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Abstract—It has already been shown that in rate-constrained broadcast channels, under the assumption of independent
Rayleigh, Rician and Nakagami fading channels for different receivers, the user capacity (i.e. the maximum number
of users that can be activated simultaneously) scales double logarithmically with the total number of users. However,
to achieve the aforementioned result, it is assumed that channel state information (CSI) is perfectly known to the
receivers. In practical situations, the receivers do not have access to the true CSI and they only know estimated
channels. In this paper, the effects of channel estimation is analyzed on the user capacity of rate-constrained broadcast
channels. In particular, the Minimum Mean Square Error (MMSE) channel estimation scheme is considered and
the effects of this estimation method on the user capacity is investigated. Under the assumption of commonly used
fading channels for different receivers, it is shown that the user capacity still scales double logarithmically; however,
there is a gap depending on channel estimators accuracy between the upper and lower bound of the user capacity.
The bound will be asymptotically tight if the variance of the channel estimator remains constant.

Index Terms—User capacity,channel estimation, scaling laws, broadcast channels, fading channels, minimum-rate
constraint, power allocation.

I. INTRODUCTION

In a dynamic environment, the channel states are

time-varying. In the theoretical analysis of wireless

communication systems, it is usually assumed that

receivers perfectly know channel state information

(CSI); however, in reality, only estimated channels are

available to receivers and transmitters [1]. Depending

on the channel estimator used in a communication

system, statistical properties of the estimated channels

will change compared to the true channels. In many

applications, it is of interest to analyze the effect

of channel estimation on performance of a wireless

communication system.

In broadcast channels, the transmitter allocates its

total transmit power to different receivers according to

their channel states. There is thus a fundamental trade-

off between the total throughput and the minimum

rate achievable for all the receivers. The basic idea

is to adapt power allocation to the variations of the

channel states. The transmission rate for a receiver is
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increased when its channel state becomes better; there-

fore, higher rates can be achieved using less power.

This raises the issue of the trade-off between ergodic

capacity and outage capacity, for which, extensive

studies have been given in [2]–[4] in the context of

broadcast channels.

In this paper, a rate-constrained broadcast channel

is considered and an opportunistic power allocation

scheme with a minimum rate constraint Rmin > 0 is

utilized. For a fixed Rmin, in a time-varying fading

environment, it may not be always possible for all

receivers to achieve this minimum rate simultaneously.

Hence, a power allocation scheme has been proposed

in [5], [6] to maximize the number of active receivers

supporting the minimum rate, while allocating no

power to the other inactive receivers. As the number

of supportable active receivers depends on the specific

channel states, the asymptotic behavior should be

analyzed when the total number of receivers, n, is

large.

In [5], [6], under the assumption of independent

Rayleigh, Rician and Nakagami fading channels for

different receivers with unit noise variance, it is shown

that the maximum number of active receivers scales

double logarithmically with the total number of users

in the system and the achieving bounds are asymptot-

ically tight.

In this paper, the estimated channels are substituted

for the true CSI and it is assumed that the variance of

the channel estimator may have some variations for

different users; therefore, the assumption of having

independent and identically distributed (i.i.d.) channel

estimators is relaxed. That is, the channel estimator

variance has an upper (i.e. σ̂2
h,max) and a lower bound

(i.e. σ̂2
h,min). It is clear that if the channel estimator

variance remains constant for different users, the user

capacity bound will be tight asymptotically. In this pa-

per, the Minimum Mean Square Error (MMSE) chan-

nel estimator is considered; however, due to linearity

of the observation model, other channel estimators

also result in the double logarithmic user capacity

scaling law.

II. CHANNEL MODEL

Consider a broadcast channel with one transmitter

and, n, receivers with the following channel model in

the time block t = 1, 2, . . . , T :

Yi(t) = hiX(t) + Zi(t), i = 1, 2, . . . , n, (1)

where X(t) ∈ C is the signal sent by the transmitter,

and Yi(t) ∈ C is the signal received by receiver i.
The noise Zi(t) ∈ C, i = 1, . . . , n, t = 1, . . . , T
are assumed to be i.i.d. complex Gaussian distributed

according to CN (0, σ2). The channel gains hi ∈ C,

i = 1, . . . , n are assumed to be constant during this

time block.

Equivalently, the model (1) can be written as

Y ′
i (t) = X(t) + Zi(t)/hi, i = 1, 2, . . . , n (2)

where the noise Zi(t)/hi is still complex Gaussian

distributed, but with variance σ2/|hi|2.

III. MMSE CHANNEL ESTIMATION

Coherent demodulation requires the complex

channel tap hi = |hi|ejθi ; i = 1, . . . , n, to be

available via perfect channel estimation. In practice,

hi is estimated from pilot symbols (i.e. sp) extracted

from the pilot tone transmitting simultaneously

with the signal. In this case, the channel taps can

be considered constant during a symbol, that is,

hi(t) = hi, t ≤ Ts. Note that the channel gain, hi,

is assumed to be constant during each time block but

it is a random variable over different time slots.

It is well-known that the MMSE estimated channel

is given by [7, Sec. 10.3]

ĥi = a∗i Yi; i = 1, . . . , n (3)

ai =
E
{|hi|2

}
sp

E {|hi|2} |sp|2 + σ2
(4)

or equivalently, with respect to the Signal-to-Noise

Ratio (SNR), we have

ai =
SNRp

SNRp + 1

(
sp

|sp|2
)

(5)

where σ2 is the noise variance and SNRp = |sp|2/σ2

is the SNR of the pilot symbol transmitted. The

estimated channel becomes more accurate as the SNR

increases. Hence, it can be seen that the distribution

of ĥi; i = 1, . . . , n for Rayleigh fading and Rician

fading are complex Gaussian with zero mean and

mean μ̂i = a∗i spμ respectively and so both fading

have same variance with σ̂2
h,i = |ai|2(σ2

h|sp|2 + σ2),
where σ2

h refers to actual channel gains variance, that

is

ĥi ∼ CN (
μ̂, σ̂2

h,i

)
; i = 1, . . . , n (6)

Note that because of linearity of the observation

model, other classical estimators such as Maximum

Likelihood (ML) estimators result in complex Gaus-

sian random variable.

IV. OPPORTUNISTIC POWER ALLOCATION

SCHEME

Let Ni = σ2/|ĥi|2. Without loss of generality,

assume that N1 ≤ N2 ≤ · · · ≤ Nn. It is well

known [8, Sec.14.6] that the broadcast channel (2)

is stochastically degraded, and the capacity region is

given by [5, Eq. (3)]. Different rates can be achieved

by different power allocations. As shown by Lemma

2.1 in [5], in order to maximize the total throughput,
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all power should be allocated to receiver 1, which

has the maximum channel gain |ĥ1|, or the minimum

equivalent noise variance N1. Hence, the following

power allocation scheme is proposed in [5], for any

large integer, m, as the number of active receivers:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

max{m} (7)

ln

(
1 +

P1

N1

)
≥ Rmin (8)

ln

(
1 +

Pi∑i−1
j=1 Pj +Ni

)
= Rmin; 2 ≤ i ≤ m(9)

m∑
i=1

Pi = P (10)

where Rmin > 0 (in nats) is a minimum rate constraint

for all active receivers. In [5], a simple recursive

algorithm is also proposed to solve the aforementioned

optimization problem (7)-(10). Obviously, with fixed

P and Rmin, the maximum number of active receivers

completely depends on the equivalent noise variance

Ni = σ2/|ĥi|2. Let, Mn, denote the maximum

number of simultaneous active receivers (out of, n,

receivers) that can be supported with a rate greater

than or equal to Rmin. Note that, Mn, is a random

number depending on the channel gains. When the

estimated channel gains ĥi obey some statistical dis-

tributions, asymptotic behavior of the maximum value

of m can be determined when the total number of

receivers, n, becomes large. It is of interest to analyze

how the user capacity of broadcast channels obtained

asymptotically by Theorem 2.1 in [5] and Theorem

4.1 in [6] changes as the estimated channel gains are

substituted for the true gains. The following Theorem

shows the effect of MMSE channel estimation on the

user capacity scaling law.

Theorem 4.1: Consider the broadcast channel in

which the estimated channel gains for different re-

ceivers are distributed by (6) . For any arbitrary

ε > 0, the maximum number of active receivers, Mn,

determined by (7)-(10) is bounded as

P(�νL(n)−ε� ≤ Mn ≤ νU (n)+ε) → 1, as n → ∞,
(11)

where, �x� denotes the maximum integer no greater

than x, n is the total number of receivers,

νL(n)
Δ
= ln(

σ̂2
h,min

σ2
P lnn)/Rmin (12)

and

νU (n)
Δ
= ln(

σ̂2
h,max

σ2
P lnn)/Rmin. (13)

Proof:

A. Rayleigh Fading

Consider the broadcast channel (1), with the inde-

pendent gains ĥi ∼ CN
(
0, σ̂2

h,i

)
for i = 1, . . . , n.

Then, |ĥi| ∼ Rayleigh
(√

σ̂2
h,i/2

)
and |ĥi|2 ∼

Γ
(
1, σ̂2

h,i

)
for i = 1, . . . , n. The Gamma cumulative

distribution function is given by

F(x; k, θ) =
γ(k, x/θ)

Γ(k)

where Γ(·),Γ(·, ·) and γ(·, ·) are the gamma, the

upper incomplete gamma and the lower incomplete

gamma functions respectively (see [6, Eqs. (13)-(15)

and (23)]). Hence, for any y > 0,

F(y) = P(Ni < y) = P(σ2/|ĥi|2 < y)

= P

(
|ĥi|2 > σ2/y

)
= exp(− σ2

σ̂2
h,iy

) (14)

It can be seen that MMSE channel estimation

slightly changes the distribution function of |hi|2;

i = 1, . . . , n, from Exp(1) in [5] to Γ
(
1, σ̂2

h,i

)
in this

paper. The rest of the proof is basically similar to the

proof of Theorem 2.1 in [5] with some modifications

due to the Gamma distribution function.

For any fixed N0 > 0, we can characterize the

number of “good” channels with the equivalent noise

variance Ni less than N0 as the following. Let p0 =
F(N0) = exp(− σ2

σ̂2
h,iN0

). Then, with probability p0, a

channel is good. Consider a Bernoulli sequence:

xi =

{
1, with probability p0
0, with probability 1− p0

for i = 1, 2, . . . , n. Then, the number of good chan-

nels has the same distribution as Mn =
∑n

i=1 xi,

which satisfies the binomial distribution B(n, p0).
For any integer m ≥ 1, obviously,

P(Mn ≤ m− 1) =
m−1∑
j=0

(
n

j

)
pj0(1− p0)

n−j

which, however, is not easy to analyze. If m − 1 ≤
np0, we can use the Chernoff inequality [9, page 70]:

P(Mn ≤ m− 1) ≤ exp

(
− 1

2p0

(np0 −m+ 1)2

n

)
.

Hence,

P(Mn ≥ m) ≥ 1− exp

(
− 1

2p0

(np0 −m+ 1)2

n

)
.

(15)

Now, consider the power allocations for the, m,

best receivers presented in [5] given by

Pi =
c

αm−i
, for i = 1, . . . ,m,

where α = eRmin > 1, and c = (1− 1/α)P .

Next, we show that for any ε > 0, if m ≤ νL(n)−ε,
max1≤i≤m Ni ≤ P/αm holds with probability ap-

proaching one as, n, tends to infinity. Let N0 =
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P/αm. Then,

p0 = F(N0) = exp

(
−σ2αm

σ̂2
h,iP

)

≥ exp

(
−σ2ανL(n)−ε

σ̂2
h,iP

)

= exp

(
− σ̂2

h,min

σ̂2
h,i

α−ε lnn

)
= n

− σ̂2
h,min

σ̂2
h,i

λ
,

where λ = α−ε < 1. Then it is obvious that as n →
∞,

1

2p0

(np0 −m+ 1)2

n
∼ n2p20

2np0
=

np0
2

≥ n1−λ

2
→ ∞.

(16)

Hence, by (15), the probability of max1≤i≤m Ni ≤
αmP approaches 1 as n → ∞.

Therefore, we proved that as n → ∞, with

probability approaching 1, there are at least m =
�νL(n) − ε� good channels with Ni ≤ P/αm, for

which the minimum rate constraint is satisfied.
Next, we prove the upper bound, i.e., m ≤ νU (n)+

ε holds with probability approaching 1. First in [5],

we shown that for any δ > 0, for sufficiently large,

m, the best receiver should have the equivalent noise

variance N1 ≤ Pδ/α
m, with Pδ := P + δ. Otherwise,

if min1≤i≤n Ni > Pδ/α
m, the total power constraint

or the minimum-rate constraint is violated.
Therefore, to show that

P(Mn ≤ νU (n) + ε) → 1,

or

P(Mn > νU (n) + ε) → 0,

we only need to show that

P(N1 ≤ Pδ/α
νU (n)+ε) → 0.

Let p1 = F(Pδ/α
νU (n)+ε). Then, (1− p1)

n is the

probability that all the receivers have equivalent noise

variance greater than Pδ/α
νU (n)+ε. Hence,

P(N1 ≤ Pδ/α
νU (n)+ε) = 1− (1− p1)

n, (17)

which tends to 0 if and only if(
1− exp

(
−σ2ανU (n)+ε

σ̂2
h,iPδ

))n

→ 1. (18)

Since(
1− exp

(
−σ2ανU (n)+ε

σ̂2
h,iPδ

))exp

(
σ2ανU (n)+ε

σ̂2
h,i

Pδ

)

,

tends to e−1 and (18) holds if

n · exp
(
−σ2ανU (n)+ε

σ̂2
h,iPδ

)

=n · exp
(
− σ̂2

h,max

σ̂2
h,i

Pαε lnn

P + δ

)
→ 0 (19)

which holds by choosing δ < (
σ̂2
h,max

σ̂2
h,i

αε − 1)P . �

B. Rician Fading

Consider the broadcast channel (1) with indepen-

dent gains ĥi ∼ CN
(
μ̂, σ̂2

h,i

)
, for i = 1, · · · , n; if

h̃i ∼ CN (μ̂, 2), according to Lemma A.1, |ĥi| =

|√σ̂2
h/2h̃i| ∼ Rice(

√
σ̂2
h,i/2,

√
σ̂2
h,i/2μ̂) and |h̃i|2 ∼

NCχ2
2(μ̂

2) (i.e. non-central Chi-square distribution

with two degrees of freedom) with the cumulative

distribution function

FNCχ2
2
(x; 2, μ̂2) =

∞∑
j=0

e−μ̂2/2 (μ̂
2/2)j

j!

γ(j + 1, x/2)

Γ(j + 1)

As ĥ =
√
σ̂2
h/2 · h̃, the distribution function of |ĥ|2

equals to

FNCχ2
2
(2x/σ̂2

h; 2, μ̂
2)

=
∞∑
j=0

e−μ̂2/2 (μ̂
2/2)j

j!

γ(j + 1, x/σ̂2
h)

Γ(j + 1)
. (20)

Let N0 = P/αm and λ = α−ε < 1. Then, using

[6, Eqs. (14), (15)],

p0 = F(N0) = 1− FNCχ2
2
(2

σ2αm

σ̂2
h,iP

; 2, μ̂2)

≥1− FNCχ2
2
(2

σ2ανL(n)−ε

σ̂2
h,iP

; 2, μ̂2)

=1− e−μ̂2/2
∞∑
j=0

(μ̂2/2)j

j! Γ(j + 1)
γ

(
j + 1,

σ̂2
h,min

σ̂2
h,i

λ lnn

)

=e−μ̂2/2
∞∑
j=0

(μ̂2/2)j

j! Γ(j + 1)
Γ(j + 1,

σ̂2
h,min

σ̂2
h,i

λ lnn)

=n
− σ̂2

h,min

σ̂2
h,i

λ
e−μ̂2/2

∞∑
j=0

(μ̂2/2)j

j!

j∑
k=0

(
σ̂2
h,min

σ̂2
h,i

λ lnn)k

k!

It is clear that as n → ∞,

1

2p0

(np0 −m+ 1)2

n
∼ n2p20

2np0
=

np0
2

(23)

≥ n
1− σ̂2

h,min

σ̂2
h,i

λ

2
e−μ̂2/2

∞∑
j=0

(μ̂2/2)j

j!

j∑
k=0

(
σ̂2
h,min

σ̂2
h,i

λ lnn)k

k!

→ ∞.

As m − 1 ≤ np0, the Chernoff bound on the sum

of Poisson trials can be used as (15). Hence, the

probability of max1≤i≤m Ni ≤ P/αm approaches

one as n → ∞.

Therefore, we proved that with probability ap-

proaching one, there are at least Mn = �νL(n) − ε�
good channels for which the minimum-rate constraint

is satisfied.
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(
1− F(Pδ/α

νU (n)+ε)
)n

=FNCχ2
2
(2

σ2ανU (n)+ε

Pδσ̂2
h,i

; 2, μ̂2)n (21)

=

⎛
⎝1− e−μ̂2/2

∞∑
j=0

(μ̂2/2)j

j! Γ(j + 1)
Γ

(
j + 1,

σ̂2
h,maxP lnn

σ̂2
h,iλPδ

)⎞
⎠

n

= (1− g(n))
n → 1.

n g(n) =ne−μ̂2/2
∞∑
j=0

(μ̂2/2)j

j! Γ(j + 1)
Γ

(
j + 1,

σ̂2
h,maxP lnn

σ̂2
h,iλPδ

)
(22)

=ne−μ̂2/2

⎛
⎝c lnn∑

j=0

(μ̂2/2)j

j! Γ(j + 1)
Γ

(
j + 1,

σ̂2
h,maxP lnn

σ̂2
h,iλPδ

)
+

∞∑
j=c lnn

(μ̂2/2)j

j! Γ(j + 1)
Γ

(
j + 1,

σ̂2
h,maxP lnn

σ̂2
h,iλPδ

)⎞
⎠

→ 0.

Next, we prove Mn ≤ νU (n) + ε holds with

probability approaching one. First in [6], we shown

that for any δ > 0 and for sufficiently large, m, the

best receiver should have the equivalent noise variance

N1 ≤ Pδ/α
m. Otherwise, if min1≤i≤n Ni > Pδ/α

m,

as shown for Rayleigh fading channels, the total power

constraint or the minimum-rate constraint is violated.

Therefore, to show that

P(Mn ≤ νU (n) + ε) → 1,

we only need to show that

P(N1 ≤ Pδ/α
νU (n)+ε) → 0.

Let p1 = F(Pδ/α
νU (n)+ε). Then, (1− p1)

n is the

probability that all the receivers have equivalent noise

variance greater than Pδ/α
νU (n)+ε. Hence,

P(N1 ≤ Pδ/α
νU (n)+ε) = 1− (1− p1)

n, (24)

which tends to zero if and only if (Eq.21) holds.

As n → ∞, g(n) → 0 and

(1− g(n))
g−1(n) → e−1.

Hence, (24) tends to zero if (Eq.22) goes to zero. If

c <
σ̂2
h,maxP

σ̂2
h,iλPδ

, the expansion of incomplete gamma

function can be applied to the first summation of [6,

Eq. (23)]. Hence, using j! ≥ (j/2)j/2 and defining

j0 = 2

(
μ̂2σ̂2

h,maxP

σ̂2
h,maxP − σ̂2

h,iλPδ

)2

,

the first summation of (22) goes to zero as, n, tends

to infinity by choosing δ < (
σ̂2
h,max

σ̂2
h,i

αε − 1)P .

Using Stirling’s approximation for sufficiently large

c lnn, the second summation in (22), is basically

similar to [6, Eqs. (25), (26)] tends to zero as, n,

goes to infinity. Hence, according to [6, Eqs. (24),

(25)], n g(n) → 0.

The results obtained for Rayleigh and Rician fading

channels can also be extended to Nakagami fading

channels with a constant shift which is a function of

the minimum rate and distribution parameters.

Remark 4.1: Consider independent Nakagami fad-

ing channels for different receivers in the broadcast

channel. Assume estimated channels for different re-

ceivers are independent Nakagami fading channels

with channel gains |ĥi| ∼ Nakagami(m̂i, Ω̂i), i =
1, . . . , n and for any ε > 0, the maximum number of

active receivers, Mn, is bounded as (11) where

νL(n)
Δ
= ln((

Ω̂i

m̂i
)min

P lnn

σ2
)/Rmin (25)

and

νU (n)
Δ
= ln((

Ω̂i

m̂i
)max

P lnn

σ2
)/Rmin. (26)

Proof: The proof is similar to the proof of

Theorem 4.2 in [6], and Theorem 4.1 in this paper

when the Nakagami fading model is considered and

the receivers only know estimated channel gains.

V. NUMERICAL RESULTS

In the simulation results, it is assumed that the

ambient noise variance equals one, the channel gain

variance is equal to one for Rayleigh fading and two

for Rician fading with the expected value equals one,

and the channel bandwidth is 100 Hz. The upper and

lower bounds of the channel estimator variance are

σ̂2
h,max = 2σ2

h,i and σ̂2
h,min = 0.5σ2

h,i. Fig. 1 shows

the number of active receivers (i.e. the user capacity)

versus the total number of receivers for equals 25 and

50 Kbps and transmitted power changes linearly with

the number of users in the system. In Fig. 1, it can be

seen that the user capacity is inversely proportional to

the required minimum rate and the number of active

users doubles by halving the minimum rate Rmin. Fig.

1.a and Fig. 1.b are obtained for Rayleigh and Rician

fading respectively.
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Fig. 1. The optimal number of active receivers versus the total
number of users for Rmin = 25, 50 Kbps and Linearly increasing
transmit power (i.e. P = 10 log10(n) dB). (a) Rayleigh fading and
(b) Rician fading.

Fig. 2 indicates the user capacity of broadcast

channels for constant transmitted power of 20 and 40

dB. In Fig. 2, it is clear that the user capacity increases

logarithmically by increasing transmitted power. Fig.

2.a and Fig. 2.b are obtained for Rayleigh and Rician

fading respectively.

Fig. 3 illustrates the number of active receivers

histogram for 10000 Monte Carlo runs when the

total number of users is fixed. In Fig. 3.a, the total

number of users equals 25 and the user capacity equals

12.93 based on Theorem 2.1 in [5] and considering

variations of the channel estimator variance, the user

capacity changes between 11.54 and 14.32 based on

Theorem 4.1. In Fig. 3.b, the total number of users

equals 1000 and the user capacity equals 14.46 based

on Theorem 2.1 in [5] and considering variations

of the channel estimator variance, the user capacity

changes between 13.07 and 15.84 based on Theorem

4.1. It can be seen that by increasing the total number

of users, the user capacity converges to the theoretical

values with high probability.
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Fig. 2. The optimal number of active receivers versus the total
number of users for fixed transmit power P = 20, 40 dB. (a)
Rayleigh fading and (b) Rician fading.

VI. CONCLUSION

In [5], [6], it is shown that by considering true

CSI for all receivers in the broadcast channel and

common fading distributions such as Rayleigh, Rice,

and Nakagami, the user capacity scales double log-

arithmically with the total number of users and the

achieving bound is asymptotically tight. In this pa-

per, considering variations of the channel estimator

variance for different users in the broadcast channel,

there is a gap between the upper and lower bounds of

the user capacity; however, it is shown that the user

capacity still obeys a double-logarithmic scaling law.

If the channel estimator variance remains constant, the

upper bound meets the lower bound asymptotically.

Simulations indicate that numerical results converge

to the theoretical bound as the total number of users

increases and show the double-logarithmic scaling law

of the user capacity.
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Fig. 3. The histogram of the number of active receivers for Rmin = 50Kbps, SNR= 20 dB, and (a) n = 25 and (b) n = 1000.

APPENDIX A

Lemma A.1: Consider a Rician random variable

X ∼ Rice(ξ, κ). For any positive r , if Y = rX ,

Y is distributed as Rice(rξ, rκ).
Proof:

fY (y) =
1

|r|fX(y/r) =
1

r
fX(y/r)

=
y/r

rκ2
exp

(
−y2/r2 + ξ2

2κ2

)
I0

(
y/rξ

κ2

)

=
y

(rκ)2
exp

(
−y2 + (rξ)2

2(rκ)2

)
I0

(
y(rξ)

(rκ)2

)
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