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Abstract—As a growing of IoT devices, new computing paradigms such as fog computing are emerging. Fog computing 

is more suitable for real-time processing due to the proximity of resources to IoT layer devices. Service providers must 

dynamically update the hardware and software parameters of the network infrastructure. Software defined network 

(SDN) proposed as a new network paradigm, whose separate control layer from data layer and provides flexible network 

management. This paper presents a software-defined fog platform to host real-time applications in IoT. Then, we 

propose a novel resource allocation method. This method involves scheduling multi-node real-time task graphs over the 

fog to minimize task execution latency. The proposed method is designed to benefit the centralized structure of SDN. 

The simulation results show that the proposed method can find near to optimal solutions in a very lower execution time 

than the brute force method.  
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I. INTRODUCTION  

The deployment of a cloud computing data center at 
the core of the IoT network has advantages such as 
ubiquitous access, unlimited scalability, and elasticity. 
(1) However, due to the the geographical distance of 
cloud data centers from IoT devices, the links 
connecting the IoT devices and cloud data centers may 
become performance bottlenecks. Such performance 
bottlenecks can increase the execution latency. 

To mitigate these challenges, a new paradigm called 
"fog computing" (2) has been proposed in recent years. 
In a fog-based network, each IoT device is connected to 
local computational domains, each comprising a set of 
computational nodes or fog servers. By deploying the 
computational resources at the network's edge, it 
becomes possible to offload tasks to the fog servers near 
IoT devices, reducing the average round-trip time 
compared to the original IoT architecture. If an IoT-
based fog computing model is implemented using 
traditional networking paradigms, the convergence to a 
new desirable configuration will be time-consuming, 
making it challenging to quickly adapt the platform to 
host new services with a short lifespan. As such, it is 
crucial to adjust the networking paradigm to make it 
agile enough to update its configuration to handle such 
services. According to the Software-Defined 
Networking (SDN) paradigm, to address these 
challenges and leverage the features of SDNs, it seems 
to be a promising solution to implement the network of 
IoT-based fog computing models. The concept of SDN 
has been proposed in (3) and has garnered significant 
attention from both industry and academia (4), (5). The 
primary advantage of SDN in comparison to traditional 
networks is its ability to manage the data forwarding 
process in a logically centralized manner. Therefore, the 
implementation of an IoT-based fog computing model 
using the SDN paradigm has been considered in various 
research studies. Sood et al. (4) examined current 
efforts to merge SDN and IoT and noted the benefits of 
such a combination for information acquisition, 
analysis, decision-making, scalability, and security in 
IoT. Gupta et al. (6) proposed a middleware based on 
SDN-cloud fog computing that provides services to the 
heterogeneous fog infrastructure and enables 
applications to orchestrate fog services while 
considering end-to-end Quality of Service (QoS) 
requirements. This article aims to extend an integrated 
system to an SDN-cloud-fog-based approach. Hakiri et 
al. (7) proposed a novel architecture for controlling 
wireless fog-based SDN, in order to reduce delay and 
enable suitable load-balancing among fog devices. The 
proposed scheme in (7), the SDN controller, combined 
both wireless routing protocols and OpenFlow to 
collect values from the wireless devices to facilitate 
optimal path selection among the wireless fog nodes. 
Tomovic et al. (8) proposed a software-defined fog 
computing architecture for IoT resource management to 
improve the latency of an IoT network. The authors of 
(8) highlighted the advantages of the SDN-fog interplay 
in terms of network scalability, real-time data delivery, 
and mobility. Misra et al. (9) studied a greedy heuristic 
scheme for multi-hop task offloading in IoT-based fog 
computing via software-defined methods. Additionally, 
Misra et al. in (10) proposed Mobility-Aware Task 
Offloading in Software-Defined Vehicular Networks to 

optimize the computational offloading and network 
latency in vehicular networks. This scheme is based on 
SDN and has a node selection and task computation 
phase .Rahimi et al. (30) proposed an effective solution 
for traffic management and dynamic allocation of radio 
resources in 5G networks based on the use of SDN in 
the fog architecture of radio access networks with the 
aim of reducing energy consumption. This method 
increases user satisfaction in performing real-time 
tasks. Therefore, due to the advantages of SDN and 
following the aforementioned research works, in this 
paper, we consider the platform of software-defined 
IoT-based fog computing to address the problem of 
processing delay-sensitive applications on this 
platform. To this end, a novel method is proposed to 
take advantage of SDN to collect network information 
using a Southbound API, which relies on the overall 
view of the network and offloads delay-sensitive tasks 
for processing to reduce task processing latency and 
meet the timing constraints of the submitted real-time 
application. The proposed method achieves this goal by 
minimizing different parameters of the task processing 
latency. The main contribution of this paper is to extend 
the previously proposed task processing latency models 
proposed in (7), (8), (9), (10) to consider the latency of 
processing tasks with multi-node weighted directed 
graphs. The necessity of considering such tasks arises 
from the fact that there may be situations in which a 
single network fog server cannot handle the submitted 
task, and the task must be partitioned into dependent 
sub-tasks. The directed graph of the task would model 
the dependency between sub-tasks, and the graph nodes 
would denote each sub-task. Therefore, this graph 
should be assigned to a connected set of fog servers so 
that the processing latency of the task falls within an 
acceptable range according to the timing constraints of 
the submitted real-time task. In light of this, the 
proposed task offloading method in this paper is 
composed of two parts. The first part is similar to 
previously proposed methods for offloading tasks from 
IoT devices to fog servers. The second part deals with 
assigning the task graph to a suitable subset of fog 
servers. 

Based on this, we propose a delay model, which 
includes the following parameters: 

a) The sum of all propagation delays 

b) The sum of all transmission delays  

c) Queuing delay 

d) Multi-node task graph processing delay 

As stated earlier, the proposed method aims to 
reduce the task processing latency parameters a, b, and 
c, building upon previous proposed task offloading 
techniques. The second part of the proposed method 
addresses the last parameter of the delay model, which 
is one of the main contributions of this paper. The 
problem of assigning the multi-node task graph to the 
cluster of fog servers can be modeled as a variation of 
the well-known sub-graph isomorphism problem, 
which is NP-hard (11). Thus, the second part of the 
proposed method is designed based on a greedy 
approach that achieves optimal solutions with lower 
execution time than exhaustive optimal search. To this 
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end, the second part of the proposed method takes the 
following actions: 

Finding the critical path in the task graph 

- Analyzing the network between fog servers to find 
all possible paths between every pair of fog servers and 
indexing them as a Hypergraph to facilitate the 
assigning process. 

-Selecting a mapping between the task graph and the 
constructed hypergraph, leading to the task's lowest 
execution latency. A set of simulations have been 
conducted to evaluate the effectiveness of the proposed 
method, and the proposed method's performance is 
compared to the exhaustive optimal search method. 

The rest of this paper is organized as follows: 
The second section of the paper is dedicated to a 

review of related works. The proposed Software-
defined fog platform and formal mathematical 
expression of the platform are presented in the paper's 
third section. In Section IV, the proposed algorithm is 
presented. In Section V, the results of the performance 
evaluation of the proposed method are reported. Finally, 
the concluding notes and future directions of extending 
the presented work are covered in Section VI. 

II. RELATED WORK 

This section provides an overview of related 
literature on the task offloading problem in IoT-based 
fog computing and software-defined fog computing. 
Specifically, with regard to the main contribution of this 
paper, which pertains to the mapping of undirected 
multi-node task graphs to fog servers, a brief review of 
related works in the field of task graph mapping is also 
presented. Subsection A primarily examines research 
conducted on task offloading in IoT-based fog 
computing, while Subsection B examines literature 
addressing task offloading in software-defined fog 
computing. Finally, Subsection C offers a succinct 
overview of the concept of task graph mapping. 

A. Task Offloading in IoT based fog computing 

To address task offloading in the fog computing 
environment, various techniques have been proposed in 
the literature. Sood and Si (12) proposed a priority-
based resource allocation scheme for submitted jobs 
and a deadlock-removing method in IoT-based fog 
computing with optical connections to minimize the 
response time of these jobs. Liu et al. (13) studied 
offloading processes in a fog computing system with 
mobile devices by utilizing queuing theory to form a 
theoretical foundation for formulating a multi-objective 
optimization problem to minimize energy consumption, 
execution delay, and payment cost. They proposed a 
task offloading method based on finding the optimal 
offloading probability and transmitting power for each 
mobile device. 

Wang et al. (14) proposed a resource management 
framework equipped with methods for provisioning and 
auto-scaling edge node resources. Shojafar et al. (15) 
considered the resource scheduling challenges part of 
task offloading in IoT-based fog computing in vehicular 
networks. They presented an energy-efficient adaptive 
resource scheduler for fog Network Centers in vehicular 
networks. The goal of their work was to apply the 

TCP/IP connections' locally measured states to 
maximize the overall communication-plus-computing 
energy efficiency while meeting the application-
induced hard Quality of Service (QoS) requirements on 
the minimum transmission rates and maximum delays 
and delay-jitters. Zeng et al. (16) proposed an 
innovative algorithm for scheduling tasks and resource 
management with minimized task completion time in 
fog computing based on software-defined embedded 
systems. Gu et al. (17) considered the integration of fog 
computing and medical cyber-physical devices and 
proposed an algorithm for jointly optimizing base 
station association, task distribution, and virtual 
machine placement to minimize the cost of this 
network. Nguyen et al. (18) considered the service 
deployment problem a multi-objective optimization 
that minimizes the overall response time of an 
application with awareness of network usage and server 
usage to prove the effectiveness of their proposed foggy 
service deployment strategy. As previously stated, the 
works (12)-(18) have considered the task offloading 
problem in IoT-based fog computing, but none of them 
have addressed the problem of scheduling multi-node 
task graphs as a part of the task offloading problem. 
However, scheduling multi-node task graphs has been 
considered in some works, such as (19). Bitam et al. in 
(19) introduced a meta-heuristic approach based on 
swarm optimization for scheduling multi-node jobs 
over IoT-based fog networks. The tasks considered in 
(19) are assumed to be a set of independent sub-tasks, 
so the work presented in (19) does not address the 
problem of scheduling tasks composed of dependent 
sub-tasks modeled as multi-node directed graphs. 

B. Software-defined fog platform and task 
offloading 

To address the issue of task offloading in the fog 
SDN, Chao Bu et al. [20] proposed a novel networking 
approach for edge computing patterns using the idea of 
SDN. In this platform, tasks are assigned based on the 
network's global view provided by a central SDN 
controller. The logically centralized controller is 
constructed through collaboration between multiple, 
physically distributed edge computing servers. Using 
this novel networking approach, a more efficient 
method was proposed to optimize task assignment and 
minimize task processing delay. They proposed a model 
for task assignment among edge computing servers via 
SDN. A. Huang et al. (21) considered an SDN-based 
mobile edge computing framework to provide higher 
data-plane flexibility and programmability. The 
network deployment and conditions of the proposed 
framework (21) can be reconfigured at runtime to 
improve network latency. Cui et al. in (22) proposed a 
software-defined cooperative offloading model for 
device-to-device communication in advanced LTE 
networks. Furthermore, they proposed a new online 
task scheduling algorithm (22) to minimize the energy 
consumption of a mobile device. Misra et al. (9) 
proposed an Integer Linear Programming formulation 
for the task offloading problem in IoT-based fog 
computing with a software-defined access network. 
They also suggested a greedy heuristic task offloading 
algorithm to solve the problem of delay, energy 
consumption, multi-hop paths, and dynamic network 
conditions such as link utilization and SDN rule 
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capacity. Additionally, Misra et al. (10) considered 
optimizing computational offloading and network 
latency in vehicular networks with SDN access 
networks. Alomari et al. in (31) proposed a 
comprehensive study on the role of software defined 
networks (SDN) in the ease of managing cloud and fog 
computing networks, improving network performance, 
reducing energy consumption, and reducing latency. In 
this study, algorithms, architecture, simulation 
environment and data have been investigated. A 
comparison between the proposed method in this paper 
and some of the related works is presented in Table I. 

C. Task Graph Mapping 

As previously stated, the proposed task offloading 
method in this paper deals with offloading multi-node 
task graphs. Therefore, it includes a task graph mapping 
component that maps the task graph to a subset of fog 
servers. This subsection covers research works that 
address this problem. To address this issue, Mirza et al. 
(23) proposed a systematic review of the mapping and 
scheduling of data flow graphs in streaming 
applications. They considered the problem of executing 
these applications over a multiprocessor platform to 
efficiently implement latency, throughput, power, and 
energy consumption. Saguaro et al. (24) presented an 
efficient mapping strategy for a task graph on a machine 
based on Spiking Neural Network Architecture. This 
strategy is suitable for mapping large task graph 
networks and reduces communication latency. Paone et 
al. (25) introduced a task-mapping method to maximize 
the overall application throughput by utilizing 
concurrency in the task graph. Simon et al. (26) 
proposed a directed cycling graph scheduling algorithm 
over multiprocessor system-on-chips to minimize 
energy consumption. Taura et al. (27) presented a 
graph-theoretic formulation of task scheduling 
problems and proposed a heuristic algorithm based on 
their proposed model. The algorithm proposed in (27) 
is designed to run the entire data-processing pipeline 
with good throughput regarding parallelism and 
communication messages 

III. THE PROPOSED SOFTWARE-DEFINED PLATFORM 

We propose a software-defined fog platform as 
shown in Figure 1, consisting of a set of base stations, a 
set of IoT devices (NI), a set of fog nodes (NF) with a 
standard structure proposed in [24], and a set of cloud 
nodes (NC). In this platform, IoT devices act as clients 
of fog systems. Each IoT device uses a communication 
protocol (such as IEEE 802.15.4, Wi-Fi, Bluetooth, 
MQTT, etc.) to interact with base stations. The requests 
of each IoT device are submitted to the fog–cloud 
network through base stations in the form of a multi-
node weighted directed task graph. Each fog domain 

comprises several distributed fog servers that are ideally 
located "next" to data sources (IoT devices). This set of 
fog servers refines and processes the request submitted 
by the IoT devices. The fog may reduce the amount of 
data transmitted to the cloud data center by preparing 
these data. The base stations and the fog domains are 
SDN-enabled and are monitored and managed by the 
SDN controller through its southbound APIs. 

The SDN controller acts in a centralized way based 
on the network's global state. The SDN controller can 
collect global information of the IoT-based fog 
computing network, including the processing load, 
network traffic, available processing and 
communication resources, and delay of each fog node 
and link. The central controller unit, or SDN, can make 
logical and correct decisions about the transmission of 
each offloaded task graph and, accordingly, place the 
suitable flow rules in the active SDN base stations and 
fog servers. 

The logic of handling task offloading requests is 
implemented as an application in the SDN controller, 
denoted as the task offloading module in Fig. 1. This 
module aims to reduce task execution latency by 
forwarding tasks to proper base stations and fog 
domains. 

As stated earlier, it is assumed that some IoT 
devices may submit tasks with a non-reducible multi-
node graph structure. To deal with such tasks, several 
fog nodes must act collaboratively. These fog servers 
may be clustered in some logical/physical fog domains 
accessible through one or more base stations. Then, IoT 
devices that want to offload their tasks submit their 
requests to their nearest base station. After that, the 
SDN controller decides to send the task to the 
appropriate fog server based on the features and priority 
of the submitted request and the network's global state. 

Besides, Fig. 2 shows the sequence diagram of the 
task offloading process in the proposed platform. In this 
diagram, an IoT device submits a task to a base station 
first. After that, the base station forwards the submitted 
task to the SDN controller. The task offloading module 
determines the suitable fog nodes, the paths between 
them, and the paths connecting the fog domain to the 
cloud data center to host the task to reduce the task 
execution latency. There may be some situations in 
which, regarding the processing requirements of the 
task graph nodes, it is required to partition the task 
graph and host some of its nodes in a cloud data center 
while the fog servers would handle other nodes of the 
task graph. In the end, the result of executing task graph 
nodes is aggregated in the fog domain, and finally, the 
computation results are forwarded to the IoT device. 

 

 

 

 

 

 

 

 

Volume 15- Number 4 – 2023 (41 -52) 
 

44 

 [
 D

O
I:

 1
0.

61
18

6/
itr

c.
15

.4
.4

1 
] 

 [
 D

ow
nl

oa
de

d 
fr

om
 jo

ur
na

l.i
tr

c.
ac

.ir
 o

n 
20

24
-0

5-
16

 ]
 

                             4 / 12

http://dx.doi.org/10.61186/itrc.15.4.41
https://journal.itrc.ac.ir/article-1-543-en.html


 

TABLE I.  COMPARISON OF OUR PROPOSED WITH PREVIOUS WORK 

 

Cloud 

computing 

Fog 

computing 
IoT 

Physical 

Graph 

with 
weight 

node & 

link 

Multi-

Task 

nodes 

in task 

graph 

Task 

Graph 

with 

weight 

node 

& link 

Resource 

Allocation 
Task 

Assignment 
Rule 

Capacity 
SDN Delay Year Related work 

           2021 Sood & Singh.[4] 

           2018 Liu et al.[13] 

           2018 Wang et al.[14] 

           2019 Shojafar et al.[15] 

           2016 Zeng.[16] 

           2017 Gu.[17] 

           2019 Nguyen et al.[18] 

                  2021 Chao Bu et al.[5] 

           2021 Cui et al.[22] 

           2017 Bu et al.[20] 

           2019 
Misra & Saha[9] 

(Detour) 

           2020 
Misra & Bera[10] 

(Soft-VAN) 

           2021 

SDN-BSA 

(Proposed 

platform) 

 

 
 

Figure 1.  The architecture of the SDN fog platform 
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Figure 2.  Sequence diagram of the proposed method 

TABLE II.  SUMMARY OF KEY NOTATIONS 

Notation Definition 

G = <I, V, L> Physical network with the node-set V and link set L 

𝑡𝑠
𝑜 =< 𝑉𝑠

𝑜, 𝐿𝑠
𝑜 > The task graph with a set of task node 𝑉𝑠

𝑜 and link 𝐿𝑠
𝑜 

𝑤𝑖 Processing capacity of  ith node of the network 

𝑏𝑗 The bandwidth of jth link of network 

𝑃𝑠𝑖

𝑜 Processing requirement of  ith node of the task 

𝐶𝑠𝑗

𝑜  Communication requirement of jth link of task 

Dp
  The sum of all propagation delays 

Dt
  The sum of all transmission delays 

Dc The multi-node task graph processing delays 

𝐷𝑓,𝑖
𝑞𝑢𝑒

 The queuing latency of the fth  node of the 𝑡𝑠
𝑜 task by the  ith node of the G 

𝐷𝑓,𝑖
𝑝𝑟𝑜𝑐

 The processing latency of the fth  node of the 𝑡𝑠
𝑜 task by the  ith node of the G 

CP A critical path of the task graph 

CPN ancestors Task node series 

CPN near family The internal node in the task graph 

CPN Root cousin External node 

  

Figure 3.  Undirected diagram of SDN fog platform 

 

 

Figure 4.  (a) shown a multi-nodes weighted task graph, 𝑡𝑠
𝑜 =<

𝑉𝑠
𝑜, 𝐿𝑠

𝑜 >,    and (b) shown the single task graph 
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Figure 5.  Transmission delay in SDN fog platform 

 

A.delay objective function 

  The problem of reducing task offloading latency in 
the proposed software-defined fog platform is 
formulated as integer programming and is presented in 
figure3. The key notations are summarized in Table II. 

The physical network is modeled as a graph G = <I, 
V, L> where I is the set of IoT devices, V denotes a set 
of nodes including base stations and fog servers and, L 
denotes the set of communication links between the 
nodes. The computational capacity of network nodes is 
denoted by 𝑊 = { 𝑤1, … , 𝑤𝑁}  where 𝑤𝑖  is the 

processing capacity of  𝑖𝑡ℎ  node of the network and 
𝑁 = |𝑉|. Furthermore, a bandwidth of network links is 
presented by 𝐵 = {𝑏1, . . , 𝑏𝑀}  where 𝑏𝑗  is the 

bandwidth of 𝑗𝑡ℎ  link of network and 𝑀 = |𝐿| . 
Following this notation, it is implicitly assumed that the 
base station nodes are seen the same as the fog servers 
while having no processing capacity by default. 

Let 𝑇 = {𝑡1
1, … . , 𝑡𝑅1

1 , … , 𝑡1
𝐾 , … . , 𝑡𝑅𝑘

𝐾 }  be the set of 

all tasks submitted by IoT devices where 𝑡𝑠
𝑜 is the 𝑜𝑡ℎ   

task of the 𝑠𝑡ℎ  IoT device, and 𝑅𝑘  is the number of 

tasks submitted by 𝐾𝑡ℎ IoT device. Each 𝑡𝑠
𝑜 is by itself 

a directed acyclic graph (DAG). So each task is shown 
as𝑡𝑠

𝑜 =< 𝑉𝑠
𝑜, 𝐿𝑠

𝑜 >. 𝑉𝑠
𝑜  denotes a set of nodes in each 

task and 𝐿𝑠
𝑜  denotes the set of communication links 

between the nodes. Each task has a processing 
requirement and communication requirement. The 
processing requirements of task nodes are denoted by 
𝑃𝑠

𝑜 =< 𝑝𝑠1
𝑜 , … , 𝑝𝑠𝐻

𝑜 >  where 𝑝𝑠𝑓
𝑜  is the processing 

requirement of  𝑓𝑡ℎ  node of the task and𝐻 = |𝑉𝑠
𝑜| . 

Furthermore, the communication requirement of task 
links is presented by 𝐶𝑠

𝑜 =< 𝑐𝑠1
𝑜 , … , 𝑐𝑠𝑍

𝑜 >  where 𝑐𝑠𝑞
𝑜  is 

the communication requirement of 𝑞𝑡ℎ  link of task 
and𝑍 = |𝐿𝑠

𝑜|. 

  Figure 4.a shows a multi-nodes weighted directed 

task graph, and Figure 4 b. shows a single task graph 

used by previous researches done in the field. 

We calculate the maximum delay taken to process a 
task. Maximum delay (Mdf) to service a task in a fog 
domain is expressed as follows: 

Mdf = Dp
 + Dt

 + Dc
                          (1) 

 Dp
   is the sum of all propagation delays, and Dt

  is 

the transmission delay, and Dc is the multi-node task 
graph processing delay which includes both queuing 
delay and multi-node task graph processing delay. 

Propagation delay is the time required to transmit all 
data packets of a task over a physical link from an IoT 
device and a base station.  

Transmission delay is when a base station task is taken 
to a fog domain to transmit the data packets over the fog 
node network. It should be noted that Dt is the maximum 
delay between a fog domain and a base station plus the 
maximum delay which the base station should wait to 
get a response from the SDN controller. As shown in 
figure 6, the maximum SDN response delay is denoted 
by Dc, as a part of Dt. Since, upon receiving the first 
packet of the task to a base station, it will be forwarded 
to the SDN controller to find out how the task should be 
processed. The SDN response delay would be nonzero 
for the first packet of the task, but it would be zero for 
the following packet of the task.  

The multi-node task graph processing delay is the total 

time taken by the fog domain to compute a task. Let 𝑥𝑖
𝑓
 

be the mapping parameter indicating the hosting the 𝑓𝑡ℎ  

node of the 𝑡𝑠
𝑜  task by the  𝑖𝑡ℎ  node of the G. 

Furthermore, let 𝑃𝐻𝑢,𝑣 be the set of all possible paths 

between nodes 𝑢, 𝑣 ∈ 𝐺 .   besides let 𝑦𝑝
𝑞

  be the 

parameter indicating the mapping of the  𝑞𝑡ℎ link of the 
𝑡𝑠

𝑜 task to the path𝑝 ∈  𝑃𝐻𝑢,𝑣 . So, the multi-node task 

graph processing delay for processing the task 𝑡𝑠
𝑜 can be 

computed as follows: 

𝐷𝑐 = ∑  𝑥𝑖
𝑓

. 𝐷𝑓,𝑖
𝑞𝑢𝑒

+ 𝑥𝑖
𝑓

. 𝐷𝑓,𝑖
𝑝𝑟𝑜𝑐

𝑓∈𝑉𝑠
𝑜,𝑖∈𝑉,𝑞∈𝐿𝑠

𝑜 
  

+ 𝑦𝑝
𝑞

. ∑ 𝐷𝑞,𝐽
𝑡  (2)

𝐽∈𝑝,
𝑝∈ 𝑃𝐻𝑢,𝑣,𝑢,𝑣∈𝐺,

(𝑥𝑢
𝛼=1 𝑎𝑛𝑑 𝑥𝑣

𝛽
=1),𝑞==(𝛼,𝛽)

 

Where 𝐷𝑓,𝑖
𝑞𝑢𝑒

 and 𝐷𝑓,𝑖
𝑝𝑟𝑜𝑐

 are in order the queuing 

latency and the processing latency of the 𝑓𝑡ℎ  node of 

the 𝑡𝑠
𝑜  task by the  𝑖𝑡ℎ  node of the G, and  𝐷𝑞,𝐽

𝑡  is 

transmission delay over 𝐽𝑡ℎ link of the G and is member 

of 𝑝 ∈  𝑃𝐻𝑢,𝑣 hosting the  𝑞𝑡ℎ link of the 𝑡𝑠
𝑜 task with 

starting and ending nodes hosted by 𝑣 ∈ 𝐺 .   

B.The mathematical and formal expression of the 
problem 

We address the Integer programming problem with 
achieving to minimize delay taken to process a task 
(Mdf).  Therefore, the optimization objective function 
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can be defined as follows:P:                         
 Minimize Mdf    (3) 

s. t:       𝑥𝑖
𝑓

∈ {0,1}   (4) 

𝑦𝑝
𝑞

  ∈ {0,1}    (5) 

𝑥𝑖
𝑓

= {
1  hosting the 𝑓𝑡ℎ  node of  the 𝑡𝑠

𝑜  task by the  𝑖𝑡ℎ node of the G 
0                                                                𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (6) 

𝑦𝑝
𝑞

= {1  mapping of the  qth link of the ts
o task to the path p ∈  PHu,v

0                                                             otherwise
  (7) 

 

∀ 𝜗 ∈ 𝑉, ∀ 𝑡𝑠
𝑜   ∑   𝑝𝑠,𝛾

𝑜 𝑥𝜗
𝛾

𝛾∈𝑉𝑠
𝑜 ≤ 𝑤𝜗

 (8)     

   ∀𝐽 ∈ 𝐵 , ∀ 𝑡𝑠
𝑜 ∑ 𝑐𝑠𝑞

𝑜 𝑦𝑝
𝑞

≤ 𝑏𝐽

𝐽∈𝑝,
𝑝∈ 𝑃𝐻𝑢,𝑣,𝑢,𝑣∈𝐺,

(𝑥𝑢
𝛼=1 𝑎𝑛𝑑 𝑥𝑣

𝛽
=1),𝑞==(𝛼,𝛽)

(9) 

Constraints (4, 6) means  𝑥𝑖
𝑓

   either gets a value of 

zero or a value of 1.  If its value is 1, it means that the 

f th node of the task ts
o is mapped to the ith node of 

the G. 

Constraints (5, 7), means, 𝑦𝑝
𝑞
 either gets a value of 

zero or a value of 1. If its value is 1, it means that the  

  qth    link of the task ts
o is mapped to pathp ∈  PHu,v, 

in which p passes through the Jth link of the G. 

Constraint (8) stand for the processing capacity 

limitation of theith  node of the 𝐺. 

Constraint (9) stands for bandwidth capacity 

limitation of the Jth link of the G.

TABLE III.  COMPARISON OF OUR PROPOSED PLATFORM WITH PREVIOUS SDN PLATFORM 

 

Detour[9] Soft-VAN[10] SDN-BSA (Proposed platform) 
Algorithm name 

Parameters 

Reducing the average delay 

and energy consumption 
 

Minimize task computation 

delay 

 

Accomplishment delayed sensitive tasks 
Objective 

Function 

a) time to transmit the data 

to the associated access 

point 

b) propagation delay from 

access point to the fog node  

c) queuing delay at fog node  

d) task execution time at the 

fog nodes. 

Calculate the delay as a 

weighted average of the 

local delay or send it to the 

fog node 

a)uploading delay  

• transmission delay, 

• propagation delay 

• queuing delay 

• processing delay 

b)downloading delay 

• propagation delay and 

transmission delay 

a)sum of all propagation delays 

b)sum of all transmission delays 

c) Queuing delay 

d) Multinode task graph processing delay  

 

 

Definition of 

delay 

Single node  -  undirected 

graph 

Single node  -  undirected 

graph 

directed acyclic graph)DAG( 

A series of tasks are dependent on each other, and the first one 

has to be done and the other then the sequence is different. 

Type of Task 

Graph 

directed graph G = (AF; L) 

where L denotes the set of 

links between access 

points(A) and fog nodes (F) 

G = (N; L), where N and L 

denote the set of all RSUs 

and links between the RSUs 

G =<I,V,L> 

I is the set of IoT devices, V denotes a set of nodes including 

base stations and fog servers and, L denotes the set of 

communication links between the nodes. The computational 

capacity of network nodes is denoted by W, and the bandwidth 

of network links is presented by B. 

Physical Network 

 

 

 

Figure 6.  An example of the task graph 

 

Figure 7.  (a) shown a physical graph, 𝐺 =< 𝑉, 𝐿 >, (b) shown 

the paths between two nodes of the physical graph, and (c) 

shown the hypergraph 
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IV. THE PROPOSED ALGORITHM 

The problem modeled by (4), is NP-hard. So, it is not 
possible to find the optimal solution in polynomial time. 
Regarding this, we introduce a heuristic greedy 
algorithm called SDN-BSA. The proposed algorithm is 
an adaptation of the BSA algorithm presented in [29]. 
This algorithm starts by scheduling all the nodes to one 
fog node in a virtual way. It then improves the schedule 
by migrating the nodes to other fog nodes. The SDN-
BSA handles the tasks submitted by IoT devices which 
are multi-nodes weighted directed graphs.  A sample of 
these graphs is shown in figure 6. It should be noted that 
each link of the task graph may be mapped to a path on 
the fog domain. To make it possible to use the mapping 
technique of BSA in our presented problem, a 
preprocessing step should be done on the fog domain 
topology.  This preprocessing step indexes all possible 
paths between each pair of fog servers in the fog 
domain. A hypergraph of the fog domain topology will 
be constructed in which each node is a fog server, and 
each link represents a physical path over the fog 
domain. The paths represented by hypergraph links do 
not include any duplicate fog servers or physical links. 
The paths between each pair of fog servers can be found 
by Depth First Search (DFS) with O (N+M) time 
complexity.  Constructing hypergraph will be done by 
Task Offloading application at SDN controller and 
would not affect the actual topology of the physical 
network. The capacity of hypergraph nodes is equal to 
their counterparts at the actual fog domain. The capacity 
of hypergraph links is equal to the capacity of the 
physical link, with the lowest capacity between all 
physical links forming their counterpart paths. 

Upon receiving a task by a base station, it will be 
forwarded to the SDN controller for making decisions 
about its mapping. SDN controller has a holistic view 
of the network topology and state. Benefiting this, it can 
make a central decision about the task mapping. The 
controller designates a fog server as the "Admin node" 
of the mapping to do this. The procedure of appointing 
a fog server as the admin node will be covered in the 
sequel. 

To minimize the overall task execution time, it is 
required to minimize the execution time of the longest 
path of the task graph. To do so, a function will scan the 
task graph and find its longest path. All fog servers will 
be checked for their available computational resources 
to host accumulated computational demands of the 
nodes in the longest path. If there is such a fog server, it 
will be determined as the admin node, and all of the 
longest path nodes will be mapped to this node. If there 
is not enough room over any fog servers to host all of 
the longest path nodes, a part of the longest path will be 
mapped to neighbor fog servers regarding their 
available resource and the delay constraint of the task. 

After determining the admin node, the mapping of 
each task node will be done according to its data 
dependency on its previous nodes in the task graph and 
the availability of the resources on the fog servers and 
their connections. The mapping algorithm is described 
as a pseudo-code as follows: 

 

 

SDN-BSA Algorithm: 

0. Preprocess the physical network topology and 

constructed the hypergraph. 

1. Partitioning of task graph into sub-tasks 

a. Select Critical Path(CP) 

b. Select (CPN ancestors) 

c. Add CPN near family to CPN 

i. Select one of the parents of the 

first node at CPN. If all parents of 

the selected node are in CPN, add 

selected in CPN. Else, select one of 

the parents of the selected node 

with the farthest distance from the 

first node and call this routine for 

the newly selected node recursive. 

If two parents have the same 

distance from the selected node, 

selected the parent with a smaller 

distance from the exit node. 

ii. Run i for other CPN nodes. 

d. Add CPN Root cousins to CPN ancestor. 

CPN Root cousin is a node that is left out 

of CPN after completion of c. 

2. Select Admin node in the hypergraph 

a. The admin node in the hypergraph has 

the most links to the other nodes with the 

ability to host task nodes.  

3. Assign all CPN ancestors to the admin node 

4. Migrate the task nodes on CPN ancestors to 

adjacent fog servers using the following routine: 

a. For each task node that must be  migrated to 

other fog servers, the following conditions 

should hold:  

(Start of time node in adjacent fog node – max 

(start of time node in admin node, the data 

arrival time of node receive from its parent)) 

>= delay of processing task graph nodes and 

transmission required data on nodes for 

forwarding target fog server. 

While implementing the algorithm, we have a large 
data-producing parent whose data they send to their 
child node is the maximum. Here it is better to put the 
child next to these parents to minimize latency. 

Each fog node also has its computation capacity and 
bandwidth (communication capacity).  Now, based on 
the selected admin node and capacity of the fog node, 
the node in the task graph maps to the fog node, after 
mapping the resources, the mapped value is reduced 
from the fog node capacity. Then the management 
module updates the fog node capacity. 

New computational capacity of fog node =(old 
computational capacity of fog node) – (computational 
demand of task node). The new communicational 

capacity of fog node =(old communicational capacity of 
fog node) – (communicational demand of task node)  

TABLE IV.  THE PARAMETERS OF BENCHMARKS IN 

SIMULATION 1,2 

 Size  Computation 

capacity 

Communic

ational 

capacity 

fog network  [25,160] [0.2 GHz , 1.5 GHz] [250kbps , 

54Mbps] 
 

Size  Computation demand Communica

tional 

demand 

Task graph  [20,140] [0.1 GHz,0.5GHz] [150kbps, 

10Mbps] 
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TABLE V.  THE CRITICAL PARAMETERS IN SIMULATION 3. 

Criterion C#1 C#2 C#3 C#4 

Min of Node computation demand in task graph 0.1 GHz 0.2 GHz 0.3 GHz 0.1 GHz 

Max of Node computation demand n task graph 0.4GHz 0.5GHz 0.5 GHz 0.5 GHz 

Min of Link communication demand in task graph 150 kbps 160 kbps 165 kbps 180 kbps 

Max of Link communication demand in task graph 5 Mbps 8 Mbps 10 Mbps 
10 Mbps 

 

 

 

Figure 8.  Average of working time in simulation1 

 

 
 

Figure 9.  Average of working time in simulation 2 

 

Figure 10.  The resual of Simulation 3 

 
 

V. RESULT AND PERFORMANCE OF THE METHOD  

In this section, a series of simulations have been 
carried out, and the results of the simulations are 
presented. These simulations are coded using Python 
3.8. A random topology generator is implemented to 
create the fog node networks and SDN controllers. 
Additionally, a random task graph generator has been 
developed for sequential generation of task graphs. All 
coding runs on a system with 8GB of RAM and a Core 
i7 CPU. For each node in the fog network, computation 
node frequencies of [0.2 GHz, 1.5 GHz] and 
bandwidths of [250kbps, 54Mbps] are considered. The 
transmission rate between the fog nodes is expected to 
be higher, approximately 100 Mbps, the average packet 
size [0, 1 KB, 80 KB]. For each task, computation node 
frequencies of [0.1 GHz, 0.5 GHz] and bandwidths of 
[150 kbps, 10 Mbps] are considered, as per reference 
[29]. The simulation parameters, such as the fog 
network size, the values of task node and fog node 
capacity, and the size of the task graph, are also reported 
for each experiment. 

Simulation 1: The first experiment presents the 
results of the analysis of the working time of the SDN-
BSA algorithm. The effect of the estimation on the 
algorithm's total working time is explained in the 
subsequent section. The reported results are then 
evaluated. The average mapping time plays an 
important role in the application of SDN-BSA. In this 
part, the average time of the proposed SDN-BSA 
algorithm is compared to the comprehensive execution 
time of the mapping algorithm. As shown in Figure 8, 
in Experiment 1, due to the exponential growth of the 
average execution time of the comprehensive 
implementation for the size of the task graph, the two 
algorithms are implemented in a network of size 3. The 
parameters used in the fog network and task diagram 
are shown in Table IV. A series of sequences consisting 
of 3 tasks each is applied to both algorithms, and the 
average working time of each algorithm is measured. 
The size of applied tasks varies from 1 to 3. The fog 
networks and task graphs are randomly generated. 

Simulation 2: To evaluate the average working time 
of the proposed SDN-BSA algorithm for large samples, 
we analyze the proposed algorithm on task graphs with 
sizes between 20 and 140. The computation capacity 
and communication capacity for the fog network and 
task graph are according to Table IV. As shown in 
Figure 9, the average working time increases with an 
increasing task graph size. 

Simulation 3: To confirm the SDN-BSA, the overall 
delay obtained by this algorithm is compared to the 
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delay of the exhaustive. Fig. 10 shows the results of this 
simulation using the benchmarks with the parameters 
listed in Table V. As Shown in Fig. 10, the delay gained 
by algorithm SDN-BSA approves the results of 
exhaustive. 

VI. CONCLUSION  

In summary, this paper presents a new approach for 
task offloading in the SDN-Fog platform by proposing 
a formal model to address the delay-sensitive task 
offloading problem. A brute force technique and a 
heuristic task assignment technique were proposed and 
evaluated through simulations. The results show that 
the proposed heuristic method, based on constructing a 
hypergraph of the underlying network, is superior to the 
brute force technique. This research contributes to the 
field of IoT and fog computing by proposing a new 
approach for task offloading in SDN-Fog platforms that 
addresses the challenges of delay-sensitive 
applications. 
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