating systems and database as well.

