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Abstract—Automatic test case generation is an approach to decrease cost and time in software testing. Although there 
have been lots of proposed methods for automatic test case generation of web applications, there still exists some 
challenges which needs more researches. The most important problem in this area is the lack of a complete descriptive 
model which indicates the whole behaviors of web application as guidance for the generation of test cases with high 
software coverage. In this paper, test cases are generated automatically to test web applications using a machine 
learning method. The proposed method called RTCGW (Rule-based Test Case Generator for Web Applications) 
generates test cases based on a set of fuzzy rules that try to indicate the whole software behaviors to reach to a high 
level of software coverage. For this purpose a novel machine learning approach based on fuzzy neural networks is 
proposed to extract fuzzy rules from a set of data and then used to generate a set of fuzzy rules representing software 
behaviors. The fuzzy rule set is then used to generate software test cases and the generated test cases are optimized 
using an optimization algorithm based on combination of genetic and simulated annealing algorithms. Two 
benchmark problems are tested using the optimized test cases. The results show a high level of coverage and 
performance for the proposed method in comparison with other methods.  

Keywords- Automatic Test case generation; web applications; population-based Fuzzy Neural Network 

 
 

I. INTRODUCTION  
Using web is one of the most important, 

unavoidable, and advantageous ways for business, 
learning and information gathering. As web 
progresses, web applications are becoming more 
popular than desktop applications. Therefore, their 
quality verifications are of a higher importance. An 
efficient way for software verification is software 
testing which is applied during software development 
cycle repeatedly hence it is a costly process. An 
essential and costly step in software testing is test case 

generation [1]. An efficient test suite should be able to 
cover different features of software. Test case 
generation automation can effectively reduce the time 
and costs consumed for the whole software testing 
process. Although there have been lots of researches to 
produce test cases with high software coverage 
capability [2], there still exists challenges in this area 
especially for web applications with their particular 
properties. One of the most important problems is not 
presenting an all-around model which can be able to 
illustrate all web application features for generating 
test cases. Existing methods generate test cases based 
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on an incomplete model that lead to sets of test cases 
with a low level of software coverage. Accordingly, in 
this paper, a new learning method based on fuzzy 
neural networks [3] is presented to extract the web 
application behaviors as a fuzzy rule set, and then uses 
this rule set as a model for web application to generate 
test cases with high code coverage. The generated test 
cases are then optimized using an algorithm composed 
of genetic and simulated annealing. The optimized test 
cases are applied on two benchmark web applications 
called TUDUList and BlindTextGenerator and 
compared with other approaches. The evaluations 
show a higher performance, coverage and automation 
for the proposed method.  

II. RELATED WORKS 
Web applications have been evolved through last 

decade to satisfy requirements of different users. Its 
evolution process started from a simple static page-
sequence client/server system into a dynamic medium 
of user-created content and rich interaction.  The 
complete evolution steps are discussed in [4].  Modern 
web applications (web 2.0 applications) as dynamic 
medium of user-created content and rich interaction 
rely on asynchronous client/server communication. 
Rich Internet Applications are usually developed using 
Web 2.0 technologies, such as Ajax, Silverlight, or 
Flex [5]. Among the technologies that are being 
developed to implement its features, Ajax1 is one of 
the most promising and mature. Ajax Web 
applications are heavily based on asynchronous 
messages and DOM manipulation. Accordingly the 
faults associated with these two features are relatively 
more common than in other kinds of applications. 
Thus, most Ajax testing techniques are directed toward 
revealing faults related to incorrect manipulation of the 
DOM [6].  For these applications, test cases are 
sequences of events that are potentially fault prone [7]. 
The testing techniques applied to traditional multipage 
web applications are not sufficient for testing modern 
single page web applications. In more detail, the 
properties of Ajax make them extremely difficult to 
test. Static analysis techniques are not able to reveal 
many of the dynamic dependencies present in modern 
web applications. The highly dynamic nature of Ajax 
user interfaces and their client/server delta 
communication adds an extra level of complexity to 
the traditional web analysis and testing challenges [4]. 
Furthermore, traditional web testing techniques are 
based on the traditional page request/response model 
and not taking into account client side functionality 
[8]. In [9] the adequacy and effectiveness of the most 
famous web testing methods are applied to these 
modern web applications and results shows that they 
are inadequate for testing AJAX-based web 
applications. An all-around classification framework 
for both traditional and modern web application test 
case generation techniques is presented in [10]. To 
bridge the gap between current web testing techniques 
and the main new features provided by AJAX, [9] 
proposed a Model-based testing technique represented 
by a FSM to describe the behavior of an AJAX Web 
page, according to its DOM structure and content in 
which nodes represent DOM states and edges are 

                                                           
1 Asynchronous Javascript And XML 

events which modify the DOM. To extract the FSM 
model of a web application, different methods have 
been proposed using execution traces [6], crawlers 
[11, 12] or user sessions [5]. WebMate [13]  as a 
technique for generating test case for popular web 2 
applications like social networks uses an initialized 
finite state automaton to generate test cases and tries to 
visit all states of the so-called usage model. The 
proposed mechanism in [14] makes use of a crawler to 
capture the client side fields and create a state-flow 
which is a basis for the completion of automatic 
testing. These techniques can automatically generate 
many test cases, whose effectiveness depends on the 
completeness of the initial model. When the initial 
model is obtained by stimulating the application under 
test with a simple sampling strategy that uses a subset 
of GUI actions to navigate and analyze the DOM, the 
derived model is partial and incomplete, and the 
generated test cases necessarily overlook the many 
interactions not discovered in the initial phase.  

III. PROPOSED METHOD 
Existing methods to test previous web applications 
are not applicable for testing the new generation of 
web applications which are based on web2 
technology [9]. In other words, special features of 
these applications make their testing process much 
harder. Static analysis cannot discover the dynamic 
communications of these applications. On the other 
hand, their dynamic nature and particular client/server 
communications in these applications make them 
more complicated and cause new challenges for their 
test [4]. Moreover, the classical testing techniques 
were based on a request/response model between 
pages and didn’t consider the functionality of client 
side [12]. Due to the fact that new web applications 
are based on asynchronies messages and DOM 
manipulations, errors related to these two features are 
more common. Therefore, most of techniques in this 
area consider detecting of errors caused by DOM 
manipulations directly [6]. Hereupon in this research 
test cases are generated using DOM. In other words, 
test cases are introduced as a sequence of events that 
change the DOM structure. Existing test case 
generation method for web2 applications are based on 
an incomplete model of application which is mostly 
described as a finite state graph that doesn’t represent 
all software behaviors. Accordingly, the proposed 
method in this paper tries to first extract a complete 
model of web application and then generate test cases 
based on this model. To extract the web application 
model, a new neural network called PAFuNN is 
presented. This model is utilized for generating web 
applications test cases. 
Figure 1 shows the overall architecture of Rule-based 
Test Case Generation for Web Applications 
(RTCGW). To extract DOM structure there is a need 
for client-side code of web application. Thus, in 
RTCGW, client-side code is defined as input and a 
test suite (a set of test cases) is defined as output. 
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Fig. 1 The overall architecture of proposed method 
 

According to figure 2 automatic test case 
generation system is composed of two subsystems. 
The first subsystem is responsible for generating an 
overall fuzzy rule set model of web application by 
dynamic analysis of software and the second one 
generates test cases based on his model. 

Fig. 2 The block diagram of RTCGW 

3-1- Model construction subsystem 
Due to the high complexity of modern web 

applications, accessing to all states are almost 
impossible [15]. On the other hand, the main goal in 
software testing is to verify all possible states of 
software. In recent researches [6, 15, 16] the web 
applications are modeled using a finite state graph in 
which nodes represent software states and edges 
illustrate the factors which cause a transition between 
states (like events, links, …). Most of the time this 
graph is generated according to some execution traces 
which lead to incomplete and inefficient model. 
Consequently, the generated test cases are also 
incomplete and don’t cover all testing purposes. 
Accordingly, in this research a set of fuzzy rules is 
used to predict all application behaviors and states 
according to its current state. Therefore, the first goal 
of this paper is to generate a fuzzy rule set that model 
all application’s states. The block diagram for this 
system is illustrated in figure 3. 

 

Fig. 3 Model construction block diagram 

This subsystem has two components. In the first 
component, a random walk is applied in different 
states of web application to generate training data of 
PAFuNN. For this purpose, the client-side code of 
application is analyzed and different events are 
executed randomly. Information such as hash code of 
current state, events and input data, and hash code of 
next state are stored a vector and sent to the next 
component to generate fuzzy rule set from. 

3-1-1- first component: random walk on system under 
test 

The main purpose of this component is to generate 
input data for the next component. As mentioned 

before, due to the different nature of modern web 
applications, their navigation is different from moving 
between pages, but means moving from one DOM 
state to another. As a result, to crawl through different 
states of a modern web application, we need to execute 
it to see the changes in DOM states dynamically. To 
proceed, the method proposed by Ali Mesbah is used 
[12]. In this method a database is used to initialize the 
input elements of DOM [6]. Generally speaking, the 
processes needed for random walk on web application 
consists of: 1) DOM extraction from client-side code, 
2) DOM analysis to select executable and clickable 
elements randomly. Table 1 shows some examples of 
executable elements and their events. 

 

TABLE 1. EXECUTABLE ELEMENTS AND THEIR EVENTS 
 

Event Component  
Onclick Button 
Onclick, onMouseOver Image 
On key press Textarea 
Onselect, onclick checkbox 
Onclick  Link  
Onselect Radio 

 

3) Executing selected elements, and fill the input 
values by data in database. This leads to a change in 
DOM state. 4) Calculating hash code of current and 
next states as an indicator for each state. 5) 
Initializing input-output vector as table 2 shows. 

 
TABLE 2. INPUT-OUTPUT VECTOR RESULTED FROM 

RANDOM WALK ON WEB APPLICATION 
 

Output Input 

N
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 State hash 
code 
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 State hash 
code 

C
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 State Index 

Input data  Types 

E
vent Types 

E
lem

ent  T
ypes 

 

Table 3 shows different types of input, events and 
elements with a code related to each one to be stored 
in the input-output vector. As an example, table 4 
shows that if the state of DOM is 1 and we click on a 
link we go to state 7. 
 
 

TABLE 3- CODES RELATED TO ELEMENTS, INPUTS AND 
EVENTS 

 

co
de

 

In
pu

t 
da

ta
 

C
od

e 

E
ve

nt
 

T
yp

es
 

co
de

 

E
le

m
en

t 
 T

yp
es

 

00 String 00 click 000 button 
01 Numeral 01 MouseOver 001 image 
10 Both 10 keypress 010 Textarea 
11 Non 11 select 011 checkbox 

    100 Link 

    101 Radio 
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TABLE 4- AN EXAMPLE FOR INPUT-OUTPUT VECTORS 
 

N
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State hash 

code 
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urrent 
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O
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 State 

hash code 

C
urrent 
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M
 State 

Index 

Input data  
T

ypes 

E
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E
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ent  
T
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7 10 1 11 00 100 

3-1-2- second component: Fuzzy rule set generation 
In this component a set of fuzzy rule set representing 
software states is generated. In next step, this set is 
utilized to predict different states of web application 
and consequently to generate test cases with high 
coverage capability. The (X, Y) input-output vector 
generated from previous component is now used to 
train PAFuNN and to generate a set of fuzzy rules. 
 
 PAFuNN for extracting fuzzy rule set 

In this part free from the paper goal, a novel method 
is presented generally for extracting fuzzy rules from 
a set of data. Population-based Automatic Fuzzy 
Neural Network is a five layer neural network like 
Evolving Fuzzy Neural Network (EFuNN) [17] 
which is appropriate for online knowledge discovery 
from large databases.  
EFuNN has a five-layer structure including the rule 
layer, the condition-to-rule connection layer and the 
rule-to-action connection layer beside input and 
output layers. 
 The first layer of EFuNN is the input layer and the 
second layer represents fuzzy quantization for the 
input variables. The third layer (rule layer) evolves 
through supervised/unsupervised learning. There are 
two vector connection weights for each rule node r – 
W1(r) and W2(r). W1(r) is adjusted through 
unsupervised learning based on similarity measure 
within a local area of the problem space. W2(r) is 
adjusted through supervised learning based on the 
output error. The fourth layer represents fuzzy 
quantization for the output, and the fifth layer 
represents the real values for the output variables. 
Each rule node rj represents an association between a 
hyper sphere of fuzzy input space and that of fuzzy 
output space. Rj is the radius of the input hyper sphere 
of a rule node rj which is defined as Rj=1-Sj, where Sj 
is the sensitivity threshold parameter and it defines 
the minimum activation of rule node rj to a new 
example (x,y) in order the example to be considered 
for association with this rule node. Two conditions 
should be satisfied in order the pair of fuzzy input-
output data vectors (Xf,Yf) to be allocated to the rule 
node rj: (1) a local normalized fuzzy difference 
between Xf and W1(rj) is smaller than radius rj, (2) the 
normalized output error is smaller than an error 
threshold.  
As a new sample is presented to the network, it is first 
fuzzified at the fuzzy input layer. The fuzzy distance 
between the fuzzified input and the connections 
weights W1 is then calculated as follows in order to 
determine whether the input example falls into input 
receptive field of some specific rule node or not. 

The rue node with the highest activation (Eq.2) or in 
other words with the lowest FD value is selected. 

If the activation value of selected rule node is less 
than the sensitivity threshold, a new rule node is 
created and new connections weights are established 
for it as follows. 

Otherwise W1 is adjusted through unsupervised 
learning based on similarity between the fuzzy input 
and the previous connection weights for the jth rule 
node. 

Where ɳj is the learning rate of the jth rule node 
which can be defined as 

Where ACCj is the accumulated number of 
accommodated examples for the jth rule node. 
The output of fuzzy output layer A2 is computed via 
Eq.6 

Where satlin() is the saturating linear transfer 
function.  
If the fuzzy output error is larger than a pre-defined 
threshold value a new rule node will be created 
similarly. 

Otherwise W2 is updated according to the Widrow-
Hoff Least Mean Square (LMS) algorithm in a 
supervised manner. 

Finally output value Yc can be derived by Eq.9 

The proposed PAFuNN has the advantageous of 
EFuNN. However, this method tries to overcome 
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some existing challenges in EFuNNs. The most 
important challenges are: 
 Lack of control on the number of rule nodes: 

EFuNN decides to add new neurons only based on 
the current input sample which leads to : 
o A high number of neurons in network which 
causes high level of complexity, so that some 
existing approaches like pruning or integrating 
nodes cannot be enough to optimize network 
architecture. 
o Rule insertion is based on a local view 

depending only on one example each time.  
 Updating thresholds: sensitivity and error 

thresholds have effective roles in the functionality 
of network which are set to constant values in 
basic EFuNN. Improvement of these parameters 
during network learning can have a deep impact 
on the performance of network. 

 
a)  Control on number of neurons 
In PAFuNN after some epochs, when a particular 
number of neurons are generated, if an input sample 
doesn’t match with any of existing neurons (i.e. the 
two EFuNN conditions aren’t satisfied for that input 
[14]), it is stored and finally neurons are generated 
based on a population of rejected stored examples. 
Otherwise, network parameters are updated in a 
supervised/unsupervised manner as same as EFuNNs.  
The stored examples are first sorted according to their 
fuzzy distance (Eq. (10)). 
 

 
 

Next, the sorted samples are classified to different 
subsets according to the sensitivity threshold why this 
threshold shows the radius of a neuron sphere. 
Finally, for each subset a neuron is inserted into the 
rule layer of network and its parameters are adjusted 
as same as EFuNN method. 
 
b)  Updating thresholds 
In proposed method, two learning automata with fixed 
structures are utilized to adjust two network 
thresholds based on network response to each input 
sample. A learning automaton is decision maker 
which is placed in a random environment and choose 
the optimum activity by repeated interactions with its 
environment and based on the environment responses 
[18].  

Two fixed structured learning automata (FSLA) 
are connected to rule layer and output layer of 
network to adjust sensitivity and error thresholds for 
those layers. It should be noted that PAFuNN is the 
environment for learning automata. The automata 
activities are choosing best values for thresholds. The 
environment response is an award to first automata if 
the activity value of selected rule node (the rule node 
with the highest activity) is more than sensitivity 
threshold, and the environment response is an award 
to second automata if fuzzy output error is less than 
error threshold. Figure 4 shows the internal 
connection of PAFuNN and FSLA. 

 

 
 
 
 
 
 
 

 

Fig. 4 Internal connection of learning automaton to PAFuNN 
 

3-2- Test case generation subsystem 
In this subsystem, test cases are generated using 

fuzzy rule set model without a need for executing web 
application. The main goal of this part is to generate 
test cases with high level of software coverage. 
According to the state explosion problem, there is a 
need for optimizing the generated test cases. Figure 5 
shows the block diagram of test case generation 
subsystem. 

 
Fig. 5 test case generation subsystem block diagram 

3-2-1- First component: initializing test suite 
In this step test cases are initialized using a semi-
random approach. Each test suite has at last k test 
cases. Each test case is a input-output vector like the 
one illustrated in table 5 in which software is in state 
a and do some action with x features and go to state b.  
 

 

TABLE 5- THE STRUCTURE OF ONE TEST CASE 
 

Next 
DOM 
state 

Current 
DOM 
state 

Input 
data 

Event 
Types 

Element 
 Types 

b A X 
 

A test suite is defined as a matrix with first state equal 
to the first state of application. An example of a test 
suite with 7 test cases is illustrated in figure 6 (a). 
Figure 6 (b) shows the state transitions for the test 
suite. In the semi-random approach, the current state 
of first test case of a test suite is set to the first state of 
the web application. Other elements of test case are 
initialized randomly. The next state of the test case is 
predicted by PAFuNN. For the second test case of the 
test suite the current state is set to the predicted value 
by PAFuNN and other elements are initialized 
randomly. These approaches are applied till all k test 
cases of a test suite are initialized. The process 
continues to fulfill N test suites semi-randomly.  
 

Input 
data 

Event 
Types 

Element 
 Types 

Current state Next state 

100                00             11 0 1 
010                01             11 1 0 
001                11             00 0 2 
101                10             11 2 3 
000                00             01 3 4 
010                10             10 4 1 
000                11             11 1 0 

(a) 

PAFuNN 

LA 
β(n

Value of 
parameter 

being adjusted 

Response of 
Neural Network 

α(n
)
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(b) 

 
Fig. 6 (a) Example of a test suite, (b) State transition for the test suit 

 

3-2-2- Second component: Test suite optimization 
 

The main goal of this component is to optimize test 
suites to achieve a test suit with a high level of 
coverage and performance. For this purpose various 
algorithms such as genetic, Memetic, simulated 
annealing and the combination of genetic and 
simulated annealing (GA+SA) is used to find the most 
effective one. In the proposed GA+SA algorithm, in 
each generation of genetic algorithm the solution is 
optimized using simulated annealing in two different 
ways: 1- in each generation of GA the solution with 
highest amount for fitness is optimized by SA, 2- in 
each generations the selected parents are optimized by 
SA after imposing GA operations.  
Furthermore, the fitness function and operators of GA 
are as follows: 
Fitness function: this function calculates the average 
of coverage related to test cases of a test suite. In this 
research the number of different states in a test suite is 
considered as the coverage criteria for that test suite. 
The more is the number of different states in a test 
suite, the more coverage it causes. 
 

 
 

GA operators: 1- selection: the chromosomes (i.e. test 
suites) are selected using roulette wheel in which 
solutions with higher fitness value have a higher 
chance for being selected. 2- crossover: two different 
crossovers are used in this research i.e. horizontal and 
vertical that incorporates chromosomes horizontally 
or vertically.  It should be noted that PAFuNN is used 
for indicating the next state of test cases after each 
crossover. 

 

IV. EVALUATIONS 
First the web applications to be evaluated are 
introduce and the evaluation criteria are indicated. 
Finally the results of applying proposed method for 
test case generation of web applications are illustrated 
and compared with other existing methods. 
 
4-1- Web applications to be tested 
Existing test case generation methods apply their 
method on benchmark problems i.e. famous web 
applications on this area [19, 20, 21].   For this 
purpose, web applications are run using generated test 
cases and the resulted coverage is analyzed and 
compared with results obtained from other methods. 
In this paper two benchmark web applications are 
chosen as follows to apply test cases and compare 
results. 

 TUDULis 2  web application: Our first 
experimental subject is the Ajax-based open 
source TUDU web application for managing 
personal todo lists, which has also been used by 
other researchers [6, 12, 15]. The server-side is 
based on J2EE and consists of around 12K lines of 
Java/JSP code, of which around 3K forms the 
presentation layer we are interested in. The client-
side extends on a number of Ajax libraries such as 
DWR and Scriptaculous, and consists of around 
11k LOC of external JavaScript libraries and 580 
internal LOC. 

 Blind Text Generator3 web application: the second 
experiment is an Ajax-based software which helps 
you create dummy text for all your layout needs, 
which has also been used by other researchers [12, 
16]. Dummy text is useful for publication industry 
or web designers to be fulfilled by real text. It is 
especially useful when the real data is not 
accessible. Due to the fact that the number of 
states is high in this application, it is a good choice 
for our evaluations. 

 

4-2- Evaluation Technique 
To evaluate proposed method, the same technique in 
[15] is utilize. In this technique, the software under 
test is run using generated test cases. During this 
process all evaluation criteria are calculated. This is 
important to note that the input elements of a DOM is 
initialized randomly from a prepared database same 
as [12]. 
 

4-3- Evaluation Criteria 
There have been various criteria to evaluate test cases 
generated for web applications. In a general view, we 
categorize the evaluation criteria into three general 
classes. 
1) Performance: to calculate the performance of test 
suite different objects should be taken into 
consideration [22, 23] such as: 
 

 DOM string size: 

 

 Number of candidate elements executed during 
testing phase: 

 
 

 

 Number of detected states during test phase: 

 

Accordingly the performance is calculated as: 
 

 
 

 
                                                           

2 http://tudu.sourceforge.net 
3 www.blindtextgenerator.com 
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2) Automation level: This is analyzed by calculating 
manual and automatic efforts in terms of time for test 
case generation. To illustrate, time consumption for 
both automatic and manual works needed in whole 
test case generation process are considered to 
calculate the automation level of proposed method. 
For instance, in the random walk step of RTCGW the 
first state of DOMs is initialized manually by entering 
username and password for TUDUList problem. In 
this case, an average time of 1 minute is considered as 
a manual effort. Automation effort is then calculated 
by subtracting Manual efforts from the total time of 
test case generation process. 
 

 

 
3) Coverage: In this research client-side code 
coverage is taken into consideration as many other 
researches [25, 25].  
 

 
 
 
4-4- Methods to be compared with 
 AUTUSA:  the method is proposed by Ali Mesbah 

in 2011 [12], and is based on a graph model of 
web application. It uses a tool called CrawlAjax to 
generate state graph from client-side code. Test 
cases are generated using the generated graph. 
Due to its novelty and model-based nature of this 
approach, it can be an appropriate candidate to be 
compared with the proposed method in current 
research. 

 US-CR: This is also a method based on graph 
model of web application [26]. Generally 
speaking, it generates test cases in three phases: 1) 
collecting a set of execution traces, 2) test case 
generation and 3) test case reduction. To collect 
execution traces it uses two methods consist of 
crawler (CR) and user session-based (US). Finally 
it uses a composition of two methods (CR+US) 
and compares the obtained results. Due to its 
complete results and model-based nature, it is also 
a suitable approach to be compared with the 
proposed method. 

 
4-5- Running steps 
 First Experiment: Test case generation for 

TUDUList web application 
 
First step: random walk on software: in this step the 
number of runs is set to 30 runs. 
 

Second step: PAFuNN training and generating fuzzy 
rule set: the result of this step is illustrated in figure 7 
and table 6. 

 
 
 

 

 

Fig. 7 PAFuNN predicted and real values during Training phase on 

input-output vectors obtained from random walk on TUDUList 

 
TABLE 6- THE RESULTS OF TRAINING PAFUNN ON DATA 

FROM RANDOM WALK ON TUDULIST 

57 Rule nodes 
1 Epochs 

3.2 Training time (CPUTime) 
5.8 Root Mean Square Error 

 
Third step: Test Case Generation: In this step test 
cases are initialized in a semi-random way. The result 
is 100 test suites with a maximum of 30 test cases in 
each test suite. Next the test suites are optimized 
using mentioned algorithms. The test suite with 
maximum fitness value is sent to next step. 
 

Forth step: evaluations: In this part the results of 
applying generated test suite on TUDU problem is 
analyzed. First of all the results of executing 
optimization algorithm to obtain best test suite is 
illustrated in table 7 and figure 8. Then the results of 
applying RTCGW method when different 
optimization algorithms are used are shown in table 8 
and figure 9. The number of test cases in a test suite is 
set to 30.  

 
TABLE 7- FITNESS AND AVERAGE TIME RESULTED FROM 

USING DIFFERENT OPTIMIZATION ALGORITHMS 
 

 

Algorithm 
 

Statistics (fitness) Avg. (time (sec)) 

GA 
Min = 42 

Max = 55.2 
Avg. = 48 

11 

MA1 
Min = 45 

Max = 61.12 
Avg. = 52.06 

44.59 

MA2 
Min = 46 
Max = 54 
Avg. = 47 

65 

(GA+SA)1 
Min = 47 
Max = 51 

Avg. = 49.04 
53.75 

(GA+SA)2 
Min = 47 

Max = 61.12 
Avg. = 52.28 

134.5 

SA 
Min = 32 

Max = 50.16 
Avg. = 32 

7 

HC 
Min = 32 

Max = 32.94 
Avg. = 32 

7 
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Fig. 8 Fitness and average time resulted from using different 
optimization algorithms 

 

As it is obvious in figure 8, maximum fitness value is 
related to GA+SA with second policy for utilization 
of both algorithms features. While genetic algorithm 
is going to obtain best solutions, simulated annealing 
tries some bad solution to escape from local optimum. 
The minimum value is for hill climbing as a local 
search algorithm and it seems that it returns a local 
optimum as the final solution. Secondly, the Memetic 
algorithm could receive to a high fitness because of 
using a local optimization method beside a global one 
and successfully escape from local optimum. Time 
spent for GA+SA with second policy has the highest 
value, since in each generation during genetic 
evolution simulated annealing is called for two times 
(i.e. for two chromosomes). This time is less for first 
policy of composing genetic with simulated annealing 
because of one call for simulated annealing in each 
generation for this method. On the other hand, time 
spent for hill climbing has the minimum level of 
value and it is because of its simplicity.  
 

 

TABLE 8- THE RESULTS OF APPLYING RTCGW METHOD 
WHEN DIFFERENT OPTIMIZATION ALGORITHMS ARE 

USED 
 

C
ode 

C
overage 

A
utom

ation 
level 

Perform
ance 

#test cases 

A
lgorithm 

0.77 0.97 158.79 30 GA 
0.78 0.97 169.80 30 MA1 
0.78 0.97 166.38 30 MA2 
0.77 0.97 148.22 30 (GA+

SA)1 
0.80 0.97 180.79 30 (GA+

SA)2 
0.76 0.97 157.90 30 HC 
0.76 0.97 152.68 30 SA 

 
 

  
Fig. 9 The results of applying RTCGW method when different 

optimization algorithms are used 

Clearly the results show that the more is the fitness of 
algorithm, the better are other evaluation criteria and 
this illustrates the correctness of fitness function 
selected in this study. While (GA+SA)2 leads to a test 
suite with the highest coverage and highest 
performance on TUDUList web application, hill 
climbing has the lowest results and it is exactly for the 
reasons described in previous section. The same 
analyze is also correct for Memetic algorithm with the 
second highest value. Due to the fact that the highest 
level of performance and code coverage is related to 
GA+SA with second policy, this algorithm is used as 
optimization method for test suites and the results are 
compared with US, CR and US+CR methods (table 9 
and figure 10). 

 

TABLE 9- COMPARE PROPOSED METHOD WITH CR, US 
AND CR+US 

 
 

C
ode 

C
overage 

 
A

utom
ation 

level 

 
Perform

ance 

 
#test case 

 
M

ethod 

0.8 46/(46+1 
40+(46+
29)+65.

79 
30 RTCG

W 

0.33 15/(15+20) 
19+ 

81+6.01
5 

21 US 

0.40 15/(15+20 14+42+
6.015 203 CR 

0.58 15/(15+20 19+81+
6.015 224 US+CR 

 
 

  

  
 

Fig. 10 Comparison between proposed method and US, CR, 
US+CR based on performance, code coverage and automation level 

 

According to results, it’s obvious that RTCGW has a 
better performance in comparison with others while 
having less number of test cases. Moreover, the level 
of code coverage is higher than other methods. The 
manual effort required for this method is the lowest 
among other methods because its automation level is 
the most. The three other methods have the same level 
of automation for using same strategies in reducing 
manual efforts. Minimum level of performance is for 
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CR and lowest code coverage is for US. The proposed 
method not only improves all of criteria but also made 
a tradeoff between them. 
 
 Second Experiment: Automatic test case 

generation for “Blind Text Generator” software: 
This experiment is consisting of some steps to 
achieve results then a comparison with ATUSA 
method. 

 
First Step: Random Software Navigation: This step 
consists of crawling on software states for preparing 
Input-Output vectors for learning PAFUNN network 
is necessary. In this experiment the number of runs is 
set to 30 runs. 
 
Second Step: learning PAFUNN network and 
generating fuzzy roles set: Fuzzy network are learned 
with previous Input-Output data vectors in this step 
and experiments results are illustrated in Figure 11. 
Table 10 shows root mean square error, numbers of 
nods and CPU usage time. 
 
 

 
 
 
 
 
 
 
 
 
 

Figure 11 – Evolution and learning process of PAFUNN network 
on randomly navigated “Blind Text Generator” results data. 

 
 

 TABLE 10 – RESULTS OF LEARNING PAFUNN NETWORK 
ON RANDOMLY NAVIGATED “BLIND TEXT GENERATOR” 

DATA. 
 

67 Rule nodes 
1 Epochs 

5.3 Training time (CPU-time) 
3.5 RMSE 

  
Third Step: Test Case Generation: Two step of 
initialing and optimizing data set made test case. a. 
initialing Test Sets: This step lead to initialing 100 
results with a maximum of 30 test cases. b. 
Optimizing Test Sets: to achieve this goal used 
optimization Algorithms which mentioned in previous 
on data sets from initialing lead to a test sets with 
maximum fitness sent to next level to be analyzed.  
 
Forth Step: Analyzing Data: This step will analyze 
resulted data from proposed method on “Blind Text 
Generator” as a case study. At first, results of 
different considered optimizing algorithms execution 
on TS Sets with fitness of each algorithm in 4 
executions is illustrated in Table 11 and Figure 
12.Then the results of applying RTCGW method 
when different optimization algorithms are used are 

shown in table 8 and figure 9. The number of test 
cases in a test suite is set to 30. 
 

TABLE 11 – FITNESS VALUE AND CONSUMED TIME FOR 
EACH OPTIMIZING ALGORITHMS TEST CASE SETS 

 

Algorithm Statistics (fitness) Avg. (time 
(sec)) 

GA 
Min = 81.4 
Max = 94.5 
Avg. = 89.3 

10 

MA1 
Min = 83.4 
Max = 100 
Avg. = 93.5 

45 

MA2 
Min = 44 

Max = 100 
Avg. = 84.75 

70 

(GA+SA)1 
Min = 57 

Max = 100 
Avg. =77 

60 

(GA+SA)2 
Min = 88 

Max = 100 
Avg. = 97 

130 

SA 
Min = 66 
Max = 67 

Avg. = 66.6 
7 

HC 
Min = 17 
Max = 69 

Avg. = 51.74 
6 

 
 

  
 

Fig. 12 Fitness value and average time of different  
 

According to figure 12, maximum fitness value is 
related to GA+SA with second policy for utilization 
of both algorithms features. While genetic algorithm 
is going to obtain best solutions, simulated annealing 
tries some bad solution to escape from local optimum. 
The minimum value is for hill climbing as a local 
search algorithm and it seems that it returns a local 
optimum as the final solution. Secondly, the Memetic 
algorithm could receive to a high fitness because of 
using a local optimization method beside a global one 
and successfully escape from local optimum. Time 
spent for GA+SA with second policy has the highest 
value, since in each generation during genetic 
evolution simulated annealing is called for two times 
(i.e. for two chromosomes). This time is less for first 
policy of composing genetic with simulated annealing 
because of one call for simulated annealing in each 
generation for this method. On the other hand, time 
spent for hill climbing has the minimum level of 
value and it is because of its simplicity. 
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TABLE 12- THE RESULTS OF APPLYING RTCGW 
METHOD WHEN DIFFERENT OPTIMIZATION 

ALGORITHMS ARE USED 
 

C
ode C

overage 

A
utom

ation 
level (m

in) 

Perform
ance 

#test cases 

A
lgorithm 

0.76 0.97 171.3 30 GA 
0.78 0.97 176.84 30 MA1 
0.78 0.97 174 30 MA2 
0.75 0.97 163.9 30 (GA+S

A)1 
0.80 0.97 183.60 30 (GA+S

A)2 
0.76 0.97 165.1 30 HC 
0.76 0.97 170.27 30 SA 

 

  
 

Fig. 13 The results of applying RTCGW method when different 
optimization algorithms are used 

 
Clearly the results show that the more is the fitness of 
algorithm, the better are other evaluation criteria and 
this illustrates the correctness of fitness function 
selected in this study. While (GA+SA)2 leads to a test 
suite with the highest coverage and highest 
performance on Blind Text Generator web 
application, hill climbing has the lowest results and it 
is exactly for the reasons described in previous 
section. The same analyze is also correct for Memetic 
algorithm with the second highest value. Due to the 
fact that the highest level of performance and code 
coverage is related to GA+SA with second policy, 
this algorithm is used as optimization method for test 
suites and the results are compared with ATUSA 
(table 13 and figure 14).  
 

TABLE 13- COMPARING PROPOSED METHOD WITH 
ATUSA 

 

C
ode 

C
overage 

A
utom

ation 
level 

Perform
ance 

#test cases 

M
ethod 

0.8 0.97 183.60 30 RTC
GW 

0.75 0.17 151.282 32 ATU
SA 

 

  

  
 

Fig. 14- Comparing proposed method with ATUSA 
 
As the results show, the proposed RTCGW has a 
higher level of performance than ATUSA although 
having less number of test cases. The code coverage 
is also more than ATUSA. Automation level is higher 
and it leads to a lower level of manual effort needed 
for this method. Again the evaluations illustrate a 
tradeoff between all criteria. Using a complete model 
of web application in RTCGW better results obtained 
in comparison with ATUSA that uses a graph-based 
model which is generated by some incomplete 
execution traces. It means that model which describes 
web application has a deep impact on test cases 
generated. In other words, due to the fact that the 
model proposed in RTCGW is a kind of infinite 
model with the capability of predicting all the 
application behaviors, it results to test cases with high 
coverage of software. 
 

V. CONCLUSION 
This study tries to overcome some existing challenges 
in test case generation approaches for modern web 
applications. Due to the requirement of this research 
to a method for extracting an overall model which 
represents all aspects of software behaviors, a novel 
fuzzy neural network is proposed to extract a model 
based on fuzzy rule set and solve the problem of 
incomplete models of previous methods. The model is 
then used to generate test cases for web applications. 
Moreover, generated test cases are optimized using an 
algorithm composed of Genetic and Simulated 
annealing algorithms to overcome state explosion 
problem. Two benchmark web applications are tested 
using generated test suite and the results are compared 
with two well-known approaches in this area, which 
all shows the performance, high coverage and high 
level of automation comparing with other methods. 
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