
TrPLS: Preserving Privacy in Trajectory Data 
Publishing by Personalized Local Suppression 

 

Elahe Ghasemi Komishani 
Department of Electrical and Computer Engineering 

Tarbiat Modares University 
Tehran, Iran 

e.ghasemi@modares.ac.ir 
 

Mahdi Abadi 
Department of Electrical and Computer Engineering 

Tarbiat Modares University 
Tehran, Iran 

abadi@modares.ac.ir 

Received: January 16, 2013-Accepted: January 15, 2014     
 

Abstract—Trajectory data are becoming more popular due to the rapid development of mobile devices and the wide-
spread use of location-based services. They often provide useful information that can be used for data mining tasks. 
However, a trajectory database may contain sensitive attributes, such as disease, job, and salary, which are associated 
with trajectory data. Hence, improper publishing of the trajectory database can put the privacy of moving objects at 
risk. Removing identifiers from the trajectory database before the public release, is not effective against privacy 
attacks, especially, when an adversary uses some partial trajectory information as its background knowledge. The 
existing approaches for preserving privacy in trajectory data publishing apply the same amount of privacy protection 
for all moving objects without considering their privacy requirements. The consequence is that some moving objects 
with high privacy requirements may be offered low privacy protection, and vice versa. In this paper, we address this 
challenge and present TrPLS, a novel approach for preserving privacy in trajectory data publishing. It combines local 
suppression with the concept of personalization to achieve the conflicting goals of data utility and data privacy in 
accordance with the privacy requirements of moving objects. The results of experiments on a trajectory dataset show 
that TrPLS can be successfully used for preserving personalized privacy in trajectory data publishing. 

Keywords-trajectory data; privacy preservation; personalized privacy; quasi-identifier; local suppression; information 
loss; disclosure risk 

 
 

I. INTRODUCTION 
In recent years, with the proliferation of location-

aware devices, such as active RFID tags and GPS 
equipped mobile phones, it is easy to track the location 
of moving objects over a period of time and generate a 
collection of spatio-temporal data, also known as 
trajectory data or moving object data. These data have 
been made available in various domains [1]. 

Real-life applications, such as Geo-marketing, 
intelligent transportation systems, city traffic planning, 
location-based advertising, and many more can benefit 
from trajectory data mining. Trajectory data often con-
tain detailed information about moving objects, and 
for many applications, these data need to be published 

with sensitive attributes, such as disease, job, and 
salary, incurring the concern of breaching moving 
objects’ privacy. 

Example 1. A hospital uses an RFID tagging sys-
tem for the care of its patients, in which patient 
information are stored in a central trajectory database. 
The hospital wants to publicly release the trajectory 
database for data mining tasks. Each trajectory data 
record is represented as a tuple (ID, Trajectory, 
Disease), in which “Trajectory” is a sequence of 
spatio-temporal pairs. For example, the trajectory data 
record (#7, , SARS) indicates that the 
patient with ID#7 has visited locations , , and  at 
timestamps 4, 6, and 7, respectively and has SARS. 

With enough background knowledge, an adversary 
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can launch three types of privacy attacks on a trajec-
tory database: 

Identity linkage attack: If a trajectory in the 
trajectory database is very specific, such that not many 
moving objects can match it, the adversary using some 
background knowledge may uniquely identify the tra-
jectory data record of the target victim and, therefore, 
its sensitive attribute values [2-4]. 

Attribute linkage attack: If a sensitive attribute 
value occurs frequently with some sub-trajectories, the 
adversary may identify it from these sub-trajectories 
even though cannot uniquely identify the trajectory 
data record of the target victim [2-4]. 

Similarity attack: If some sensitive attribute val-
ues that are distinct but semantically similar occur 
frequently with some sub-trajectories, the adversary 
may infer sensitive information from these sub-
trajectories even though cannot uniquely identify the 
trajectory data record of the target victim. 

Many approaches have been proposed for preserv-
ing privacy in trajectory data publishing [1-13], but 
most of them do not consider different privacy require-
ments of different moving objects, resulting in the 
increasing risk of information loss and privacy breach. 
Moreover, the majority of them are not resistant to all 
three identity linkage, attribute linkage, and similarity 
attacks. To tackle these shortcomings, we present 
TrPLS, a novel approach that combines local suppres-
sion with the concept of personalization for preserving 
privacy in trajectory data publishing. In general, we 
can apply local or global suppression on trajectory 
data records. Global suppression eliminates a moving 
point from all trajectory data records in the trajectory 
database, if it makes the privacy breach probability of 
some trajectory data records so high, while local sup-
pression eliminates the moving point only from trajec-
tory data records with high privacy breach probability 
and leaves others intact. Hence, local suppression pre-
serves better data utility in comparison with global 
suppression. As a result, TrPLS apply it on trajectory 
data records. We show TrPLS is resistant to all afore-
mentioned attacks and evaluate its performance in 
terms of trajectory information loss and disclosure 
risk. 

The rest of the paper is organized as follows: 
Section II briefly reviews some related work. Section 
III gives basic definitions. Section IV presents TrPLS 
and Section V reports experimental results. Finally, 
Section VI sums up the discussion and draws the con-
clusions. 

II. RELATED WORK 
The methods for preserving privacy in trajectory 

data publishing can be divided into two categories [1]: 
(1) clustering based methods that apply the concept of 

-anonymity in relational databases and (2) quasi-
identifier based methods that assume an adversary 
uses some partial knowledge of a trajectory as a quasi-
identifier to identify its remaining moving points or 
sensitive attributes. 

A. Clustering 
Abul et al. [5] introduce the concept of -

anonymity for preserving privacy in trajectory data 
publishing, which exploits the inherent uncertainty of 
locations in order to reduce the amount of distortion 
needed to anonymize trajectory data. Furthermore, 
they present a method, called , to achieve -
anonymity. The method first partitions the trajectory 
data into equivalence classes with respect to time span 
and produces a set of clusters, each having a number 
of trajectories in the interval . It then trans-
forms each cluster by means of space translation such 
that the translation distortion is minimum and all tra-
jectories could be placed in a cylindrical volume of 
radius . 

Nergiz et al. [6] adopt the notion of -anonymity 
to trajectories and propose a clustering-based approach 
for trajectory data anonymization. Moreover, they 
show that releasing anonymized trajectories may lead 
to some privacy breaches, and therefore present a ran-
domization based reconstruction algorithm for releas-
ing anonymized trajectory data. 

Monreale et al. [7] present a method for the anony-
mization of trajectory data combining the notions of 
spatial generalization and -anonymity. The main idea 
is to anonymize trajectories by replacing exact loca-
tions by approximate ones. To do this, they first con-
struct a suitable tessellation of the geographical area 
into sub-areas and then apply a spatial generalization 
to the original trajectory data. They further transform 
the generalized trajectory data to ensure that it satisfies 
the notion of -anonymity. 

Mahdavifar et al. [8] propose a greedy clustering-
based approach in which trajectories are anonymized 
to some extent proportional to the privacy require-
ments of their moving objects. They first assign a 
privacy level to each trajectory and then partition 
trajectories into a set of clusters based on a trajectory 
similarity criterion. Each cluster is created such that its 
size is proportional to the maximum privacy level of 
trajectories within it. They finally anonymize trajecto-
ries of each cluster and generate a set of anonymized 
trajectories containing linked and distorted moving 
points. Although this approach aims at preserving 
personalized privacy in trajectory data publishing, but 
it is not resistance to both attribute linkage and simi-
larity attacks. 

B. Quasi-identifier 
Terrovitis et al. [9] assume that an adversary uses 

some partial trajectory information as its background 
knowledge to infer unknown moving points. Hence, 
they iteratively eliminate selected moving points from 
the original trajectory data until a privacy constraint is 
satisfied. 

Yarovoy et al. [10] introduce a notion of -
anonymity by defining an attack graph associated with 
the original trajectory data and its distorted one. They 
consider timestamps as the quasi-identifiers and 
present two different algorithms, namely extreme-
union and symmetric-anonymization, to build anony-
mization groups that provably satisfy the -anonymity 
requirement. 
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Figure 1.  A taxonomy tree for the sensitive attribute Disease 

Fung et al. [2] adopt a privacy model called -
privacy and develop an anonymization framework that 
employs global suppression to achieve -privacy. 
The general intuition is to ensure that each sub-
trajectory with maximum length  in a trajectory 
database is shared by at least  trajectory data records 
and the confidence of inferring any sensitive attribute 
value is not greater than . Chen et al. [4] present a 
similar framework that supports both local and global 
suppressions. The aim is to preserve instances of mov-
ing points and frequent sub-trajectories in a trajectory 
data. These frameworks take into consideration both 
identity linkage and attribute linkage attacks, but are 
not resistant to the similarity attack. 

Most of the aforementioned methods do not con-
sider different privacy requirements of moving ob-
jects. Moreover, the majority of them are not resistant 
to all three identity linkage, attribute linkage, and simi-
larity attacks. 

III. BASIC DEFINITIONS AND NOTATIONS 

A. Trajectory Database 
A typical location-aware system generates a se-

quence of spatio-temporal data records of the general 
form , each of which indicates that a moving 
object having the unique identifier  was detected in 
the location  at time . For example, in transportation 
systems, it represents that a passenger with the trans-
portation card number  was present in the station  at 
time . 

Definition 1 (Trajectory). Let  be a set of moving 
objects. The trajectory of a moving object  is 
denoted by  and is a sequence of spatio-temporal 
pairs: 

 , (1) 

where each  is called a moving point and 
is denoted by . 

The length of , denoted by , is defined as the 
number of its moving points. A trajectory that contains 
only the first  moving points of  is denoted 
by . We define a strict total order relation, , 
between each two moving points  and 

 in : 

 . (2) 

Definition 2 (Joinable Trajectories). Two trajecto-
ries  and  

 are said to be joinable iff  and 

. The joined trajectory is denoted by : 

 . (3) 

Definition 3 (Sub-trajectory). Let  
and  be two trajectories.  is said to 
be a sub-trajectory of  and is denoted by , if 
there exist integers  such that 

 . (4) 

A trajectory database may contain other attributes 
that are associated with the trajectory data. These 
attributes are divided into two categories: sensitive and 
insensitive. If moving objects of a location-aware 
system are patients, sensitive attribute(s) may be their 
disease. Formally, a trajectory database contains a set 
of trajectory data records in the form of 

 , (5) 

where  is the trajectory,  to  are the 
sensitive attribute values, and  to  are the insensi-
tive attributes values of a moving object. The trajec-
tory in  is denoted by : 

 . (6) 

The values of each sensitive attribute are usually 
divided into different categories. We can use a tax-
onomy tree to represent these values and their catego-
ries. To illustrate the concept, Fig. 1 shows a simple 
taxonomy tree for the sensitive attribute Disease that 
organizes all diseases as its leaves. Each internal node 
has been uniquely labeled with a name showing the 
category of diseases in the node’s sub-tree. 

In the rest of the paper, for simplicity, we assume 
that the trajectory database contains only a sensitive 
attribute and each moving object corresponds to only 
one trajectory data record. In this case, the sensitive 
attribute value of each trajectory data record  is de-
noted by . 

Definition 4 (Taxonomy Tree). Let  be the set of 
sensitive attribute values. A taxonomy tree for this 
attribute is a tuple , where  and  are 
the set of nodes and edges, respectively.  is a 
labeling function that assigns a subset of sensitive 
attribute values to each node in . There are two types 
of nodes: internal and leaf nodes. It is assumed that the 
depth of all leaf nodes is the same. 

Let  be the subset of sensitive attribute values 
assigned to a node , the size of  is denoted 
by  and is called the cardinality of . It should 

......SARS

Pulmonary Infection

Any Illness

Pulmonary Disease Organ Dysfunction Infectious Disease

Mass

Cancer

Skin Disease

Psoriasis ShinglesAcneFluCold ...

...

... ......

...
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be noted that the cardinality of all leaf nodes in  is 
always equal to one. 

Definition 5 (Node Level). The level of each node 
 in  is denoted by  and is defined as the 

length of the shortest path from this node to one of the 
leaf nodes in . 

Definition 6 (Covering Node). A node  in  
is strictly covered by a node  iff . 
In this case,  is called a covering node of . The set 
of all covering nodes for  is denoted by . 

Example 2. Consider the taxonomy tree in Fig. 1. 
The level of the leaf nodes, e.g., Cold, Flu, and SARS, 
is zero. The level of the internal nodes Pulmonary 
Infection, Mass, and Skin Disease is one and the level 
of the internal nodes Pulmonary Disease, Organ Dys-
function, and Infectious Disease is two. Also, Pulmo-
nary Infection and Pulmonary Disease are covering 
nodes for Cold, Flu, and SARS. 

Definition 7 (Parent Node). A node  in  is 
called the parent of a node  and is denoted by 

, iff it is a covering node for  and 
. 

Definition 8 (Spanning Node). Let  be the 
sensitive attribute value of a trajectory data record . 
A node  in  is called a spanning node for  iff 

. 

Definition 9 (Minimal Spanning Node). A node 
 in  is called a minimal spanning node for a 

trajectory data record  and is denoted by , iff it 
is a spanning node for  and its level, , is equal to 
zero. 

B. Privacy Level 
Different moving objects may have different 

privacy requirements. Therefore, we assign a privacy 
level to each moving object to represent its privacy 
requirements. Let  be a trajectory database and 

 be a totally ordered set of privacy 
levels, where  is the level of the root node of . We 
define  to be a total function that assigns each 
trajectory data record in  to a moving object in  and 
define  to be a total function that 
assigns each moving object in  to a privacy level in 

. Therefore, a privacy level is assigned to each 
trajectory data record in . It should be noted that if a 
moving object does not need any privacy protection, 
its privacy level is defined to be equal to . 

Definition 10 (Guarding Node). A node  in 
 is called a guarding node for a trajectory data record 
 in  and is denoted by , iff it is a span-

ning node for  and . 

Example 3. Consider the trajectory database in 
Table I. Each trajectory data record has one of three 
privacy levels Low, Medium, or High, which are 
respectively equal to three node levels zero, one, or 
two of the taxonomy tree in Fig. 1. Also, one of trajec-
tory data records does not need any privacy protection 
that is denoted by None. The sensitive attribute value 
and privacy level of the trajectory data record  are 
Cancer and Medium, respectively. Therefore, the node 
Mass is a guarding node for it. 

TABLE I.  A TRAJECTORY DATABASE 

 

ID 
Privacy 
Level 

 

Trajectory Disease 

1 Low  Flu 
2 Medium  Cancer 
3 None  Cold 
4 High  Cancer 

5 Low  Shingle
s 

6 Medium  Psoriasi
s 

7 Low  SARS 
 

C. Privacy Attacks 
Suppose a trajectory database  is to be published 

for data mining. Explicit identifiers, e.g., name and ID, 
have been removed. One recipient, the adversary, 
employing some background knowledge and one of 
privacy attacks may be able to identify the trajectory 
data record or sensitive attribute value of a victim in . 

Let  be the trajectory data record of a victim 
. The adversary’s background knowledge 

about this victim, denoted by , contains at most  
moving points: 

 , (7) 

where  is the maximum length of the adversary’s 
background knowledge. 

Using , the adversary can identify a set  of 
trajectory data records in  matching : 

 . (8) 

Note that a trajectory data record  matches 
 iff  is a sub-trajectory of its trajectory . For 

example, in Table I, if , then 
. The adversary can identify and utilize 

 to launch three types of privacy attacks: identity 
linkage, attribute linkage, and similarity attacks. 

Definition 11 (Identity Linkage Attack). Given a 
trajectory data record  and a background know-
ledge , if the size of , denoted by 

, is small, then the adversary may identify  
and, therefore, . 

Definition 12 (Attribute Linkage Attack). Given a 
trajectory data record  and a background know-
ledge , the adversary may identify  with 
confidence : 

 , (9) 

where  is the set of trajectory data records in 
 that their sensitive attribute value is equal to . 

In fact,  is the percentage of the trajectory 
data records in  containing . The privacy of 

 is at risk if , where  is a para-
meter specifying the amount of privacy disclosure and 
is called the privacy breach threshold. 

Definition 13 (Similarity Attack). Given a trajec-
tory data record  and a background knowledge 

, the adversary may identify  iff  
 for all . 

Definition 14 (Critical Trajectory). Given a back-
ground knowledge , a non-empty sub-trajectory 
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 is called critical iff the adversary can success-
fully perform one of the identity linkage, attribute 
linkage, or similarity attacks using it. 

The privacy of the moving object  is breached 
when the adversary can associate this object with one 
of the sensitive attribute values in the set , 
where  is the guarding node of . 

Definition 15 (Privacy Breach Probability). The 
probability of privacy breach for  assuming  is 
calculated as 

(10) , 

where 

 
ℓ ,

.
 (11) 

Definition 16 (Critical Trajectory Data Record). A 
trajectory data record  is critical iff  is 
greater than , where  is the privacy breach threshold. 

TABLE II.  AN ANONYMIZED TRAJECTORY DATABASE 

ID Privacy 
Level Trajectory Disease 

1 Low  Flu 
2 Medium  Cancer 
3 None  Cold 
4 High  Cancer 

5 Low  Shingle
s 

6 Medium  Psoriasi
s 

7 Low  SARS 

IV. PRESERVING PRIVACY BY PERSONALIZED 
LOCAL SUPPRESSION 

In this section, we present TrPLS, an approach that 
combines local suppression with the concept of perso-
nalization for preserving privacy in trajectory data 
publishing. TrPLS first applies the algorithm STR to 
make a set  of all sub-trajectories with a given 
maximum length . It then gives  as input to the 
algorithm MPSTD, which identifies critical trajectory 
data records and eliminates a number of moving points 
from them such that there is no critical trajectory data 
record in the anonymized trajectory database and the 
amount of information loss is minimized. 

Fig. 2 shows the pseudo-code of STR. It takes a 
trajectory database  and the background knowledge 
threshold  as input and returns a set  of all sub-
trajectories with the maximum length  as output. Let 

 be an ordered set of sub-trajectories of length . 
The algorithm first initializes  to the empty set and 

 to the set of all sub-trajectories of length one 
(Lines 1–2). It then computes a subset  for 
each sub-trajectory  and adds  to  (Lines 
3–6). Also, in each iteration of nested loops (Lines 10–
18), if each two sub-trajectories  are joina-
ble and the intersection  and  is non-empty, 
it adds the joined sub-trajectory  to  and 

 (Lines 12–16). The above steps are repeated until  
is greater than  or  is empty (Lines 8–20). 

Example 4. The sets  and  of sub-trajectories 

of length one and two in Table I are as follows: 

 

 
 

 
 

Algorithm  
input: 
    : Trajectory database; 
    : Background knowledge threshold; 
output: 
    : Set of sub-trajectories; 
 
1.    ; 
2.    ; 
3.    for each  do 
4.        Compute  using equation (8); 
5.        ; 
6.    end for 
7.    ; 
8.    while  and  do 
9.        ; 
10.      for  to  do 
11.          for  to  do 
12.              if  and  then 
13.                  ; 
14.                  ; 
15.                  ; 
16.              end if 
17.          end for 
18.      end for 
19.      ; 
20.  end while 
21.  return ; 

Figure 2.  Algorithm for generating a set of sub-trajectories 

Fig. 3 shows the pseudo-code of MPSTD. It takes 
the trajectory database , the set  of all sub-
trajectories with the maximum length , the back-
ground knowledge threshold , and the privacy breach 
threshold  as input and returns an anonymized trajec-
tory database  as output. Let  be a set of critical 
sub-trajectories. The algorithm first initializes  to the 
empty set (Line 1). For each sub-trajectory , it 
then finds a subset  of trajectory data records in 

 whose guarding node is not covered by the 
guarding node of any other trajectory data record in 

 (Line 3), makes the set  of critical trajectory 
data records in  (Line 4), and adds  to  only if  
is non-empty (Lines 5–7). It subsequently repeats the 
following steps until  is empty (Lines 9–29): For 
each sub-trajectory , it computes the persona-
lized suppression score  (Lines 10–12): 

(12) , 

where  is the personalized suppression 
score of a moving point  with respect to : 

(13) 

 

,

,
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where  is the number of sub-trajectories in  
containing  and  is the number of trajectory 
data records in  matching . The algorithm then 
selects a sub-trajectory  containing  with the max-
imum  from sub-trajectories in  (Lines 
13–14) and makes the set  of critical trajectory data 
records in  (Line 15). It next selects  with the 
maximum privacy level  from critical trajec-
tory data records in  and adds  to the set  (Lines 
18–19). It subsequently eliminates  from  and 
again makes the set  of critical trajectory data 
records in  (Lines 20–23). The above steps are 
repeated until  is empty (Lines 17–24). Eliminating 

 from trajectory data records may result in the gen-
eration of new critical sub-trajectories. Hence, it iden-
tifies these sub-trajectories using the algorithm  
and adds them to  (Lines 25–27). It finally sets  
to  (Line 30). 

 

Algorithm  

input: 
    : Trajectory database; 
    : Set of sub-trajectories; 
    : Background knowledge threshold; 
    : Privacy breach threshold; 
output: 
    : Anonymized trajectory database; 

1.    ; 
2.    for each  do 
3.         

; 
4.        ; 
5.        if  then 
6.            ; 
7.        end if 
8.    end for 
9.    while  do 
10.      for each  do 
11.          Compute  using (12); 
12.      end for 
13.      ; 
14.      ; 
15.      ; 
16.      ; 
17.      while  do 
18.          ; 
19.          ; 
20.          ; 
21.          ; 
22.          ; 
23.          ; 
24.      end while 
25.      for each  do 
26.          ; 
27.      end for 
28.      ; 
29.  end while 
30.  ; 
31.  return ; 

Figure 3.  Algorithm of personalized local suppression 
 
 

Eliminating a moving point from a trajectory data 
record by personalized local suppression may generate 
new critical sub-trajectories. Identifying all of these 
critical sub-trajectories requires expensive computa-
tional cost. An intuitive way to identify new critical 
sub-trajectories is to recall MPSTD. However, it is 
very costly. Instead, we apply the algorithm MCST to 
reduce the computational cost of identifying all new 
critical sub-trajectories. It significantly restricts the 
whole space of sub-trajectories to a very small set of 
sub-trajectories that are affected by personalized local 
suppression. 

Fig. 4 shows the pseudo-code of MCST. It takes a 
trajectory database , a trajectory , a moving point 

, the background knowledge threshold , and the 
privacy breach threshold  as input and returns a set  
of new critical sub-trajectories as output. The algo-
rithm first initializes  to the empty set and  to the 
set  (Lines 1–2). Then, for each sub-trajectory 

, if  is a critical sub-trajectory, it adds  to 
 (Lines 5–9). Finally, it makes  from sub-

trajectories  of length  containing moving 
point  (Line 10). The above steps are repeated until 
 is greater than  or  is empty (Lines 4–12). 

 

Algorithm  
input: 
    : Trajectory database; 
    : Trajectory; 
    : Moving point; 
    : Background knowledge threshold; 
    : Privacy breach threshold; 
output: 
    : Set of sub-trajectories; 
 
1.    ; 
2.    ; 
3.    ; 
4.    while  and  do 
5.        for each  do 
6.            if  for some  then 
7.                ; 
8.            end if 
9.        end for 
10.      ; 
11.      ; 
12.  end while 
13.  return ; 

Figure 4.  Algorithm for identifying new critical sub-trajectories 

Example 5. Consider the trajectory database in 
Table I with  and . After eliminating 
the moving point  from the trajectory data record , 
we only need to check the sub-trajectories , 

, , and  for identifying new 
critical sub-trajectories. Since both  and  
are critical,  becomes . 

Theorem 1. The anonymized trajectory database 
 is resistant to all three identity linkage, attribute 

linkage, and similarity attacks. 

PROOF. Let  be a trajectory data record. 
Since  has been made anonymous, therefore, 

 for all background knowledge  
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with the maximum length . Therefore, according to 
Definition (15), the adversary cannot correctly identify 

, and subsequently,  with confidence greater 
than , even though the size of  is small. Thus, 
we conclude that  is resistant to all three identity 
linkage, attribute linkage, and similarity attacks. 

A. Complexity Analysis 
As mentioned earlier, TrPLS eliminates moving 

points from critical trajectory data records with respect 
to the privacy level of their moving objects. Given a 
trajectory database , it first applies the algorithm 
STR to generate a set  of all sub-trajectories with 
the maximum length , where  is the background 
knowledge threshold. The number of sub-trajectories 
in  is , where  is the number of distinct mov-
ing points in . Hence, the worst-case time complexity 
of STR is , where  is the number of 
trajectory data records in . Subsequently, it makes a 
set  of remaining critical sub-trajectories in  and 
computes the personalized suppression score of each 
moving point in . It next eliminates the moving point 
with maximum personalized suppression score from 
some critical trajectory data records and applies the 
algorithm MCST to update  with new critical sub-
trajectories. In the worst case, MCST has a time com-
plexity of . Therefore, the time complexity 
of personalized local suppression is bounded by 

. Accordingly, we conclude that the time 
complexity of TrPLS is . 

V. EXPERIMENTS AND ANALYSIS 
In this section, we evaluate the performance of 

TrPLS in terms of (1) information loss and (2) disclo-
sure risk for moving objects with different privacy 
levels. We also experimentally compare its perfor-
mance with that of other related work in [2-4]. 

A. Experimental Results 
1) Trajectory Dataset: We used a trajectory data-

set, called City80K [4], for the experiments. It is a 
dataset simulating the trajectories of 80,000 citizens in 
a metropolitan area with 26 city blocks in 24 hours. 
Each trajectory data record in the dataset contains a 
sensitive attribute with five possible values. We ran-
domly assigned each trajectory data record to one of 
five privacy levels None, Low, Medium, High, or 
Very High, so that trajectory data records with lower 
privacy levels are more than those with higher privacy 
levels. We also generated a taxonomy tree of depth 6 
and 108 leaf nodes. All experiments were conducted 
on a PC with a 2.8GHz Intel Core 2 Duo CPU and 
4GB of RAM. 

2) Trajectory Information Loss: The main goal of 
TrPLS is to maintain an anonymized trajectory data-
base  as close to its original trajectory database  as 
possible. Hence, we evaluate the information loss for 
moving objects with different privacy levels due to the 
personalized local suppression. Let  be an origi-
nal trajectory data record and  be its corres-
ponding anonymized trajectory data record. The aver-
age information loss of all trajectory data records is 
defined as 

(14) , 

where  is the length of a trajectory. 

Tables III and IV show the effect of  on  for 
 and , respectively, where  and  are the 

privacy breach and background knowledge thresholds. 
On the whole, with decreasing  and increasing ,  
slightly decreases due to the decrease in the number of 
critical sub-trajectories resulting from the decrease in 
the number of critical trajectory data records. 

TABLE III.  EFFECT OF  ON THE AVERAGE INFORMATION 
LOSS OF TRAJECTORY DATA RECORDS FOR  

Privacy 
Level      

None 0.0000 0.0000 0.0000 0.0000 0.0000 
Low 83.8340 0.2955 0.1974 0.1738 0.1734 
Medium 99.8852 21.8390 0.2578 0.2348 0.2337 
High 99.9885 40.3225 1.4339 0.2340 0.2340 
Very High 99.9885 40.1276 14.0198 0.2723 0.2723 

TABLE IV.  EFFECT OF  ON THE AVERAGE INFORMATION 
LOSS OF TRAJECTORY DATA RECORDS FOR  

Privacy 
Level      

None 0.0000 0.0000 0.0000 0.0000 0.0000 
Low 89.0524 4.2397 0.2144 0.1738 0.1734 
Medium 99.9792 30.9204 1.8432 0.5165 0.3136 
High 99.9996 44.8198 6.6221 0.5804 0.3325 
Very High 99.9996 49.3583 18.4179 0.8618 0.3920 

 

 
Figure 5.  Effect of  on the average information loss of trajectory 

data records for  

Fig. 5 shows the effect of  on  for . As 
can be seen, trajectory data records with higher pri-
vacy levels have more information loss. Since these 
trajectory data records need more privacy protection, 
therefore, more moving points are eliminated from 
them by the personalized local suppression. 

3) Disclosure Risk: We use the disclosure risk as a 
metric to measure the privacy breach probability of 
moving objects. Given an anonymized trajectory data 
record , let  be the sensitive attribute 
value of its original trajectory data record  and 

 be the adversary’s background knowledge. 
The probability of disclosure of  assuming  is 

0.00 0.21
1.84

6.62

18.42

0

5

10

15

20

25

30

35

40

45

50

None Low Medium High Very High

Av
er

ag
e 

In
fo

rm
at

io
n 

Lo
ss

 (
%

)

Privacy Level

δ = 2δ = 3

40Volume 6- Number 2- Spring  2014 25



calculated as 

(15) 

 

,

,
where  is the probability of disclosure 
of  assuming the sensitive attribute value  of 
a trajectory data record : 

 
,

.
 (16) 

The adversary may use any sequence of moving 
points with length not greater than  as its background 
knowledge to perform a privacy attack. Therefore, the 
probability of disclosure of  should be calculated 
for different lengths of . 

The average disclosure risk of trajectory data 
records is defined as 

(17) , 

where 

 . (18) 

Tables V and VI show the effect of  on  for 
 and . The results suggest that with de-

creasing , the average disclosure risk decreases. This 
is because more moving points are eliminated from 
trajectory data records. 

TABLE V.  EFFECT OF  ON THE AVERAGE DISCLOSURE RISK 
OF TRAJECTORY DATA RECORDS FOR  

Privacy 
Level      
None 20.37 20.18 20.23 20.23 20.23 
Low 2.43 19.95 20.01 20.03 20.03 

Medium 0.03 16.41 20.00 20.00 20.00 
High 0.00 14.16 19.64 20.02 20.02 

Very High 0.00 14.21 16.39 20.01 20.01 

TABLE VI.  EFFECT OF  ON THE AVERAGE DISCLOSURE RISK 
OF TRAJECTORY DATA RECORDS FOR  

Privacy 
Level      
None 20.56 20.48 20.74 20.37 20.37 
Low 1.35 19.27 20.57 20.19 20.19 

Medium 0.01 14.19 19.81 20.13 20.13 
High 0.00 12.49 17.82 20.12 20.12 

Very High 0.00 11.43 15.38 19.43 20.13 
 

B. Comparison 
We cannot directly compare TrPLS with previous 

related work on privacy preserving in trajectory data 
publishing, because none of them consider the perso-
nalized privacy. Instead, we consider equal conditions 
with KCL-Global [2, 3] and KCL-Local [4], and 
present a new variant of TrPLS, called KCL-TrPLS. 
KCL-TrPLS is similar to TrPLS but with this differ-
ence that it does not use the taxonomy tree and apply 
the -anonymity. However, KCL-Global, KCL-Local, 
and KCL-TrPLS are not resistant to the similarity 
attack. Note that  and  are equivalent to  and  in 

TrPLS, respectively. KCL-Global and KCL-Local use 
City80K [4] as the trajectory dataset and consider one 
of five possible values of its sensitive attribute as sen-
sitive and the others as non-sensitive, which in KCL-
TrPLS, they correspond to sensitive attribute values 
with the privacy levels Low and None, respectively. 
Therefore, approximately 80 percent of the trajectory 
data records in City80K do not need any privacy 
protection. In the following experiments, we show that 
KCL-TrPLS would significantly lower information 
loss in the context of trajectory data. 

For the purpose of fair comparison, we use the 
same trajectory information loss metric as that defined 
in [4], to measure the percentage of moving points that 
are lost due to suppressions: 

(19) , 

where  and  are the numbers of moving 
points in the original and anonymized trajectory data-
bases  and , respectively. 

1) Effect of : We vary the parameter  from 10 
to 50 while fixing  and  (which are 
equivalent to taking  and  in TrPLS) to 
compare the effect of  on KCL-Global [2, 3], KCL-
Local [4], and KCL-TrPLS, the results of which are 
shown in Fig. 6. Clearly, KCL-TrPLS can sig-
nificantly reduce the information loss for higher value 
of . 

 
Figure 6.  Effect of  on the information loss of KCL-Global, 

KCL-Local, and KCL-TrPLS for  and  

2) Effect of : Fig. 7 shows the effect of  on the 
information loss of KCL-Global [2, 3], KCL-Local [4], 
and KCL-TrPLS, while fixing  and . 
When  is small, the information loss is high for 
KCL-Global and KCL-Local. However, for different 
values of , KCL-TrPLS results in substantially low 
information loss. As a result, KCL-TrPLS totally has 
low information loss. This is because it eliminates 
critical moving points only from critical trajectory data 
records, while KCL-Global [2, 3] and KCL-Local [4] 
may eliminate critical moving points from non-critical 
trajectory data records in addition to critical trajectory 
data records. 
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Figure 7.  Effect of  on the information loss of KCL-Global, 

KCL-Local, and KCL-TrPLS for  and  

VI. CONCLUSION AND DISCUSSION 
In this paper, we presented TrPLS, an approach 

that combines local suppression with the concept of 
personalization for privacy preserving in trajectory 
data publishing. It eliminates moving points from criti-
cal trajectory data records with respect to the privacy 
level of their moving objects, such that there is no 
critical trajectory data record in the anonymized trajec-
tory database and the amount of the information loss is 
minimized. We used a trajectory dataset simulating the 
trajectories of 80,000 citizens in a metropolitan area 
and evaluated the performance of TrPLS in terms of 
information loss and disclosure risk. We also expe-
rimentally compared its performance with that of other 
related work in [2-4]. The results of experiments show 
that TrPLS can significantly reduce the information 
loss. TrPLS not only is able to provide personalized 
privacy preserving in trajectory data publishing, but 
also it is resistant to all three identity linkage, attribute 
linkage, and similarity attacks. 
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