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Abstract—Cancer-causing genes are genes in which mutations cause the onset and spread of cancer. These genes are 

called driver genes or cancer-causal genes. Several computational methods have been proposed so far to find them. Most 

of these methods are based on the genome sequencing of cancer tissues. They look for key mutations in genome data to 

predict cancer genes. This study proposes a new approach called centrality maximization intersection, cMaxDriver, as 

a network-based tool for predicting cancer-causing genes in the human transcriptional regulatory network. In this 

approach, we used degree, closeness, and betweenness centralities, without using genome data. We first constructed 

three cancer transcriptional regulatory networks using gene expression data and regulatory interactions as 

benchmarks. We then calculated the three mentioned centralities for the genes in the network and considered the nodes 

with the highest values in each of the centralities as important genes in the network. Finally, we identified the nodes 

with the highest value between at least two centralities as cancer causal genes. We compared the results with eighteen 

previous computational and network-based methods. The results show that the proposed approach has improved the 

efficiency and F-measure, significantly. In addition, the cMaxDriver approach has identified unique cancer driver 

genes, which other methods cannot identify. 
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I. INTRODUCTION 

A. The Importance of Cancer-Causing Genes 

Discovery 

Many studies have been done on cancer-causing 
genes detection. These genes are known as cancer 
driver genes (CDGs). CDGs are genes in which 
mutations cause cancer. The basic idea behind these 
methods, known as computational and statistical 
methods, is that repeated mutations in specific genes 
cause cancer. Not all mutations in a gene lead to cancer. 
As a result, in these methods, the detection and 
differentiation of cancer-causing mutations from 
normal mutations are essential for the identification of 
cancer genes. Existing methods for detecting CDGs 
rely heavily on genomic and transcriptomic data. 
Existing methods can be divided into three categories: 
computational-based, subnetwork-based and network-
based. Computational methods using mutation data and 
transcriptomic data try to calculate the mutation 
frequency rate in genes. CoMDP [1], ActiveDriver [2], 
e-Driver [3], Simon [4], Oncodrive-Fm [5], 
OncodriverCLUST [6], Dendrix [7], iPAC [8] and 
MutSigCV [9] are among the computational methods. 
For example, Simon [4] calculates the effect of mutant 
function on proteins to find cancer-causing genes. 
OncodriveFM [5] and OncodriveCLUST [6] are 
approaches that categorize cancer-causing genes by 
evaluating the effect of cancer genome types on 
proteins. Dendrix [7], CoMDP [1] use mutation profiles 
to identify cancer signaling pathways. MutsigCV 
[9] uses exome sequences to detect heterogeneity in the 
cancer dataset and then identifies cancer-causing genes 
based on the frequency of mutations in different cancer. 
iPAC [8] also uses a combination of gene expression 
data and mutation data to identify cancer-causing 
genes. The ActiveDriver [2] uses information 
about changed post-transcription sites of proteins in 
mutant cancer genomes to identify cancer-causing 
genes. The e-Driver [3] method also tries to find the rate 
of biased mutations in the functional regions of a 
protein. Another group of methods for identifying 
cancer genes is known as sub-network methods. These 
methods are similar to network methods based on 
mutation data, but have also used part of the network 
structure. For example NetBox [10], DawnRank [11], 
MSEA [12], MeMo [13] and DriverNet [14] are among 
the sub-network methods. For example, DawnRank 
attempts to find cancer-causing genes using mutation 
and transcription data along with molecular interaction 
network information. Similarly, the NetBox [10] 
method finds cancer-causing genes from both protein -
protein interactions and signaling pathways by finding 
cancer communities. The third category is network-
based methods, which do not use mutation data and 
only use network structure analysis to identify driver 
genes. For example, iMaxDriver-N and iMaxDriver-W 
[15] are two network-based approaches that attempt to 
identify cancer-causing genes by influence maximizing 
approach. The characteristics of the methods compared 
to the proposed method in this study are shown in Table 
1. 

These methods have some limitations and 
shortcomings as follows: 

• Most of these methods have a high rate of false 
positives in the results, which results in a decrease 
in precision and the F-measure. 

• In addition, these methods rely heavily on 
mutation data. This data is naturally accompanied 
by noise and error. In addition, they may not 
always be available in the desired quality. 

• Most of the genes identified by each of these 
methods overlap with the set of cancer-causing 
genes in other methods and are abundantly 
detected as unique cancer-causing genes. 

• Some of these methods, such as the iMaxDriver 
approaches, are very time-consuming. 

According to the limitations of existing methods, in 
this study, we proposed cMaxDriver as a new network-
based approach to predicting cancer-causing genes. 
This approach identifies cancer-causing genes by 
analyzing the structure of the transcriptional regulatory 
network, without using mutation data. cMaxDriver uses 
an independent source of information. Transcriptional 
regulatory network (TRN) is one of the basic networks 
for controlling cellular processes. Transcription factors 
(TF) are key components of the cell and affect other 
genes, regulating their expression. In the other words, a 
transcriptional regulatory network shows how each 
transcription factor regulates the expression of other 
transcription factors and genes. Many diseases, 
including cancer, are caused by abnormalities in the 
function of transcription factors. This shows the 
importance of analyzing the structure of these networks 
in biomedical research. 

In this study, a network-based approach called 
cMaxDriver was proposed to find cancer-causing genes. 
This approach uses degree, closeness, and betweenness 
centralities in the human transcriptional regulatory 
network. The results showed that cMaxDriver is able to 
improve the prediction precision of previous methods. 
In addition, cMaxDriver detects genes that other 
previous methods could not detect. Therefore, it can be 
used as a complementary method to other existing 
computational tools. The results show the proposed 
method performs better than many existing 
computational and network-based approaches. 

B. Theoretical Foundations 

Network centrality is a concept that is widely used 
in social network analysis to find the position and 
importance of each node in terms of communication 
with other nodes [16, 17]. Using centralities, noisy data 
from the network are reduced. In addition, the most 
important parts of the network are represented using 
them.  There are different types of centralities, each with 
various definitions. Here, the three centralities of 
degree, closeness, and betweenness are used, which are 
defined below. 

• Degree centrality: obtained by using the number 
of adjacent edges of a node through formula (1) 
[18]. 

• Closeness centrality: In connected networks, 
using the inverse calculation, the shortest path 
distance of each node from other nodes is obtained 
in the form of the formula (2) [18]. 
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• Betweenness centrality: In connected networks, 
this centrality for each node is calculated by using 
the number of the shortest paths that pass through 
that node, as formula (3) [18]. 

𝐶𝐷(𝑝𝑘) = ∑ 𝑎(𝑝𝑖 , 𝑝𝑘)
𝑛

𝑖=1
                                            (1) 

𝐶𝑐(𝑝𝑘) = (∑ 𝑑(𝑝𝑖 , 𝑝𝑘)

𝑛

𝑖=1

)

−1

                                       (2) 

𝐶𝐵(𝑝𝑘) = ∑
𝜎𝑠𝑡(𝑝𝑘)

𝜎𝑠𝑡
                                              (3)

𝑠≠𝑝𝑘≠𝑡

 

Where:  

𝑝 represents the node of the network. 

𝑎(𝑝𝑖 , 𝑝𝑘) is the value of the entry (i,j) of the adjacency 

matrix 𝑎. In other words the 𝑎(𝑝𝑖 , 𝑝𝑘)=1 if there is a 

directed edge from 𝑝𝑖  to 𝑝𝑘  are in the network and 

𝑎(𝑝𝑖 , 𝑝𝑘)=0 otherwise. 

𝑑(𝑝𝑖 , 𝑝𝑘) is the shortest path distance from  𝑝𝑖 to  𝑝𝑘 in 

the network.  

𝜎𝑠𝑡 is the total number of shortest paths from node s to 

node t. 

𝜎𝑠𝑡(𝑝𝑘) is the number of paths that pass through the 𝑝𝑘 

node. 

 

 

TABLE I.  THE DETAILS OF COMPUTATIONAL AND NETWORK-BASED METHODS USED FOR COMPARISON. 

Method name Mutation 

data  
Expression 

data 
Network 

structure 

Methodology  

 

MeMo ✓  - ✓  correlation analysis and statistical tests 

 

NetBox 

✓  - ✓  sequence mutations and DNA copy number 

analysis  

OncodriveCLUST ✓  - - clustering using mutations assessment  

MDPFinder ✓  ✓  - Mutual exclusivity of gene modules 

OncodriveFM ✓  - - The effect of mutation on genes 

DriverML ✓  ✓  - machine learning approach 

DawnRank ✓  ✓  ✓  The effect of downstream expression in 

molecular interaction networks  

MeMo ✓  - ✓  gene correlation and statistical tests  

Simon ✓  - - impact of mutations on proteins  

Dendrix ✓  - - Classification of mutations by coverage and 

exclusivity  

 

ActiveDriver 

✓  - -  identifies protein phosphorylation signaling 

sites 

e-Driver ✓  - - Protein mutation rates by binomial test  

MutsigCV ✓  ✓  - Calculation of mutations frequency  

 

iPAC 

✓  ✓  - Statistical methods  

 

DriverNet ✓  - ✓  Effect of mutations on miRNA network 

 

MSEA 

✓  - ✓  combination of data associated with the 

disease development  

iMaxDriver-N - ✓  ✓  Influence maximization approach  

iMaxDriver-W - ✓  ✓  Influence maximization approach  

 

 

II. METHODOLOGY 

In this section, the cMaxDriver pipeline is 
described. It consists of three different steps: 

1) Network construction 

2) Cancer gene search algorithm based on the 
proposed model  

3) Evaluation of results based on the existing gold 
standard 

 

 
2 Deoxyribonucleic Acid 
3 Ribonucleic Acid 

A.  The Study Network 

A gene is a specific region of a DNA2 molecule 
of a specified length. Genes are found in every cell 
and carry the information needed to produce proteins, 
and by expressing these genes, different proteins are 
produced. Control of these processes plays a key role 
in determining the proteins present in the cell and 
their amounts [19]. That is a process that involves 
transcription on an RNA3 molecule to translation into 
mRNA4, which eventually leads to the production of 
new proteins. This process has a great effect on the 
rate of protein production. A transcriptional 
regulatory network is a type of biological network 
that comprises transcription factors and different 

4 Messenger Ribonucleic Acid 
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genes and their interactions. The analysis of these 
networks is useful for examining the flow of 
information in a biological system and identifying 
different paths [20]. There are two types of modules 
in this network, gene module, and transcription factor 
module. In the first type, several genes are all 
regulated by one transcription factor, and in the 
second type, there are several transcription factors 
that all regulate common genes (see Fig. 1). 

 
Fig. 1.  Types of modules in the gene regulatory network 

[21]. 

 

B. Network Construction 

Gene expression and regulatory interactions are 
needed to construct the study cancer networks. We 
used the RegNetwork5 database [22], which is freely 
available6 , to obtain regulatory interactions. In this 
database, a list of gene regulatory interactions has 
been collected from various methods and multiple 
databases. It should be noted 
that RegNetwork, besides transcriptional 
interactions, also has regulatory interactions 
of microRNAs that have been omitted in this study. 
The retrieved dataset included 150,202 regulatory 
interactions between gene-TFs and TF-TFs. We also 
downloaded gene expression of three cancers: Breast 
(GSE15852), Colon (GSE32323), and Lung 
(GSE3268) from the GEO7 database. In this database, 
gene expression data related to cancerous tissue and 
its adjacent normal tissue were reported for 10 
patients. After initial processing, first, we deleted 
rows with missing gene names. Some rows had more 
than one gene name, which was separated. Finally, 
we computed the average expression values of rows 
that have the same gene name. Eventually, a file was 
obtained in which each row belonged to a unique 
gene and its expression values. Then we constructed 
separately, the regulatory network for breast, colon, 
and lung cancer using its gene expression data and 
regulatory interactions. In this way, for each network, 
the final list of gene expression values was mapped 
with the list of regulatory interactions. Thus, if a 
regulatory interaction of both origin and destination 
contained gene expression values, it was retained in 
the network and otherwise removed.  

C. Network Features 

The primary regulatory network for three types of 

cancer was constructed using the approach described 

in Section 2-2 . These networks were disconnected 

and to analyze them in most cases, it is necessary to 

be connected. Therefore, we first converted the 

 
5 Regulatory Network Repository 
6 http://www.regnetworkweb.org/ 

networks to connected networks and then performed 

the necessary analyzes. To do this, we used the 

largest weakly connected component. For example, 

in the lung cancer network, we had 11016 nodes, 

87388 edges, 2 weakly connected components, and 

9997 strongly connected components that the 

resulting network of lung cancer was constructed 

using the largest weakly connected component and 

the number of nodes and edges was 11015 and 87387, 

respectively. Information about the other two 

networks is also shown in Table 1. Also, the resulting 

networks are of directional and connected types. For 

example, the general view of the lung cancer 

network is illustrated using the force-directed 

algorithm in Fig. 2. 

To identify and study the network more 
accurately, we calculated and examined the structural 
features of the networks. As shown in Fig. 3, the 
distribution and structure of the networks are more 
similar to a Scale-Free network. 

According to the distribution of the network, it is 
expected that when a new node is added to the 
network, it will be connected to nodes with the 
highest connection and degree. Therefore, these 
features are investigated using more accurate 
indicators in the proposed algorithm described in the 
next section. 

 

Fig. 2.  From left to right: The primary disconnected lung 

cancer network using the force-directed algorithm, the 

disconnected component distinguished by its yellow 

color. Communities from the same network with the 

Louvain algorithm to better understand the schema and 

communications, this network has 349 communities, the 

largest consisting of 814 nodes and distinguished from 

the rest of the communities in yellow. 

TABLE II.  STRUCTURE INFORMATION OF THE RESULTING 

NETWORKS 

  

7 Gene Expression Omnibus 

(https://www.ncbi.nlm.nih.gov/geo/) 
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Fig. 3.  From left to right:  Degree distribution plot and distribution of network degrees in Log-Log scale (by ignoring the first and last 

nodes, a linear function is observed). 

 

III. CMAXDRIVER: CENTRALITY MAXIMIZATION 

INTERSECTION PROPOSED APPROACH 

As mentioned earlier, cancer occurs because of 
abnormalities in some genes and their spread to other 
genes in the cell regulatory network. Thus, more 
important genes in network structure are more likely 
to be classified as driver genes. We proposed a new 
approach called centrality maximization intersection 
to predict cancer-causing genes. This algorithm tries 
to find a subset of nodes that are shared between at 

least two centralities. These sets of nodes are 
communities of genes that satisfy at least the 
following two conditions and indicate that they are 
more important in the network. This means that if a 
mutation occurs in them, it will affect a larger number 
of genes. Therefore, we considered these nodes as 
cancer-causing genes (drivers) . 

These conditions were defined as follows: 

• They are more closely related to other genes. 
(Because of the greater degree centrality) 
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• They are shorter in distance from other genes 
and cost less to travel. (Because of the greater 
closeness centrality) 

• They are on the path to more genes, so they 
affect a lot of genes. (Because of the greater 
betweenness centrality) 

The proposed cMaxDriver algorithm based on 
the defined conditions comprises seven steps: 

• Step 1- Calculation of degree, closeness, and 
betweenness centralities for all network genes. 

• Step 2- Calculate the average of all three 
centralities. 

• Step 3- Define the threshold value for each 
centrality according to the average value of each. 

• Step 4- Find genes that have a value greater 
than the threshold, separately at each centrality. 

• Step 5- Find and separate the data from step 4 
that are common to at least two centralities. 

• Step 6- Calculate the union of intersection 
data obtained in step 5. 

• Step 7- Delete duplicate data. 

The threshold values required in step 3 of the 
proposed algorithm for each centrality are obtained 
as described in Section 3-1. 

The selected threshold values and other networks 
information are shown in Table 3. In the lung cancer 
network, for example, the MYC gene is known as an 
important node using the cMaxDriver algorithm, 
because its value in the two centralities has a value 
greater than the threshold associated with the relevant 
centrality. This is important, meaning that if a 
mutation (meaning a cancer-causing mutation) 
occurs in it, it will have a major impact on other 
things. Therefore, this gene is considered a driver 
gene in lung cancer. 

 

TABLE III.  INFORMATION ABOUT NETWORK CENTRALITIES. 

 

 

A. Threshold tuning 

To select the best threshold, two stages 
were performed, in both of which the 
criterion for optimization was F-measure. In 
the first stage, five statistical indicators of 
minimum, average, median, mode, and 
maximum are used as threshold values. 
These five indicators summarize the 
information of all nodes in one value. 

The best criterion among these five 
indicators for all three networks was the 
average. The best criterion is the index by 
which F-measure is maximized compared to 
the rest. 

For example, Fig. 4 shows performance 
compared to different indices of the three 
centralities for the breast cancer network. 

As shown in Fig. 4, the model is sensitive 
to the threshold value, and as the threshold 
changes, the performance of the model 
changes. Fig. 4 shows that the best index is 
62 because it has the highest F-measure. 

Considering the three rings that are 
considered for each of the centralities and 
each of which has five defined values, index 
62 is related to the values of 0.001, 0.030, 
and 1.890 10-5, which are related to the 

Betweenness 

centrality 

Closeness 

centrality 

Degree 

centrality 

Criterion Network Type 

0 

1.890 10-5 

0.009 

MYC 

 

8.903 10-6 

0 

0.030 

0.540 

MYC 

 

2.547 10-1 

9.190 10-5 

0.001 

0.283 

MAX 

 

1.019 10-3 

Minimum value 

Average value 

Maximum value 

The node corresponding to the 

maximum value 

Threshold 

 

 

Breast cancer 

0 

1.068 10-5 

0.007 

SP1 

 

3.006 10-4 

0 

0.023 

0.529 

SP1 

 

0.247 

6.384 10-5 

9.611 10-4 

0.268 

MAX 

 

1.011 10-3 

Minimum value 

Average value 

Maximum value 

The node corresponding to the 

maximum value 

Threshold 

 

 

Colon cancer 

0 

1.858 10-5 

0.009 

MYC 

 

1.458 10-5 

0 

0.029 

0.540 

MYC 

 

1.953 10-2 

9.079 10-5 

1.441 10-3 

0.283 

MAX 

 

1.491 10-3 

Minimum value 

Average value 

Maximum value 

The node corresponding to the 

maximum value 

Threshold 

 

 

Lung cancer 
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average of the three centralities of degree, 
closeness, betweenness, respectively. 

In the second stage, based on the output 
of the first stage (namely the average of each 
centrality), a search interval is found 
experimentally to find the improved values 
for the threshold. The results of this stage are 
shown in Fig. 5 for the breast cancer 
network. 

Finally, the values that had the highest F-
measure value at this stage are considered as 
the final threshold values, which are 
expressed in Table 2 as rounded values to 
three decimal places. 

 

Fig. 4.  Model performance at different threshold 

values in the first stage. 

 

 
Fig. 5.  Model performance at different threshold values in 

the second stage. 

 

IV. EVALUATION OF THE PROPOSED ALGORITHM 

As described in Section 3, the algorithm 
in step 7 considers common unique nodes as 
cancer-causing genes. The algorithm can 
finally extract the list of genes as drivers 
based on the described approach. Then 
labeling is done for the actual and predicted 
data. So that the data that truly cause cancer 
and output data of step 7 of the algorithm, 
that means predicted driver, are labeled with 
1 (negative: driver), and the rest of the data 
with 0 (positive: normal). We compared the 
results of the algorithm with eighteen 

 
8 The Cancer Genome Atlas 
9 https://cancer.sanger.ac.uk/census 
10 Breast invasive carcinoma 

previous computational and network-based 
methods. To obtain the results of the 
previous methods, we used the DriverDBv2 
database [23]. In this database, the results of 
each cancer are reported based on the 
TCGA8 dataset for each method. We also 
used a set of validated cancer-causing genes 
introduced by TCGA [24] to evaluate the 
results. TCGA is an evaluation database 
used in many bioinformatics studies such as 
[15, 20, and 21]. In this database, datasets 
are available9  for three breast, colon, and 
lung cancers named TCGA-BRCA 10 , 
TCGA-COAD 11 , and TCGA-LUSC 12 , 
respectively. That the number of genes as 
drivers introduced, the same order is 572, 
572, and 566 for three different types of 
cancers. 

To evaluate cMaxDriver, we used the 
criteria of precision, recall, accuracy, and F-
measure that are common in binary 
classification approaches. The F-measure is 
a common and good criterion for evaluating 
classifiers, which obtained the percentage of 
correct positive predictions by calculating 
the harmonic mean of the two criteria of 
precision and recall, which is defined as 
follows: 

F − measure =
2 × Precision × Recall

Precision + Recall
              (4) 

 

While precision and recall are defined as 
follows: 

Precision =
TP

TP + FP
                                                (5) 

Recall =
TP

TP + FN
                                                      (6) 

 

Accuracy is also calculated by Equation 
(7). 

Accuracy =
TP + TN

TP + TN + FP + FN
                          (7) 

 

Details of the evaluation of the methods 
used are shown in Tables 3 and 4. For 
example, in breast cancer, cMaxDriver had 
10249 true positives (TP) and 164 true 
negatives (TN), i.e. it correctly identified 
164 genes as a driver and 10249 genes as 

11 Colon adenocarcinoma 
12 Lung squamous cell carcinoma 
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normal in breast cancer. It also has 408 false 
positives (FP) and 633 false negatives (FN), 
which are related to type I and type II errors, 
respectively. Which shows the number of 
normal genes that are incorrectly predicted 
as drivers by this algorithm, and the number 
of driver genes that are incorrectly predicted 
as normal by this algorithm, respectively. 
The complete results are shown in Table 3. 

Considering the condition of at least two 
intersections will give better results than the 
intersection between all three centralities 
because the intersection between all three 
centralities imposes more restrictions on the 
data, so the results have less bias but more 
variance. Therefore, as shown in step 5, the 
proposed method uses the condition of at 
least two intersections. The results of 
running the cMaxDriver algorithm on three 
cancer networks are shown in Table 4. 
Comparing the results of cMaxDriver with 
other methods is given in Section 5. 

TABLE IV.  THE CONFUSION MATRIXES OF CMAXDRIVER 

 

Network Type 

Criterion 

TP TN FP FN 

Breast cancer 10249 164 408 633 

Colon cancer 15074 158 414 590 

Lung cancer 10449 153 413 566 

 

TABLE V.  VALUES OBTAINED FROM CMAXDRIVER 

EVALUATION. 

 

N
et

w
o
rk

 T
y

p
e
 

Criterion 

A
cc

u
ra

cy
 

P
re

ci
si

o
n

 

R
ec

a
ll

 

F
-m

ea
su

re
 

Breast 

cancer 

0.909 0.206 0.287 0.240 

Colon 

cancer 

0.938 0.211 0.276 0.239 

Lung 

cancer 

0.915 0.213 0.270 0.238 

 

V. RESULTS 

The proposed algorithm was run on three 
cancer networks. Then, based on the 
threshold values introduced in Section 3, the 
genes were classified into two classes: 
driver and normal. Afterward, using the 
performance criteria introduced in Section 
4, we compared cMaxDriver with eighteen 

previous computational and network-based 
methods. The corresponding results for 
breast cancer are shown in Fig. 6. As seen, 
cMaxDriver with Recall = 0.287 is ranked 
first among network-based methods and 
ranked second among all computational and 
network-based methods. Although some 
computational methods have higher 
precision and recall they are not in a good 
position in terms of the F-measure and the 
number of cancer-casual genes they predict. 

As mentioned, precision and recall alone 
cannot show the performance of a 
classification system. Therefore, the 
harmonic mean of these two criteria is used. 
As shown in the results, cMaxDriver with F-
measure = 0.24 has the highest value among 
all computational and network-based 
methods and has significantly improved 
performance. 

 
Fig. 6.  Comparison of evaluation criteria of the cMaxDriver 

and other methods in breast cancer. 

We also compared the cMaxDriver and 
other methods based on the number of driver 
genes predicted. The results are shown in 
Fig. 9. As seen, cMaxDriver reached ranks 
first among previous network-based 
methods and second among all methods by 
identifying 164 genes in breast cancer. 

 
Fig. 7.  Comparison of evaluation criteria of the cMaxDriver 

and other methods in colon cancer. 

 

The results of cMaxDriver and other 
methods in colon cancer are shown in Fig. 7. 
As seen, cMaxDriver with F-measure = 
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0.239 has the highest value among all 
computational and network-based methods 
and has significantly improved 
performance. Also, in terms of the number 
of drivers detected, as shown in Fig. 9, 
cMaxDriver, with 158 drivers detected for 
colon cancer, ranks first among previous 
network-based methods and second among 
all methods. 

 
Fig. 8.  Comparison of evaluation criteria of the cMaxDriver 

and other methods in lung cancer. 

Also, based on Fig. 8 be seen, cMaxDriver for 
lung cancer by F-measure = 0.238 with a slight 
difference after iMaxDriver-W among all 
computational and network-based methods is ranked 
second, but based on Recall = 0.27, it's ranked first 
among all methods. In addition, based on the number 
of drivers detected, as seen in results are shown in 
Fig. 9, cMaxDriver reached ranked first among all 
computational and network-based methods by 
identifying 153 genes in lung cancer. 

We also compared the overlap of genes identified 
by cMaxDriver and other methods. The results are 
shown as a Venn diagram in Fig. 10. As seen in Fig. 
10, cMaxDriver was able to cover 140, 143, and 135 
genes identified by other computational and network-
based methods in breast, Colon, and lung cancer, 
respectively. In addition, it has identified 24, 15, and 
18 unique genes in breast, colon, and lung cancer that 
have not been identified by any of the previous 
computational and network-based methods.  

Also, compared to previous network-based 
methods, cMaxDriver identified 123, 123, and 129 
cancer-causing genes detected by other network-
based methods in the same order. In addition, 
cMaxDriver similarly identified 41, 35, and 24 
unique genes in the three named cancers that were not 
detected by other network methods. Lists of unique 
cancer-causing genes correctly identified by 
cMaxDriver is given in Tables 5. 

 

 
Fig. 9.  Comparison of the number of cancer-causing genes 

identified by cMaxDriver and other methods in three 

types of cancer. 

 

 

 

 
Fig. 10.  Left to right: Overlap of genes identified by 

cMaxDriver with other network-based methods and 

with other methods. (a), (b), and (c) are related to 

breast, colon, and lung cancers, respectively. 

 

The main aim of the study was not to examine 
time complexity. The primary objective was to 
improve the performance criteria and the number of 
identified driver genes. In addition the time 
complexity of the previous methods is not mentioned. 
However, program run time of our proposed method 
(step 1 to 7) in a system with CPU intel core i5 and 
Ram 8 are as follows: breast cancer=62ms, colon 
cancer= 61ms and lung cancer =75ms. These values 
do not include the time to set the optimal threshold. 

VI. CONCLUSION 
In this study, an algorithm called cMaxDriver was 

proposed to classification and detection cancer-
causing genes in transcriptional regulatory networks. 
One of the advantages of proposed method is that it 
does not depend on mutation and genomic data. And 
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identifies driver genes only using the structure of 
gene interactions and the network approach.  It is also 
much faster than previous networking methods. The 
cMaxDriver has the best performance compared to 
other computational and network-based methods in 
terms of f-measure and the number of diagnostic 
drivers. First, three cancer regulatory networks were 
constructed using gene expression and regulatory 
interactions data. Then the different steps of the 
algorithm were performed on the networks, as 
described in Section 3. Finally, genes were classified 
into cancer-casual and normal based on defined 
threshold values. The results were compared with 
eighteen computational and network-based methods 
in terms of efficiency criteria and the number of 
identified cancer-casual genes. The results in terms of 
efficiency and F-measure ranked first among all 

methods of detecting breast and colon cancer and 
second in terms of identifying the number of cancer-
casual genes. Also, for lung cancer, the proposed 
algorithm ranks first among all computational and 
network-based methods in terms of the number of 
cancer-causing genes detected and second in terms of 
performance with a slight difference from the first 
rank. In addition, the proposed approach, while 
identifying a significant number of diagnostic genes 
by other methods, can identify genes that have not 
been identified by any of the other methods. 

Data availability: 

Data is available publicly at 
https://github.com/MASafar/cMaxDriver. 

 

 

 

TABLE VI.  THE LIST OF UNIQUE CANCER-CAUSING GENES PRODUCED BY CMAXDRIVER. 

Breast Cancer Network Colon Cancer Network Lung Cancer Network 

Compared to all 

methods 

Compared to 

network-based 

methods 

Compared to all 

methods 

Compared to 

network-based 

methods 

Compared to all 

methods 

Compared to 

network-based 

methods 

SMARCB1 

MLLT1 

ETV6 

TAL1 

ERCC2 

FUBP1 

SMARCE1 

MDM4 

OLIG2 

ETV1 

TNFAIP3 

SMARCD1 

KAT6A 

MAFB 

BTG1 

ELL 

ETV5 

DEK 

LMO1 

MLLT3 

DDB2 

NR4A3 

ELF4 

BCOR 

NONO 

SMARCB1 

MLLT1 

CHD4 

ETV6 

TAL1 

ERCC2 

FUBP1 

SMARCE1 

PSIP1 

ZMYM2 

MDM4 

OLIG2 

ETV1 

TNFAIP3 

HOXD13 

AFF1 

ERCC3 

PBRM1 

KAT6A 

SMARCD1 

MLLT10 

MAFB 

BTG1 

FUS 

PRRX1 

NSD1 

ELL 

ETV5 

XPC 

CIC 

DEK 

ATRX 

LMO1 

MLLT3 

DDB2 

KAT6B 

MED12 

NR4A3 

ELF4 

BCOR 

DDB2 

IKZF1 

SMARCE1 

BTG1 

BCL11B 

TRIM33 

KDM5A 

HMGA2 

XPC 

POU2AF1 

NR4A3 

HOXA13 

ETV5 

SRSF3 

SMARCD1 

SMARCB1 

CHD4 

FOXP1 

APC 

SMARCE1 

BCL11B 

HOXC13 

ETV1 

PAX3 

ZFHX3 

HOXD13 

ERCC3 

ARID1B 

SMARCD1 

IKZF1 

BTG1 

TRIM33 

HMGA2 

PRRX1 

POU2AF1 

NSD1 

ELL 

HOXA13 

ETV5 

XPC 

SRSF3 

NFIB 

CIC 

DEK 

ATRX 

MLLT3 

DDB2 

KAT6B 

KDM5A 

NR4A3 

LMO1 

MLLT3 

MLLT10 

BCL11B 

HOXC13 

TRIM33 

ETV6 

MLLT1 

CIC 

DEK 

ELL 

AFF1 

ERCC3 

ETV5 

XPC 

NFIB 

TFE3 

SMARCD1 

ETV6 

MLLT1 

BCL11B 

HOXC13 

ETV1 

PAX3 

TNFAIP3 

AFF1 

ERCC3 

SMARCD1 

MLLT10 

TRIM33 

NSD1 

ELL 

ETV5 

XPC 

NFIB 

CIC 

TFE3 

DEK 

ATRX 

LMO1 

MLLT3 

MED12 
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