
Resource Allocation Optimization in Fog

Architecture Based Software-Defined

Networks

Sepideh Sheikhi Nejad

Department of Computer Engineering,

Islamic Azad University South Branch,

Tehran, Iran

s.sheikhynejad9834@gmail.com

Ahmad Khademzadeh

Department of Computer Engineering,

Research Center ITRC,

Tehran, Iran

a.khademzadeh@itrc.ac.ir

Amir Masoud Rahmani

Future Technology Research Center,

 National Yunlin University of Science and Technology,

 Taiwan

rahmani74@yahoo.com

Ali Broumandnia

Department of Computer Engineering,

Islamic Azad University South Branch,

Tehran, Iran

broumandnia@gmail.com

Received: 30 July 2022 – Revised: 25 December 2022 - Accepted: 2 March 2023

Abstract—As a growing of IoT devices, new computing paradigms such as fog computing are emerging. Fog computing

is more suitable for real-time processing due to the proximity of resources to IoT layer devices. Service providers must

dynamically update the hardware and software parameters of the network infrastructure. Software defined network

(SDN) proposed as a new network paradigm, whose separate control layer from data layer and provides flexible network

management. This paper presents a software-defined fog platform to host real-time applications in IoT. Then, we

propose a novel resource allocation method. This method involves scheduling multi-node real-time task graphs over the

fog to minimize task execution latency. The proposed method is designed to benefit the centralized structure of SDN.

The simulation results show that the proposed method can find near to optimal solutions in a very lower execution time

than the brute force method.

Keywords: Software-defined network, fog computing, Multi-nodes weighted directed task graph, Task assigning, task

offloading

Article type: Research Article

© The Author(s).

Publisher: ICT Research Institute

 Corresponding Author

 [
 D

O
I:

 1
0.

61
18

6/
itr

c.
15

.4
.4

1
]

 [
 D

ow
nl

oa
de

d
fr

om
 jo

ur
na

l.i
tr

c.
ac

.ir
 o

n
20

24
-0

5-
16

]

 1 / 12

mailto:s.sheikhynejad9834@gmail.com
mailto:a.khademzadeh@itrc.ac.ir
mailto:rahmani@srbiau.ac.ir
https://orcid.org/0000-0001-6999-5737
https://orcid.org/0000-0001-7849-8791
https://orcid.org/0000-0001-8641-6119
https://orcid.org/0000-0001-5145-2013
http://dx.doi.org/10.61186/itrc.15.4.41
https://journal.itrc.ac.ir/article-1-543-en.html

I. INTRODUCTION

The deployment of a cloud computing data center at
the core of the IoT network has advantages such as
ubiquitous access, unlimited scalability, and elasticity.
(1) However, due to the the geographical distance of
cloud data centers from IoT devices, the links
connecting the IoT devices and cloud data centers may
become performance bottlenecks. Such performance
bottlenecks can increase the execution latency.

To mitigate these challenges, a new paradigm called
"fog computing" (2) has been proposed in recent years.
In a fog-based network, each IoT device is connected to
local computational domains, each comprising a set of
computational nodes or fog servers. By deploying the
computational resources at the network's edge, it
becomes possible to offload tasks to the fog servers near
IoT devices, reducing the average round-trip time
compared to the original IoT architecture. If an IoT-
based fog computing model is implemented using
traditional networking paradigms, the convergence to a
new desirable configuration will be time-consuming,
making it challenging to quickly adapt the platform to
host new services with a short lifespan. As such, it is
crucial to adjust the networking paradigm to make it
agile enough to update its configuration to handle such
services. According to the Software-Defined
Networking (SDN) paradigm, to address these
challenges and leverage the features of SDNs, it seems
to be a promising solution to implement the network of
IoT-based fog computing models. The concept of SDN
has been proposed in (3) and has garnered significant
attention from both industry and academia (4), (5). The
primary advantage of SDN in comparison to traditional
networks is its ability to manage the data forwarding
process in a logically centralized manner. Therefore, the
implementation of an IoT-based fog computing model
using the SDN paradigm has been considered in various
research studies. Sood et al. (4) examined current
efforts to merge SDN and IoT and noted the benefits of
such a combination for information acquisition,
analysis, decision-making, scalability, and security in
IoT. Gupta et al. (6) proposed a middleware based on
SDN-cloud fog computing that provides services to the
heterogeneous fog infrastructure and enables
applications to orchestrate fog services while
considering end-to-end Quality of Service (QoS)
requirements. This article aims to extend an integrated
system to an SDN-cloud-fog-based approach. Hakiri et
al. (7) proposed a novel architecture for controlling
wireless fog-based SDN, in order to reduce delay and
enable suitable load-balancing among fog devices. The
proposed scheme in (7), the SDN controller, combined
both wireless routing protocols and OpenFlow to
collect values from the wireless devices to facilitate
optimal path selection among the wireless fog nodes.
Tomovic et al. (8) proposed a software-defined fog
computing architecture for IoT resource management to
improve the latency of an IoT network. The authors of
(8) highlighted the advantages of the SDN-fog interplay
in terms of network scalability, real-time data delivery,
and mobility. Misra et al. (9) studied a greedy heuristic
scheme for multi-hop task offloading in IoT-based fog
computing via software-defined methods. Additionally,
Misra et al. in (10) proposed Mobility-Aware Task
Offloading in Software-Defined Vehicular Networks to

optimize the computational offloading and network
latency in vehicular networks. This scheme is based on
SDN and has a node selection and task computation
phase .Rahimi et al. (30) proposed an effective solution
for traffic management and dynamic allocation of radio
resources in 5G networks based on the use of SDN in
the fog architecture of radio access networks with the
aim of reducing energy consumption. This method
increases user satisfaction in performing real-time
tasks. Therefore, due to the advantages of SDN and
following the aforementioned research works, in this
paper, we consider the platform of software-defined
IoT-based fog computing to address the problem of
processing delay-sensitive applications on this
platform. To this end, a novel method is proposed to
take advantage of SDN to collect network information
using a Southbound API, which relies on the overall
view of the network and offloads delay-sensitive tasks
for processing to reduce task processing latency and
meet the timing constraints of the submitted real-time
application. The proposed method achieves this goal by
minimizing different parameters of the task processing
latency. The main contribution of this paper is to extend
the previously proposed task processing latency models
proposed in (7), (8), (9), (10) to consider the latency of
processing tasks with multi-node weighted directed
graphs. The necessity of considering such tasks arises
from the fact that there may be situations in which a
single network fog server cannot handle the submitted
task, and the task must be partitioned into dependent
sub-tasks. The directed graph of the task would model
the dependency between sub-tasks, and the graph nodes
would denote each sub-task. Therefore, this graph
should be assigned to a connected set of fog servers so
that the processing latency of the task falls within an
acceptable range according to the timing constraints of
the submitted real-time task. In light of this, the
proposed task offloading method in this paper is
composed of two parts. The first part is similar to
previously proposed methods for offloading tasks from
IoT devices to fog servers. The second part deals with
assigning the task graph to a suitable subset of fog
servers.

Based on this, we propose a delay model, which
includes the following parameters:

a) The sum of all propagation delays

b) The sum of all transmission delays

c) Queuing delay

d) Multi-node task graph processing delay

As stated earlier, the proposed method aims to
reduce the task processing latency parameters a, b, and
c, building upon previous proposed task offloading
techniques. The second part of the proposed method
addresses the last parameter of the delay model, which
is one of the main contributions of this paper. The
problem of assigning the multi-node task graph to the
cluster of fog servers can be modeled as a variation of
the well-known sub-graph isomorphism problem,
which is NP-hard (11). Thus, the second part of the
proposed method is designed based on a greedy
approach that achieves optimal solutions with lower
execution time than exhaustive optimal search. To this

Volume 15- Number 4 – 2023 (41 -52)

42

 [
 D

O
I:

 1
0.

61
18

6/
itr

c.
15

.4
.4

1
]

 [
 D

ow
nl

oa
de

d
fr

om
 jo

ur
na

l.i
tr

c.
ac

.ir
 o

n
20

24
-0

5-
16

]

 2 / 12

http://dx.doi.org/10.61186/itrc.15.4.41
https://journal.itrc.ac.ir/article-1-543-en.html

end, the second part of the proposed method takes the
following actions:

Finding the critical path in the task graph

- Analyzing the network between fog servers to find
all possible paths between every pair of fog servers and
indexing them as a Hypergraph to facilitate the
assigning process.

-Selecting a mapping between the task graph and the
constructed hypergraph, leading to the task's lowest
execution latency. A set of simulations have been
conducted to evaluate the effectiveness of the proposed
method, and the proposed method's performance is
compared to the exhaustive optimal search method.

The rest of this paper is organized as follows:
The second section of the paper is dedicated to a

review of related works. The proposed Software-
defined fog platform and formal mathematical
expression of the platform are presented in the paper's
third section. In Section IV, the proposed algorithm is
presented. In Section V, the results of the performance
evaluation of the proposed method are reported. Finally,
the concluding notes and future directions of extending
the presented work are covered in Section VI.

II. RELATED WORK

This section provides an overview of related
literature on the task offloading problem in IoT-based
fog computing and software-defined fog computing.
Specifically, with regard to the main contribution of this
paper, which pertains to the mapping of undirected
multi-node task graphs to fog servers, a brief review of
related works in the field of task graph mapping is also
presented. Subsection A primarily examines research
conducted on task offloading in IoT-based fog
computing, while Subsection B examines literature
addressing task offloading in software-defined fog
computing. Finally, Subsection C offers a succinct
overview of the concept of task graph mapping.

A. Task Offloading in IoT based fog computing

To address task offloading in the fog computing
environment, various techniques have been proposed in
the literature. Sood and Si (12) proposed a priority-
based resource allocation scheme for submitted jobs
and a deadlock-removing method in IoT-based fog
computing with optical connections to minimize the
response time of these jobs. Liu et al. (13) studied
offloading processes in a fog computing system with
mobile devices by utilizing queuing theory to form a
theoretical foundation for formulating a multi-objective
optimization problem to minimize energy consumption,
execution delay, and payment cost. They proposed a
task offloading method based on finding the optimal
offloading probability and transmitting power for each
mobile device.

Wang et al. (14) proposed a resource management
framework equipped with methods for provisioning and
auto-scaling edge node resources. Shojafar et al. (15)
considered the resource scheduling challenges part of
task offloading in IoT-based fog computing in vehicular
networks. They presented an energy-efficient adaptive
resource scheduler for fog Network Centers in vehicular
networks. The goal of their work was to apply the

TCP/IP connections' locally measured states to
maximize the overall communication-plus-computing
energy efficiency while meeting the application-
induced hard Quality of Service (QoS) requirements on
the minimum transmission rates and maximum delays
and delay-jitters. Zeng et al. (16) proposed an
innovative algorithm for scheduling tasks and resource
management with minimized task completion time in
fog computing based on software-defined embedded
systems. Gu et al. (17) considered the integration of fog
computing and medical cyber-physical devices and
proposed an algorithm for jointly optimizing base
station association, task distribution, and virtual
machine placement to minimize the cost of this
network. Nguyen et al. (18) considered the service
deployment problem a multi-objective optimization
that minimizes the overall response time of an
application with awareness of network usage and server
usage to prove the effectiveness of their proposed foggy
service deployment strategy. As previously stated, the
works (12)-(18) have considered the task offloading
problem in IoT-based fog computing, but none of them
have addressed the problem of scheduling multi-node
task graphs as a part of the task offloading problem.
However, scheduling multi-node task graphs has been
considered in some works, such as (19). Bitam et al. in
(19) introduced a meta-heuristic approach based on
swarm optimization for scheduling multi-node jobs
over IoT-based fog networks. The tasks considered in
(19) are assumed to be a set of independent sub-tasks,
so the work presented in (19) does not address the
problem of scheduling tasks composed of dependent
sub-tasks modeled as multi-node directed graphs.

B. Software-defined fog platform and task
offloading

To address the issue of task offloading in the fog
SDN, Chao Bu et al. [20] proposed a novel networking
approach for edge computing patterns using the idea of
SDN. In this platform, tasks are assigned based on the
network's global view provided by a central SDN
controller. The logically centralized controller is
constructed through collaboration between multiple,
physically distributed edge computing servers. Using
this novel networking approach, a more efficient
method was proposed to optimize task assignment and
minimize task processing delay. They proposed a model
for task assignment among edge computing servers via
SDN. A. Huang et al. (21) considered an SDN-based
mobile edge computing framework to provide higher
data-plane flexibility and programmability. The
network deployment and conditions of the proposed
framework (21) can be reconfigured at runtime to
improve network latency. Cui et al. in (22) proposed a
software-defined cooperative offloading model for
device-to-device communication in advanced LTE
networks. Furthermore, they proposed a new online
task scheduling algorithm (22) to minimize the energy
consumption of a mobile device. Misra et al. (9)
proposed an Integer Linear Programming formulation
for the task offloading problem in IoT-based fog
computing with a software-defined access network.
They also suggested a greedy heuristic task offloading
algorithm to solve the problem of delay, energy
consumption, multi-hop paths, and dynamic network
conditions such as link utilization and SDN rule

Volume 15- Number 4 – 2023 (41 -52)

43

 [
 D

O
I:

 1
0.

61
18

6/
itr

c.
15

.4
.4

1
]

 [
 D

ow
nl

oa
de

d
fr

om
 jo

ur
na

l.i
tr

c.
ac

.ir
 o

n
20

24
-0

5-
16

]

 3 / 12

http://dx.doi.org/10.61186/itrc.15.4.41
https://journal.itrc.ac.ir/article-1-543-en.html

capacity. Additionally, Misra et al. (10) considered
optimizing computational offloading and network
latency in vehicular networks with SDN access
networks. Alomari et al. in (31) proposed a
comprehensive study on the role of software defined
networks (SDN) in the ease of managing cloud and fog
computing networks, improving network performance,
reducing energy consumption, and reducing latency. In
this study, algorithms, architecture, simulation
environment and data have been investigated. A
comparison between the proposed method in this paper
and some of the related works is presented in Table I.

C. Task Graph Mapping

As previously stated, the proposed task offloading
method in this paper deals with offloading multi-node
task graphs. Therefore, it includes a task graph mapping
component that maps the task graph to a subset of fog
servers. This subsection covers research works that
address this problem. To address this issue, Mirza et al.
(23) proposed a systematic review of the mapping and
scheduling of data flow graphs in streaming
applications. They considered the problem of executing
these applications over a multiprocessor platform to
efficiently implement latency, throughput, power, and
energy consumption. Saguaro et al. (24) presented an
efficient mapping strategy for a task graph on a machine
based on Spiking Neural Network Architecture. This
strategy is suitable for mapping large task graph
networks and reduces communication latency. Paone et
al. (25) introduced a task-mapping method to maximize
the overall application throughput by utilizing
concurrency in the task graph. Simon et al. (26)
proposed a directed cycling graph scheduling algorithm
over multiprocessor system-on-chips to minimize
energy consumption. Taura et al. (27) presented a
graph-theoretic formulation of task scheduling
problems and proposed a heuristic algorithm based on
their proposed model. The algorithm proposed in (27)
is designed to run the entire data-processing pipeline
with good throughput regarding parallelism and
communication messages

III. THE PROPOSED SOFTWARE-DEFINED PLATFORM

We propose a software-defined fog platform as
shown in Figure 1, consisting of a set of base stations, a
set of IoT devices (NI), a set of fog nodes (NF) with a
standard structure proposed in [24], and a set of cloud
nodes (NC). In this platform, IoT devices act as clients
of fog systems. Each IoT device uses a communication
protocol (such as IEEE 802.15.4, Wi-Fi, Bluetooth,
MQTT, etc.) to interact with base stations. The requests
of each IoT device are submitted to the fog–cloud
network through base stations in the form of a multi-
node weighted directed task graph. Each fog domain

comprises several distributed fog servers that are ideally
located "next" to data sources (IoT devices). This set of
fog servers refines and processes the request submitted
by the IoT devices. The fog may reduce the amount of
data transmitted to the cloud data center by preparing
these data. The base stations and the fog domains are
SDN-enabled and are monitored and managed by the
SDN controller through its southbound APIs.

The SDN controller acts in a centralized way based
on the network's global state. The SDN controller can
collect global information of the IoT-based fog
computing network, including the processing load,
network traffic, available processing and
communication resources, and delay of each fog node
and link. The central controller unit, or SDN, can make
logical and correct decisions about the transmission of
each offloaded task graph and, accordingly, place the
suitable flow rules in the active SDN base stations and
fog servers.

The logic of handling task offloading requests is
implemented as an application in the SDN controller,
denoted as the task offloading module in Fig. 1. This
module aims to reduce task execution latency by
forwarding tasks to proper base stations and fog
domains.

As stated earlier, it is assumed that some IoT
devices may submit tasks with a non-reducible multi-
node graph structure. To deal with such tasks, several
fog nodes must act collaboratively. These fog servers
may be clustered in some logical/physical fog domains
accessible through one or more base stations. Then, IoT
devices that want to offload their tasks submit their
requests to their nearest base station. After that, the
SDN controller decides to send the task to the
appropriate fog server based on the features and priority
of the submitted request and the network's global state.

Besides, Fig. 2 shows the sequence diagram of the
task offloading process in the proposed platform. In this
diagram, an IoT device submits a task to a base station
first. After that, the base station forwards the submitted
task to the SDN controller. The task offloading module
determines the suitable fog nodes, the paths between
them, and the paths connecting the fog domain to the
cloud data center to host the task to reduce the task
execution latency. There may be some situations in
which, regarding the processing requirements of the
task graph nodes, it is required to partition the task
graph and host some of its nodes in a cloud data center
while the fog servers would handle other nodes of the
task graph. In the end, the result of executing task graph
nodes is aggregated in the fog domain, and finally, the
computation results are forwarded to the IoT device.

Volume 15- Number 4 – 2023 (41 -52)

44

 [
 D

O
I:

 1
0.

61
18

6/
itr

c.
15

.4
.4

1
]

 [
 D

ow
nl

oa
de

d
fr

om
 jo

ur
na

l.i
tr

c.
ac

.ir
 o

n
20

24
-0

5-
16

]

 4 / 12

http://dx.doi.org/10.61186/itrc.15.4.41
https://journal.itrc.ac.ir/article-1-543-en.html

TABLE I. COMPARISON OF OUR PROPOSED WITH PREVIOUS WORK

Cloud

computing

Fog

computing
IoT

Physical

Graph

with
weight

node &

link

Multi-

Task

nodes

in task

graph

Task

Graph

with

weight

node

& link

Resource

Allocation
Task

Assignment
Rule

Capacity
SDN Delay Year Related work

           2021 Sood & Singh.[4]

           2018 Liu et al.[13]

           2018 Wang et al.[14]

           2019 Shojafar et al.[15]

           2016 Zeng.[16]

           2017 Gu.[17]

           2019 Nguyen et al.[18]

           2021 Chao Bu et al.[5]

           2021 Cui et al.[22]

           2017 Bu et al.[20]

           2019
Misra & Saha[9]

(Detour)

           2020
Misra & Bera[10]

(Soft-VAN)

           2021

SDN-BSA

(Proposed

platform)

Figure 1. The architecture of the SDN fog platform

Volume 15- Number 4 – 2023 (41 -52)

45

 [
 D

O
I:

 1
0.

61
18

6/
itr

c.
15

.4
.4

1
]

 [
 D

ow
nl

oa
de

d
fr

om
 jo

ur
na

l.i
tr

c.
ac

.ir
 o

n
20

24
-0

5-
16

]

 5 / 12

http://dx.doi.org/10.61186/itrc.15.4.41
https://journal.itrc.ac.ir/article-1-543-en.html

Figure 2. Sequence diagram of the proposed method

TABLE II. SUMMARY OF KEY NOTATIONS

Notation Definition

G = <I, V, L> Physical network with the node-set V and link set L

𝑡𝑠
𝑜 =< 𝑉𝑠

𝑜, 𝐿𝑠
𝑜 > The task graph with a set of task node 𝑉𝑠

𝑜 and link 𝐿𝑠
𝑜

𝑤𝑖 Processing capacity of ith node of the network

𝑏𝑗 The bandwidth of jth link of network

𝑃𝑠𝑖

𝑜 Processing requirement of ith node of the task

𝐶𝑠𝑗

𝑜 Communication requirement of jth link of task

Dp
 The sum of all propagation delays

Dt
 The sum of all transmission delays

Dc The multi-node task graph processing delays

𝐷𝑓,𝑖
𝑞𝑢𝑒

 The queuing latency of the fth node of the 𝑡𝑠
𝑜 task by the ith node of the G

𝐷𝑓,𝑖
𝑝𝑟𝑜𝑐

 The processing latency of the fth node of the 𝑡𝑠
𝑜 task by the ith node of the G

CP A critical path of the task graph

CPN ancestors Task node series

CPN near family The internal node in the task graph

CPN Root cousin External node

Figure 3. Undirected diagram of SDN fog platform

Figure 4. (a) shown a multi-nodes weighted task graph, 𝑡𝑠
𝑜 =<

𝑉𝑠
𝑜, 𝐿𝑠

𝑜 >, and (b) shown the single task graph

Volume 15- Number 4 – 2023 (41 -52)

46

 [
 D

O
I:

 1
0.

61
18

6/
itr

c.
15

.4
.4

1
]

 [
 D

ow
nl

oa
de

d
fr

om
 jo

ur
na

l.i
tr

c.
ac

.ir
 o

n
20

24
-0

5-
16

]

 6 / 12

http://dx.doi.org/10.61186/itrc.15.4.41
https://journal.itrc.ac.ir/article-1-543-en.html

Figure 5. Transmission delay in SDN fog platform

A.delay objective function

 The problem of reducing task offloading latency in
the proposed software-defined fog platform is
formulated as integer programming and is presented in
figure3. The key notations are summarized in Table II.

The physical network is modeled as a graph G = <I,
V, L> where I is the set of IoT devices, V denotes a set
of nodes including base stations and fog servers and, L
denotes the set of communication links between the
nodes. The computational capacity of network nodes is
denoted by 𝑊 = { 𝑤1, … , 𝑤𝑁} where 𝑤𝑖 is the

processing capacity of 𝑖𝑡ℎ node of the network and
𝑁 = |𝑉|. Furthermore, a bandwidth of network links is
presented by 𝐵 = {𝑏1, . . , 𝑏𝑀} where 𝑏𝑗 is the

bandwidth of 𝑗𝑡ℎ link of network and 𝑀 = |𝐿| .
Following this notation, it is implicitly assumed that the
base station nodes are seen the same as the fog servers
while having no processing capacity by default.

Let 𝑇 = {𝑡1
1, … . , 𝑡𝑅1

1 , … , 𝑡1
𝐾 , … . , 𝑡𝑅𝑘

𝐾 } be the set of

all tasks submitted by IoT devices where 𝑡𝑠
𝑜 is the 𝑜𝑡ℎ

task of the 𝑠𝑡ℎ IoT device, and 𝑅𝑘 is the number of

tasks submitted by 𝐾𝑡ℎ IoT device. Each 𝑡𝑠
𝑜 is by itself

a directed acyclic graph (DAG). So each task is shown
as𝑡𝑠

𝑜 =< 𝑉𝑠
𝑜, 𝐿𝑠

𝑜 >. 𝑉𝑠
𝑜 denotes a set of nodes in each

task and 𝐿𝑠
𝑜 denotes the set of communication links

between the nodes. Each task has a processing
requirement and communication requirement. The
processing requirements of task nodes are denoted by
𝑃𝑠

𝑜 =< 𝑝𝑠1
𝑜 , … , 𝑝𝑠𝐻

𝑜 > where 𝑝𝑠𝑓
𝑜 is the processing

requirement of 𝑓𝑡ℎ node of the task and𝐻 = |𝑉𝑠
𝑜| .

Furthermore, the communication requirement of task
links is presented by 𝐶𝑠

𝑜 =< 𝑐𝑠1
𝑜 , … , 𝑐𝑠𝑍

𝑜 > where 𝑐𝑠𝑞
𝑜 is

the communication requirement of 𝑞𝑡ℎ link of task
and𝑍 = |𝐿𝑠

𝑜|.

 Figure 4.a shows a multi-nodes weighted directed

task graph, and Figure 4 b. shows a single task graph

used by previous researches done in the field.

We calculate the maximum delay taken to process a
task. Maximum delay (Mdf) to service a task in a fog
domain is expressed as follows:

Mdf = Dp
 + Dt

 + Dc
 (1)

 Dp
 is the sum of all propagation delays, and Dt

 is

the transmission delay, and Dc is the multi-node task
graph processing delay which includes both queuing
delay and multi-node task graph processing delay.

Propagation delay is the time required to transmit all
data packets of a task over a physical link from an IoT
device and a base station.

Transmission delay is when a base station task is taken
to a fog domain to transmit the data packets over the fog
node network. It should be noted that Dt is the maximum
delay between a fog domain and a base station plus the
maximum delay which the base station should wait to
get a response from the SDN controller. As shown in
figure 6, the maximum SDN response delay is denoted
by Dc, as a part of Dt. Since, upon receiving the first
packet of the task to a base station, it will be forwarded
to the SDN controller to find out how the task should be
processed. The SDN response delay would be nonzero
for the first packet of the task, but it would be zero for
the following packet of the task.

The multi-node task graph processing delay is the total

time taken by the fog domain to compute a task. Let 𝑥𝑖
𝑓

be the mapping parameter indicating the hosting the 𝑓𝑡ℎ

node of the 𝑡𝑠
𝑜 task by the 𝑖𝑡ℎ node of the G.

Furthermore, let 𝑃𝐻𝑢,𝑣 be the set of all possible paths

between nodes 𝑢, 𝑣 ∈ 𝐺 . besides let 𝑦𝑝
𝑞

 be the

parameter indicating the mapping of the 𝑞𝑡ℎ link of the
𝑡𝑠

𝑜 task to the path𝑝 ∈ 𝑃𝐻𝑢,𝑣 . So, the multi-node task

graph processing delay for processing the task 𝑡𝑠
𝑜 can be

computed as follows:

𝐷𝑐 = ∑ 𝑥𝑖
𝑓

. 𝐷𝑓,𝑖
𝑞𝑢𝑒

+ 𝑥𝑖
𝑓

. 𝐷𝑓,𝑖
𝑝𝑟𝑜𝑐

𝑓∈𝑉𝑠
𝑜,𝑖∈𝑉,𝑞∈𝐿𝑠

𝑜

+ 𝑦𝑝
𝑞

. ∑ 𝐷𝑞,𝐽
𝑡 (2)

𝐽∈𝑝,
𝑝∈ 𝑃𝐻𝑢,𝑣,𝑢,𝑣∈𝐺,

(𝑥𝑢
𝛼=1 𝑎𝑛𝑑 𝑥𝑣

𝛽
=1),𝑞==(𝛼,𝛽)

Where 𝐷𝑓,𝑖
𝑞𝑢𝑒

 and 𝐷𝑓,𝑖
𝑝𝑟𝑜𝑐

 are in order the queuing

latency and the processing latency of the 𝑓𝑡ℎ node of

the 𝑡𝑠
𝑜 task by the 𝑖𝑡ℎ node of the G, and 𝐷𝑞,𝐽

𝑡 is

transmission delay over 𝐽𝑡ℎ link of the G and is member

of 𝑝 ∈ 𝑃𝐻𝑢,𝑣 hosting the 𝑞𝑡ℎ link of the 𝑡𝑠
𝑜 task with

starting and ending nodes hosted by 𝑣 ∈ 𝐺 .

B.The mathematical and formal expression of the
problem

We address the Integer programming problem with
achieving to minimize delay taken to process a task
(Mdf). Therefore, the optimization objective function

Volume 15- Number 4 – 2023 (41 -52)

47

 [
 D

O
I:

 1
0.

61
18

6/
itr

c.
15

.4
.4

1
]

 [
 D

ow
nl

oa
de

d
fr

om
 jo

ur
na

l.i
tr

c.
ac

.ir
 o

n
20

24
-0

5-
16

]

 7 / 12

http://dx.doi.org/10.61186/itrc.15.4.41
https://journal.itrc.ac.ir/article-1-543-en.html

can be defined as follows:P:
 Minimize Mdf (3)

s. t: 𝑥𝑖
𝑓

∈ {0,1} (4)

𝑦𝑝
𝑞

 ∈ {0,1} (5)

𝑥𝑖
𝑓

= {
1 hosting the 𝑓𝑡ℎ node of the 𝑡𝑠

𝑜 task by the 𝑖𝑡ℎ node of the G
0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (6)

𝑦𝑝
𝑞

= {1 mapping of the qth link of the ts
o task to the path p ∈ PHu,v

0 otherwise
 (7)

∀ 𝜗 ∈ 𝑉, ∀ 𝑡𝑠
𝑜 ∑ 𝑝𝑠,𝛾

𝑜 𝑥𝜗
𝛾

𝛾∈𝑉𝑠
𝑜 ≤ 𝑤𝜗

 (8)

 ∀𝐽 ∈ 𝐵 , ∀ 𝑡𝑠
𝑜 ∑ 𝑐𝑠𝑞

𝑜 𝑦𝑝
𝑞

≤ 𝑏𝐽

𝐽∈𝑝,
𝑝∈ 𝑃𝐻𝑢,𝑣,𝑢,𝑣∈𝐺,

(𝑥𝑢
𝛼=1 𝑎𝑛𝑑 𝑥𝑣

𝛽
=1),𝑞==(𝛼,𝛽)

(9)

Constraints (4, 6) means 𝑥𝑖
𝑓

 either gets a value of

zero or a value of 1. If its value is 1, it means that the

f th node of the task ts
o is mapped to the ith node of

the G.

Constraints (5, 7), means, 𝑦𝑝
𝑞
 either gets a value of

zero or a value of 1. If its value is 1, it means that the

 qth link of the task ts
o is mapped to pathp ∈ PHu,v,

in which p passes through the Jth link of the G.

Constraint (8) stand for the processing capacity

limitation of theith node of the 𝐺.

Constraint (9) stands for bandwidth capacity

limitation of the Jth link of the G.

TABLE III. COMPARISON OF OUR PROPOSED PLATFORM WITH PREVIOUS SDN PLATFORM

Detour[9] Soft-VAN[10] SDN-BSA (Proposed platform)
Algorithm name

Parameters

Reducing the average delay

and energy consumption

Minimize task computation

delay

Accomplishment delayed sensitive tasks
Objective

Function

a) time to transmit the data

to the associated access

point

b) propagation delay from

access point to the fog node

c) queuing delay at fog node

d) task execution time at the

fog nodes.

Calculate the delay as a

weighted average of the

local delay or send it to the

fog node

a)uploading delay

• transmission delay,

• propagation delay

• queuing delay

• processing delay

b)downloading delay

• propagation delay and

transmission delay

a)sum of all propagation delays

b)sum of all transmission delays

c) Queuing delay

d) Multinode task graph processing delay

Definition of

delay

Single node - undirected

graph

Single node - undirected

graph

directed acyclic graph)DAG(

A series of tasks are dependent on each other, and the first one

has to be done and the other then the sequence is different.

Type of Task

Graph

directed graph G = (AF; L)

where L denotes the set of

links between access

points(A) and fog nodes (F)

G = (N; L), where N and L

denote the set of all RSUs

and links between the RSUs

G =<I,V,L>

I is the set of IoT devices, V denotes a set of nodes including

base stations and fog servers and, L denotes the set of

communication links between the nodes. The computational

capacity of network nodes is denoted by W, and the bandwidth

of network links is presented by B.

Physical Network

Figure 6. An example of the task graph

Figure 7. (a) shown a physical graph, 𝐺 =< 𝑉, 𝐿 >, (b) shown

the paths between two nodes of the physical graph, and (c)

shown the hypergraph

Volume 15- Number 4 – 2023 (41 -52)

48

 [
 D

O
I:

 1
0.

61
18

6/
itr

c.
15

.4
.4

1
]

 [
 D

ow
nl

oa
de

d
fr

om
 jo

ur
na

l.i
tr

c.
ac

.ir
 o

n
20

24
-0

5-
16

]

 8 / 12

http://dx.doi.org/10.61186/itrc.15.4.41
https://journal.itrc.ac.ir/article-1-543-en.html

IV. THE PROPOSED ALGORITHM

The problem modeled by (4), is NP-hard. So, it is not
possible to find the optimal solution in polynomial time.
Regarding this, we introduce a heuristic greedy
algorithm called SDN-BSA. The proposed algorithm is
an adaptation of the BSA algorithm presented in [29].
This algorithm starts by scheduling all the nodes to one
fog node in a virtual way. It then improves the schedule
by migrating the nodes to other fog nodes. The SDN-
BSA handles the tasks submitted by IoT devices which
are multi-nodes weighted directed graphs. A sample of
these graphs is shown in figure 6. It should be noted that
each link of the task graph may be mapped to a path on
the fog domain. To make it possible to use the mapping
technique of BSA in our presented problem, a
preprocessing step should be done on the fog domain
topology. This preprocessing step indexes all possible
paths between each pair of fog servers in the fog
domain. A hypergraph of the fog domain topology will
be constructed in which each node is a fog server, and
each link represents a physical path over the fog
domain. The paths represented by hypergraph links do
not include any duplicate fog servers or physical links.
The paths between each pair of fog servers can be found
by Depth First Search (DFS) with O (N+M) time
complexity. Constructing hypergraph will be done by
Task Offloading application at SDN controller and
would not affect the actual topology of the physical
network. The capacity of hypergraph nodes is equal to
their counterparts at the actual fog domain. The capacity
of hypergraph links is equal to the capacity of the
physical link, with the lowest capacity between all
physical links forming their counterpart paths.

Upon receiving a task by a base station, it will be
forwarded to the SDN controller for making decisions
about its mapping. SDN controller has a holistic view
of the network topology and state. Benefiting this, it can
make a central decision about the task mapping. The
controller designates a fog server as the "Admin node"
of the mapping to do this. The procedure of appointing
a fog server as the admin node will be covered in the
sequel.

To minimize the overall task execution time, it is
required to minimize the execution time of the longest
path of the task graph. To do so, a function will scan the
task graph and find its longest path. All fog servers will
be checked for their available computational resources
to host accumulated computational demands of the
nodes in the longest path. If there is such a fog server, it
will be determined as the admin node, and all of the
longest path nodes will be mapped to this node. If there
is not enough room over any fog servers to host all of
the longest path nodes, a part of the longest path will be
mapped to neighbor fog servers regarding their
available resource and the delay constraint of the task.

After determining the admin node, the mapping of
each task node will be done according to its data
dependency on its previous nodes in the task graph and
the availability of the resources on the fog servers and
their connections. The mapping algorithm is described
as a pseudo-code as follows:

SDN-BSA Algorithm:

0. Preprocess the physical network topology and

constructed the hypergraph.

1. Partitioning of task graph into sub-tasks

a. Select Critical Path(CP)

b. Select (CPN ancestors)

c. Add CPN near family to CPN

i. Select one of the parents of the

first node at CPN. If all parents of

the selected node are in CPN, add

selected in CPN. Else, select one of

the parents of the selected node

with the farthest distance from the

first node and call this routine for

the newly selected node recursive.

If two parents have the same

distance from the selected node,

selected the parent with a smaller

distance from the exit node.

ii. Run i for other CPN nodes.

d. Add CPN Root cousins to CPN ancestor.

CPN Root cousin is a node that is left out

of CPN after completion of c.

2. Select Admin node in the hypergraph

a. The admin node in the hypergraph has

the most links to the other nodes with the

ability to host task nodes.

3. Assign all CPN ancestors to the admin node

4. Migrate the task nodes on CPN ancestors to

adjacent fog servers using the following routine:

a. For each task node that must be migrated to

other fog servers, the following conditions

should hold:

(Start of time node in adjacent fog node – max

(start of time node in admin node, the data

arrival time of node receive from its parent))

>= delay of processing task graph nodes and

transmission required data on nodes for

forwarding target fog server.

While implementing the algorithm, we have a large
data-producing parent whose data they send to their
child node is the maximum. Here it is better to put the
child next to these parents to minimize latency.

Each fog node also has its computation capacity and
bandwidth (communication capacity). Now, based on
the selected admin node and capacity of the fog node,
the node in the task graph maps to the fog node, after
mapping the resources, the mapped value is reduced
from the fog node capacity. Then the management
module updates the fog node capacity.

New computational capacity of fog node =(old
computational capacity of fog node) – (computational
demand of task node). The new communicational

capacity of fog node =(old communicational capacity of
fog node) – (communicational demand of task node)

TABLE IV. THE PARAMETERS OF BENCHMARKS IN

SIMULATION 1,2

 Size Computation

capacity

Communic

ational

capacity

fog network [25,160] [0.2 GHz , 1.5 GHz] [250kbps ,

54Mbps]

Size Computation demand Communica

tional

demand

Task graph [20,140] [0.1 GHz,0.5GHz] [150kbps,

10Mbps]

Volume 15- Number 4 – 2023 (41 -52)

49

 [
 D

O
I:

 1
0.

61
18

6/
itr

c.
15

.4
.4

1
]

 [
 D

ow
nl

oa
de

d
fr

om
 jo

ur
na

l.i
tr

c.
ac

.ir
 o

n
20

24
-0

5-
16

]

 9 / 12

http://dx.doi.org/10.61186/itrc.15.4.41
https://journal.itrc.ac.ir/article-1-543-en.html

TABLE V. THE CRITICAL PARAMETERS IN SIMULATION 3.

Criterion C#1 C#2 C#3 C#4

Min of Node computation demand in task graph 0.1 GHz 0.2 GHz 0.3 GHz 0.1 GHz

Max of Node computation demand n task graph 0.4GHz 0.5GHz 0.5 GHz 0.5 GHz

Min of Link communication demand in task graph 150 kbps 160 kbps 165 kbps 180 kbps

Max of Link communication demand in task graph 5 Mbps 8 Mbps 10 Mbps
10 Mbps

Figure 8. Average of working time in simulation1

Figure 9. Average of working time in simulation 2

Figure 10. The resual of Simulation 3

V. RESULT AND PERFORMANCE OF THE METHOD

In this section, a series of simulations have been
carried out, and the results of the simulations are
presented. These simulations are coded using Python
3.8. A random topology generator is implemented to
create the fog node networks and SDN controllers.
Additionally, a random task graph generator has been
developed for sequential generation of task graphs. All
coding runs on a system with 8GB of RAM and a Core
i7 CPU. For each node in the fog network, computation
node frequencies of [0.2 GHz, 1.5 GHz] and
bandwidths of [250kbps, 54Mbps] are considered. The
transmission rate between the fog nodes is expected to
be higher, approximately 100 Mbps, the average packet
size [0, 1 KB, 80 KB]. For each task, computation node
frequencies of [0.1 GHz, 0.5 GHz] and bandwidths of
[150 kbps, 10 Mbps] are considered, as per reference
[29]. The simulation parameters, such as the fog
network size, the values of task node and fog node
capacity, and the size of the task graph, are also reported
for each experiment.

Simulation 1: The first experiment presents the
results of the analysis of the working time of the SDN-
BSA algorithm. The effect of the estimation on the
algorithm's total working time is explained in the
subsequent section. The reported results are then
evaluated. The average mapping time plays an
important role in the application of SDN-BSA. In this
part, the average time of the proposed SDN-BSA
algorithm is compared to the comprehensive execution
time of the mapping algorithm. As shown in Figure 8,
in Experiment 1, due to the exponential growth of the
average execution time of the comprehensive
implementation for the size of the task graph, the two
algorithms are implemented in a network of size 3. The
parameters used in the fog network and task diagram
are shown in Table IV. A series of sequences consisting
of 3 tasks each is applied to both algorithms, and the
average working time of each algorithm is measured.
The size of applied tasks varies from 1 to 3. The fog
networks and task graphs are randomly generated.

Simulation 2: To evaluate the average working time
of the proposed SDN-BSA algorithm for large samples,
we analyze the proposed algorithm on task graphs with
sizes between 20 and 140. The computation capacity
and communication capacity for the fog network and
task graph are according to Table IV. As shown in
Figure 9, the average working time increases with an
increasing task graph size.

Simulation 3: To confirm the SDN-BSA, the overall
delay obtained by this algorithm is compared to the

Volume 15- Number 4 – 2023 (41 -52)

50

 [
 D

O
I:

 1
0.

61
18

6/
itr

c.
15

.4
.4

1
]

 [
 D

ow
nl

oa
de

d
fr

om
 jo

ur
na

l.i
tr

c.
ac

.ir
 o

n
20

24
-0

5-
16

]

 10 / 12

http://dx.doi.org/10.61186/itrc.15.4.41
https://journal.itrc.ac.ir/article-1-543-en.html

delay of the exhaustive. Fig. 10 shows the results of this
simulation using the benchmarks with the parameters
listed in Table V. As Shown in Fig. 10, the delay gained
by algorithm SDN-BSA approves the results of
exhaustive.

VI. CONCLUSION

In summary, this paper presents a new approach for
task offloading in the SDN-Fog platform by proposing
a formal model to address the delay-sensitive task
offloading problem. A brute force technique and a
heuristic task assignment technique were proposed and
evaluated through simulations. The results show that
the proposed heuristic method, based on constructing a
hypergraph of the underlying network, is superior to the
brute force technique. This research contributes to the
field of IoT and fog computing by proposing a new
approach for task offloading in SDN-Fog platforms that
addresses the challenges of delay-sensitive
applications.

REFERENCES

[1] F.A.Zaman and J.A.Karmouch,"SDN-based edge cloud

resource allocation framework," IEEE Access, vol. 7,
pp.10672–10690, 2019.

[2] "Openfog Reference Architecture for fog computing," Openfog
Consortium, Tech. Rep., 2017. [Online]. Available:
https://www. openfogconsortium.org

[3] N.McKeown,"Software-defined networking, INFOCOM
Keynote Talk 17 (2009) 30–32.

[4] K. Sood, S. Yu, and Y. Xiang, "Software-Defined Wireless
Networking Opportunities and Challenges for Internet-of-
Things: A Review," IEEE Internet of Things J., vol. 3, no. 4,
pp. 453–463, 2016.

[5] Ch. Bu and J. Wang," computing tasks assignment
optimization among edge computing servers via SDN",
Springer Peer-to-Peer Networking and Applications,2021.

[6] H. Gupta, S. B. Nath, S. Chakraborty, and S. K. Ghosh. (2016)
SDfog: A Software-Defined computing Architecture for QoS
Aware Service Orchestration over Edge Devices. [Online].
Available: arXiv:1609.01190

[7] A. Hakiri, B. Sellami, P. Patil, P. Berthou, and A. Gokhale,
"Managing Wireless fog Networks using Software-Defined
Networking," in Proc. IEEE/ACS Int. Conf. Computer Systems
and Applications, 2017, pp. 1149–1156

[8] S. Tomovic, K. Yoshigoe, I. Maljevic, and I. Radusinovic,
"Software-defined fog network architecture for IoT," Springer
Wireless Personal Communications, vol. 92, no. 1, pp. 181–
196, 2017.

[9] S. Misra and N. Saha, "Detour: dynamic task offloading in
software defined fog for IoT applications," IEEE J. on Selected
Areas in Communications, vol. 37, no. 5, pp. 1159–1166, May
2019.

[10] S. Misra and S. Bera, "Soft-VAN: Mobility-aware task
offloading in software-defined vehicular network," IEEE
Trans. Veh. Technol., vol. 69, no. 2, pp. 2071–2078, Feb. 2020.

[11] Eppstein, D. Subgraph Isomorphism in Planar Graphs and
Related Problems. J. Graph. Algorithms Appl. 1999, 3, 1–27.

[12] S.K.Sood and K.D.Singh, "SNA Based Resource Optimization
in Optical Network using fog and cloud computing, "Optical
Switching and Networking.2017.

[13] L.Liu,Z.Chang,X.Guo,S.Mao,andT.Ristaniemi,"Multiobjectiv
e Optimization for Computation Offloading in fog
computing,"IEEE Internet of Things
Journal,vol.5,no.1,pp.283-294,2018.

[14] N.Wang, B.Varghese, M.Matthaiou, and D.S.Nikolopoulos,
"ENORM: A Framework For Edge Node Resource
Management, "IEEE Transactions on Services computing,
pp.1-1,2018.

[15] M.Shojafar, N.Cordeschi, and E.Baccarelli, "Energy-Efficient
Adaptive Resource Management for Real-time Vehicular cloud
Services," IEEE Transactions on cloud computing, vol.7, no.1,
pp.196-209,2019.

[16] D.Zeng, L.Gu, S.Guo, Z.Cheng, and S.Yu, "Joint Optimization
of task Scheduling and Image Placement in fog computing
Supported Software Defined Embedded System," IEEE
Transactions on Computers, vol.65, no.12, pp.3702-
3712,2016.

[17] L.Gu, D.Zeng, S.Guo, A.Barnawi, and Y.Xiang, "Cost
Efficient Resource Management in fog computing Supported
Medical Cyber-Physical System," IEEE Transactions on
Emerging Topics in computing, vol.5, no.1, pp.108-119,2017.

[18] Pham-Nguyen, H.N., Tran-Minh, Q., 2019. Dynamic resource
provisioning on fog landscapes. Security and Communication
Networks 2019.

[19] S.Bitam, S.Zeadally, and A.Mellouk, "fog computing job
scheduling optimization based on bees swarm," Enterprise
Information Systems, vol.12, no.4, pp.373-397,2018/04/21
2018

[20] C. Bu, Jinsong Wang. "computing tasks assignment
optimization among edge computing servers via SDN,"
Springer Peer-to-Peer Networking and Applications, vol. 25,
no. 3, pp. 1746–1760, 2017.

[21] L. Huang, X. Feng, L. Qian, and Y. Wu, "Deep Reinforcement
Learning- Based Task Offloading and Resource Allocation for
Mobile Edge computing," in EAI Int. Conf. on Machine
Learning and Intelligent Communications, 2018, pp. 33–42.

[22] Y. Cui, J. Song, K. Ren, M. Li, Z. Li, Q. Ren, and Y. Zhang,
"Software Defined Cooperative Offloading for Mobile
cloudlets," IEEE/ACM Transactions on Networking, vol. 14.
pp. 1190–1206, 2021.

[23] Mirza, U. M., Arslan, M. A., Cedersjo, G., Sulaman, S. M., and
Janneck, J. W. (2014). Mapping and scheduling of dataflow
graphs—a systematic map. In Proceedings of the 48th
Asilomar Conference on Signals, Systems and Computers page
1843–1847. IEEE.

[24] I. Sugiarto, P. Campos, N. Dahir, G. Tempesti and S. Furber,
"Task graph mapping of general purpose applications on a
neuromorphic platform", Future Technologies Conference
2017 (FTC 2017 accepted), November 2017.

[25] E. Paone, F. Robino, G. Palermo, V. Zaccaria, I. Sander, and
C. Silvano, "Customization of OpenCL applications for
efficient task mapping under heterogeneous platform
constraints," in Proceedings of the 2015 Design, Automation &
Test in Europe Conference & Exhibition, DATE 2015,
Grenoble, France, March 9-13, 2015, pp. 736–741.

[26] B. Simon, J. Falk, N. Megow, and J.Teich," Energy
Minimization in DAG Scheduling on MPSoCs at Run-Time:
Theory and Practice" arXiv.1912.09170v1, Dec.2019.

[27] K. Taura, A. Chien: A Heuristic Algorithm for Mapping
Communicating Tasks on Heterogeneous Resources. 9th
Heterogeneous computing Workshop, Cancun, Mexico (May
2000). Of the ACM HotSDN, 2012, pp. 115–120.

[28] AHMAD, I. AND KWOK, Y.-K. 1999. On parallelizing the
multiprocessor scheduling problem. IEEE Trans. Parallel
Distrib. Syst. 10, 4 (Apr.), 414-432.

[29] Al-Khawaja M, Baker T, Al-Libawy H, Maamar Z, Aloqaily
M, Jararweh Y. Improving fog computing performance via fog-
2-fog collaboration. Future Generation Comput Syst.
2019;100:266-280.
https://doi.org/10.1016/j.future.2019.05.015.

[30] Rahimi, Payam, Chrysostomos Chrysostomou, Haris Pervaiz,
Vasos Vassiliou, and Qiang Ni. "dynamic resource allocation
for SDN-based virtual Fog-RAN 5G-and-beyond networks." In
2021 IEEE Global Communications Conference
(GLOBECOM), pp. 01-06. IEEE, 2021.

[31] Alomari, Amirah, Shamala K. Subramaniam, Normalia
Samian, Rohaya Latip, and Zuriati Zukarnain. "Resource
management in SDN-based cloud and SDN-based fog
computing: taxonomy study." Symmetry 13, no. 5 (2021): 734.

Sepideh Sheikhi Nejad received her B.Sc.

degree in Computer Engineering from

Islamic Azad University, Ashtian, Iran, in

2006 and her M.Sc. degree in Computer

Software Engineering from Islamic Azad

University, South Branch, Tehran, Iran, in

2010. She is currently a Ph.D. candidate at

Islamic Azad University, South Branch. Fog Computing and

SDN, are her major fields of research.

Volume 15- Number 4 – 2023 (41 -52)

51

 [
 D

O
I:

 1
0.

61
18

6/
itr

c.
15

.4
.4

1
]

 [
 D

ow
nl

oa
de

d
fr

om
 jo

ur
na

l.i
tr

c.
ac

.ir
 o

n
20

24
-0

5-
16

]

 11 / 12

https://www/
javascript:;
https://doi.org/10.1016/j.future.2019.05.015
http://dx.doi.org/10.61186/itrc.15.4.41
https://journal.itrc.ac.ir/article-1-543-en.html

Ahmad Khadem-Zadeh was born in

Mashhad, Iran, in 1943. He received his

B.Sc. degree in applied physics from

Ferdowsi University, Mashhad, Iran, in

1969 and his M.Sc. and Ph.D. degrees

respectively in Digital Communications

and Information Theory & Error Control Coding from the

University of Kent, Canterbury, UK. He is currently the Head

of Education, National and International Scientific

Cooperation Department Affairs, and in the meantime the

head of Post Graduate Department at the ICT Research

Institute (ITRC). He was the head of the Test Engineering

Group and the director of the Computer and Communication

Department at ITRC. Dr. Khademzadeh is IEEE Iran Section

Standards Committee Chair and also a lecturer at Tehran

Universities. He is a committee member of the Iranian

Electrical Engineering Conference Permanent Committee.

Dr. Khadem-Zadeh has been received four distinguished

national and international awards including Khwarizmi

International Award and has been selected as the National

Outstanding Researcher of the Iran Ministry of Information

and Communication Technology.

Amir Masoud Rahmani received his

B.Sc. in Computer Engineering from

Amirkabir University of Technology,

Tehran, in 1996, the M.Sc. in Computer

Engineering from Sharif University of

Technology, Tehran, in 1998, and the

Ph.D. degree in Computer Engineering

from IAU University, Tehran, in 2005.

Currently, he is a Professor in the Department of Computer

Engineering. He is the author/co-author of more than 350

publications in technical journals and conferences. His

research interests are in Distributed Systems, Ad Hoc,

Wireless Sensor Networks and Evolutionary Computing.

 Ali Broumandnia was born in Isfahan,

Iran. He received the B.Sc. degree from the

Isfahan University of Technology in 1991,

M.Sc. degree from Iran University of

Science and Technology in 1995, both in

Hardware Engineering, and a Ph.D. degree in Computer

Engineering from Tehran Islamic Azad University-Science

and Research Branch in 2006. From 1993 through 1995, he

worked on Intelligent Transportation Control with Image

Processing and designed the Automatic License Plate

Recognition for Tehran Control Traffic Company. He has

published over 30 computer books, journals, and conference

papers. He is interested in Persian/Arabic Character

Recognition and Segmentation, Persian/Arabic Document

Segmentation, Medical Imaging, Signal and Image

Processing and Wavelet Analysis. He is the reviewer of some

international journals and conferences.

Volume 15- Number 4 – 2023 (41 -52)

52

 [
 D

O
I:

 1
0.

61
18

6/
itr

c.
15

.4
.4

1
]

 [
 D

ow
nl

oa
de

d
fr

om
 jo

ur
na

l.i
tr

c.
ac

.ir
 o

n
20

24
-0

5-
16

]

Powered by TCPDF (www.tcpdf.org)

 12 / 12

http://dx.doi.org/10.61186/itrc.15.4.41
https://journal.itrc.ac.ir/article-1-543-en.html
http://www.tcpdf.org

