1. [1] R.J. Collier, and A.D. Skinner, "Microwave Measurements (Materials, Circuits and Devices)," IET Press, 3rd Edition,2007. [
DOI:10.1049/PBEL012E]
2. [2] A. Basu, "Introduction to Microwave Measurements," CRC Press; 2014. [
DOI:10.1201/b17964]
3. [3] M. Sucher, J. Fox, and M. Wind, "Handbook of Microwave Measurements," Polytechnic Press, 1963
4. [4] R. F. Harrington, "Time-Harmonic Electromagnetic Fields," Wiley Interscience, 2001. [
DOI:10.1109/9780470546710]
5. [5] G. H. Bryant, "Principles of Microwave Measurements," IET Press, 3rd Edition, 1993. [
DOI:10.1049/PBEL005E]
6. [6] J. P. Dunsmore, "Handbook of Microwave Component Measurements: With Advanced VNA Techniques," Wiley,2012. [
DOI:10.1002/9781118391242]
7. [7] N. Ida, "Microwave NDT," Springer, 1992. [
DOI:10.1007/978-94-011-2739-4]
8. [8] L. F. Chen, C. K. Ong, C. P. Neo, V. V. Varadan, Vijay K. Varadan, "Microwave Electronics: Measurement and Materials Characterization," Wiley, 2007.
9. [9] A. E. Bailey, "Microwave Measurements," IEE Press, 1980.
10. [10] L. Changjun, and and P. Yang, "A microstrip resonator with slotted ground plane for complex permittivity measurements of liquids," IEEE Microw. Wireless Compon. Lett, vol. 18, no. 4, 257-259, 2018. [
DOI:10.1109/LMWC.2008.918894]
11. [11] A.K. Verma, Nasimuddin and A.S. Omar, "Microstrip resonator sensors for determination of complex permittivity of materials in sheet, liquid and paste forms," IEE Proc. Microw. Antennas Propag. vol. 152, no. 1, 48-54, 2005. [
DOI:10.1049/ip-map:20041155]
12. [12] J. Hinojosa, K. Lmimouni, S. Lepilliet, and G. Dambrine, "Very high broadband electromagnetic characterization method of film-shaped materials using coplanar waveguide," Microw. Opt. Technol Lett, vol. 33, 352-355, 2020. [
DOI:10.1002/mop.10319]
13. [13] Z. Bao, M. L. Swicord, and C. Davis, "Microwave dielectric characterization of binary mixtures of water, methanol, and ethanol," Journal of Chemical Physics, vol. 104, 4441-4450,1996. [
DOI:10.1063/1.471197]
14. [14] S. Trabelsi and S. O. Nelson, "Microwave sensing of quality attributes of agricultural and food products," IEEE Instrum. Meas. Mag., vol. 19, no. 1, pp. 36-41, Feb. 2016. [
DOI:10.1109/MIM.2016.7384959]
15. [15] Z. Akhter and M. J. Akhtar, "Free-space time domain position insensitive technique for simultaneous measurement of complex permittivity and thickness of lossy dielectric samples," IEEE Trans. Instrum. Meas., vol. 65, no. 10, pp. 2394-2405, Oct. 2016. [
DOI:10.1109/TIM.2016.2581398]
16. [16] S. Subbaraj, V. Ramalingam, M. Kanagasabai E. Sundarsingh, Y. Selvam, and, S. Kingsley, "Electromagnetic nondestructive material characterization of dielectrics using EBG based planar transmission line sensor," IEEE Sensor J.,vol. 16, no. 19, pp. 7081-7087, Oct. 2016. [
DOI:10.1109/JSEN.2016.2591320]
17. [17] Y. J. Cheng and X. L. Liu, "W-band characterizations of printed circuit board based on substrate integrated waveguide multi-resonator method," IEEE Trans. Microw. Theory Techn., vol. 64, no. 2, pp. 599-606, Feb. 2016. [
DOI:10.1109/TMTT.2015.2511007]
18. [18] J. Cai, Y. J. Zhou and X. M. Yang, "A metamaterials-loaded quarter mode SIW microfluidic sensor for microliter liquid characterization," J. Electromagn. Wave, vol. 33, no. 3, pp.261-271, Nov. 2018. Volume 15- Number 3 - 2023 (1 -10) 9 [ Downloaded from ijict.itrc.ac.ir on 2024-05-14 ] [
DOI:10.1080/09205071.2018.1543058]
19. [19] D. Deslandes and K. Wu, "Integrated microstrip and rectangular waveguide in planar form," IEEE Microw. Wireless Compon. Lett., vol. 11, no. 2, pp. 68-70, Feb. 2001. [
DOI:10.1109/7260.914305]
20. [20] H. B. Wang and Y. J. Cheng, "Broadband printed-circuit-board characterization using multimode substrate-integratedwaveguide resonator," IEEE Trans. Microw. Theory Techn., vol. 65, no. 6, pp. 2145-2152, Jun. 2017. [
DOI:10.1109/TMTT.2017.2650232]
21. [21] N. K. Tiwari, A. Jha and P. Varshney, "Generalized multimode SIW cavity-based sensor for retrieval of complex permittivity of materials," IEEE Trans. Microw. Theory Techn., vol. 66, no. 6, pp. 3063-3072, Jun. 2018. [
DOI:10.1109/TMTT.2018.2830332]
22. [22] A. K. Jha and M. J. Akhtar, "A generalized rectangular cavity approach for determination of complex permittivity of materials," IEEE Trans. Instrum. Meas., vol. 63, no. 11, pp.2632-2641, Nov. 2014. [
DOI:10.1109/TIM.2014.2313415]
23. [23] Harrsion, L., Ravan, M., Tandel, D., Zhang, K., Patel, T., & K. Amineh, R.,"Material Identification Using a Microwave Sensor Array and Machine Learning. Electronics," MDPI, vol. 9(2), 288. doi:10.3390/electronics9020288, 2020. [
DOI:10.3390/electronics9020288]
24. [24] P. K. Varshney, N. K. Tiwari and M. J. Akhtar, "SIW cavity based compact RF sensor for testing of dielectrics and composites," IEEE MTTS International Microwave and RF Conference (IMaRC), New Delhi, pp. 1-4, 2016. [
DOI:10.1109/IMaRC.2016.7939637]
25. [25] K. Kazemi, G. Moradi and A. Ghorbani, "Employing higher order modes in broadband SIW sensor for permittivity measurement of medium loss materials," Int. J. Microw. Wireless. Technol., pp. 1-13, Oct. 2020. [
DOI:10.1017/S1759078720001403]
26. [26] K. Kazemi, and G. Moradi, "Employing Machine Learning Approach in Cavity Resonator Sensors for Characterization of Lossy Dielectrics," International Journal of Information and Communication Technology Research., vol. 13, no. 3, pp. 1-11, September 2021. [
DOI:10.52547/ijict.13.3.1]
27. [27] M. Saadat-Safa, V. Nayyeri, A. Ghadimi, M. Soleimani and O. M. Ramahi, "A pixelated microwave near-field sensor for precise characterization of dielectric materials," Sci. Rep., vol.9, no. 1, pp. 1-12, 2019. [
DOI:10.1038/s41598-019-49767-w] [
PMID] [
]
28. [28] Z. Wei, J. Huang, J. Li, G. Xu, Z. Ju, X. Lio, and X. Ni., " ,"Sensors, vol. 18, no. 11, pp. 4005, Nov. 2018. [
DOI:10.3390/s18114005] [
PMID] [
]
29. [29] X. Yang, L. Xin, X. Jiao, P. Zhou, S. Wu, and K. Huang, "High-sensitivity structure for the measurement of complex permittivity based on SIW," IET Sci. Meas. Technol., vol. 11,no. 5, pp. 532-537, 2017. [
DOI:10.1049/iet-smt.2016.0361]
30. [30] F. Majeed, T. Fickenscher, M. Shahpari, D. Thiel, "Measurement of surface conductivity of graphene at Wband," MOTL, 2019. [
DOI:10.1002/mop.31826]
31. [31] J. Krupka, W. Strupinski, and N. Kwietniewski, "Microwave Conductivity of Very Thin Graphene and Metal Films," Journal of Nanoscience and Nanotechnology, 11(4):3358-62,April 2011. [
DOI:10.1166/jnn.2011.3728] [
PMID]
32. [32] M. Liang, M. Tuo, S. Li, Q. Zhu, H. Xin, "Graphene conductivity characterization at microwave and THz frequency," The 8th European Conference on Antennas and Propagation EuCAP, 2014. [
DOI:10.1109/EuCAP.2014.6901798]
33. [33] L. Hao, J. Gallop, S. Goniszewski, O. Shaforost, N. Klein, and R. Yakimova," Non-contact method for measurement of the microwave conductivity of graphene," Applied Physics Letters vol. 103, 123103, doi: 10.1063/1.4821268, 2013. [
DOI:10.1063/1.4821268]
34. [34] G. Moradi and M. Mosalanejad, "Microstrip patch sensors for complex permittivity measurement of medium loss liquids Using 3D-FDTD," Applied Computational Electromagnetics Society Journal, vol. 32, no. 4, pp. 325-331, 2017.
35. [35] M. Bozzi, A. Georgiadis, and K. Wu, "Review of substrateintegrated waveguide circuits and antennas", IET Microw., Antennas Propag., vol. 5, no. 8, pp. 909-920, 2011. [
DOI:10.1049/iet-map.2010.0463]
36. [36] Y. Seo, M. U. Memon and S. Lim, "Microfluidic eighth-mode Substrate Integrated-Waveguide antenna for compact ethanol chemical sensor application," IEEE Trans. Antennas Propag.,vol. 64, no. 7, pp. 3218-3222, Jul. 2016. [
DOI:10.1109/TAP.2016.2559581]
37. [37] L. Harrsion, M. Ravan, D. Tandel, K. Zhang, T. Patel and R. Amineh, "Material identification using a microwave sensor array and machine learning," Electronics, vol. 2, no. 8, pp. 288,Feb. 2020. [
DOI:10.3390/electronics9020288]
38. [38] C. Liu and F. Tong, "An SIW resonator sensor for liquid permittivity measurements at C band," IEEE Microw. Wireless Compon. Lett., vol. 25, no. 11, pp. 751-753, Nov. 2015. [
DOI:10.1109/LMWC.2015.2479851]
39. [39] E. Silavwe, N. Somjit and I. D. Robertson, "A microfluidicintegrated SIW lab-on-substrate sensor for microliter liquid characterization," IEEE Sensors J., vol. 16, no. 21, pp. 7628-7635, Nov. 2016. [
DOI:10.1109/JSEN.2016.2599099]
40. [40] H. Sun, T. Tang, and G. Du, "Improved approach using symmetric microstrip sensor for accurate measurement of complex permittivity", Int. J. RF Microw. Comput. Eng., vol.28.5, pp. e21258, 2018. [
DOI:10.1002/mmce.21258]
41. [41] D. Deslandes, "Design equations for tapered microstrip-tosubstrate integrated waveguide transitions Proc. IEEE MTT-S Int. Microw. Symp. Digest (MTT), pp. 1-1, May. 2010. [
DOI:10.1109/MWSYM.2010.5515088]
42. [42] A. Niembro-Mart'ın, V. Nasserddine, E. Pistono, H. Issa, and P. Ferrari, "Slow-wave substrate integrated waveguide," IEEE Trans. Microw. Theory Techn., vol. 62, no. 8, pp. 1625-1633,Aug. 2014. [
DOI:10.1109/TMTT.2014.2328974]
43. [43] A. K. Jha and M. J. Akhtar, "Design of multilayered epsilonnear-zero microwave planar sensor for testing of dispersive materials," IEEE Trans. Microw. Theory Techn., vol. 63, no. 8, pp. 2418-2426, Aug. 2015. [
DOI:10.1109/TMTT.2015.2451659]
44. [44] C. C. Aggarwal, "Neural Network and Deep Learning", Springer, 2018. [
DOI:10.1007/978-3-319-94463-0]
45. [45] S. Huang, Z. Cao, H. Yang, Z. Shen and X. Deng, "An electromagnetic parameter retrieval method based on deep learning," J. Appl. Phys., vol. 127, no. 22, p. 224902, Jun.2020. [
DOI:10.1063/5.0005455]
46. [46] M. A. H. Ansari, A. K. Jha, Z. Akhter and M. J. Akhtar, "Multiband RF planar sensor using complementary split ring resonator for testing of dielectric materials", IEEE Sensors Journal, vol. 18, no. 16, pp. 6596-6606, Aug. 2018. [
DOI:10.1109/JSEN.2018.2822877]
47. [47] K. T. M. Shafi, A. K. Jha and M. J. Akhtar, "Improved planar resonant RF sensor for retrieval of permittivity and permeability of materials", IEEE Sensors Journal, vol. 17, no.17, pp. 5479-5486, Sep. 2017. [
DOI:10.1109/JSEN.2017.2724942]
48. [48] G. Moradi and A. Abdipour, "Measuring the permittivity of dielectric materials using stdr approach," Progress In Electromagnetics Research, PIER 77, 357-365, 2007. [
DOI:10.2528/PIER07080201]