Volume 14, Issue 1 (3-2022)                   2022, 14(1): 25-37 | Back to browse issues page


XML Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Mousavi S M, Khademzadeh A, Rahmani A M. Toward a Versatile IoT Communication Infrastructure. International Journal of Information and Communication Technology Research 2022; 14 (1) :25-37
URL: http://ijict.itrc.ac.ir/article-1-527-en.html
1- Computer Engineering Department, Islamic Azad University, Science and Research Branch, Tehran, Iran
2- Computer Engineering Department, Iran ICT Research Center, Tehran, Iran , zadeh@itrc.ac.ir
Abstract:   (1311 Views)
The IoT can lead to fundamental developments in health, education, urbanization, agriculture, industry, and other areas. Regarding the variety of different end-user applications and needs, developing a versatile communication network that can support such diverse and heterogeneous applications is necessary to decrease the implementation costs than developing a dedicated communication network for each application. LoRa is a type of LPWAN networks that is supported by LoRa Alliance and due to long-range communication and low power and reasonable cost, IoT has become the main goal of establishing LoRa. LoRaWAN covers the protocol and architecture of the system on top of the LoRa physical layer. The LoRa physical layer uses proprietary CSS modulation. This modulation operates below the noise level and is resistant to fading, interference, and blocking attacks, and is difficult to decode. LoRa operates in the unlicensed frequency band below 1GHz with different frequencies in different geographical areas. LoRa is much more useful for IoT applications than short-range protocols such as WiFi and Bluetooth, despite limitations in data transfer speeds and QoS. Therefore, in this manuscript, considering the importance and advantages of LoRa, this protocol is introduced and its various network aspect, importance, and application are examined. Then, a solution based on the cognitive radio technique is presented for QoS improvement to utilize the LoRa technology as a kind of versatile communication infrastructure for IoT.
Full-Text [PDF 842 kb]   (576 Downloads)    
Type of Study: Research | Subject: Network

References
1. Navarro-Ortiz, J., Sendra, S., Ameigeiras, P., & Lopez-Soler, J. M. (2018). Integration of LoRaWAN and 4G/5G for the Industrial Internet of Things. IEEE Communications Magazine, 56(2), 60-67. https://doi.org/10.1109/MCOM.2018.1700625.
2. P. K. a. M. S. Usman Raza, “Low Power Wide Area Networks: An Overview,” IEEE, Volume 19, Number 2, pp. 855 - 873, 2017.
3. Mekki, K., Bajic, E., Chaxel, F., & Meyer, F. (2019). A comparative study of LPWAN technologies for large-scale IoT deployment. ICT express, 5(1), 1-7. https://doi.org/10.1016/j.icte.2017.12.005.
4. Rubio-Aparicio, J., Cerdan-Cartagena, F., Suardiaz-Muro, J., & Ybarra-Moreno, J. (2019). Design and implementation of a mixed IoT LPWAN network architecture. Sensors, 19(3), 675. https://doi.org/10.3390/s19030675.
5. Augustin, A., Yi, J., Clausen, T., & Townsley, W. M. (2016). A study of LoRa: Long range & low power networks for the internet of things. Sensors, 16(9), 1466. https://doi.org/10.3390/s16091466.
6. Boulogeorgos, A. A. A., Diamantoulakis, P. D., & Karagiannidis, G. K. (2016). Low power wide area networks (lpwans) for internet of things (iot) applications: Research challenges and future trends. arXiv preprint arXiv:1611.07449.
7. Qadir, Q. M., Rashid, T. A., Al-Salihi, N. K., Ismael, B., Kist, A. A., & Zhang, Z. (2018). Low power wide area networks: A survey of enabling technologies, applications and interoperability needs. IEEE Access, 6, 77454-77473. https://doi.org/10.1109/ACCESS.2018.2883151.
8. “A Study of LoRa Low Power and Wide Area Network Technology,” in 3 rd International Conference on Advanced Technologies for Signal and Image Processing ATSIP'2017, Fez, Morroco, 2017.
9. R. O. Andrade and S. G. Yoo, “A Comprehensive Study of the Use of LoRa in the Development of Smart Cities,” Applied Sciences, Volume 9, Number 22, p. 4753. 2019.
10. Onumanyi, A. J., Abu-Mahfouz, A. M., & Hancke, G. P. (2020). Low power wide area network, cognitive radio and the Internet of Things: Potentials for integration. Sensors, 20(23), 6837. https://doi.org/10.3390/s20236837.
11. A. Augustin, J. Yi, T. Clausen and W. Townsley, “A Study of LoRa: Long Range & Low Power Networks for the Internet of Things,” Sensors 2016-MDPI journals2016
12. Bahashwan, A. A., Anbar, M., Abdullah, N., Al-Hadhrami, T., & Hanshi, S. M. (2021). Review on Common IoT Communication Technologies for Both Long-Range Network (LPWAN) and Short-Range Network. In Advances on Smart and Soft Computing (pp. 341-353). Springer, Singapore. https://doi.org/10.1007/978-981-15-6048-4_30
13. S. Kim, M. Lee and C. Shin, “IoT-Based Strawberry Disease Prediction System for Smart Farming,” Sensors,Volume 18, Number 11, pp. 40-51, Nov. 2018.
14. J. Paredes-Parra, A. García-Sánchez, A. Mateo-Aroca and Molina-Garcia, “An Alternative Internet-of-Things Solution Based on LoRa for PV Power Plants: Data Monitoring and Management,” Energies, Volume 12, Number 5, p. 881, Mar. 2019.
15. U. Dos Santos, G. Pessin, C. da Costa, and R. A. da Rosa Righi, “A Proactive Internet of Things Model to Anticipate Problems and Improve Production in Agricultural Crops,” in Computers and Electronics in Agriculture; Applied Computing Graduate Program, Unisinos, Brazil, 2018.
16. A. Alsohaily, E. Sousa, AJ Tenenbaum and I. Maljevic, “LoRaWAN radio interface analysis for North American frequency band operation,” in 2017 IEEE 28th Annual International Symposium on Personal, Indoor, and Mobile Radio Communications (PIMRC) Montreal, QC, Canada, 813 Oct. 2017.
17. Chen, M., Miao, Y., Jian, X., Wang, X., & Humar, I. (2018). Cognitive-LPWAN: Towards intelligent wireless services in hybrid low power wide area networks. IEEE Transactions on Green Communications and Networking, 3(2), 409-417.https://doi.org/10.1109/TGCN.2018.2873783.
18. I. Rodriguez, M. Lauridsen, G. Vasluianu, A. Poulsen and P.T. g. s. c. l. l. Mogensen, “Amulti-arena lora-based testbed,” In Proceedings of the International Symposium on Wireless Communication, Lisbon, Portugal, August 2018
19. Saifullah, A., Rahman, M., Ismail, D., Lu, C., Liu, J., &Chandra, R. (2018). Low-power wide-area network over white spaces. IEEE/ACM Transactions on Networking, 26(4), 1893-1906. https://doi.org/10.1109/TNET.2018.2856197
20. Dongare, A., Hesling, C., Bhatia, K., Balanuta, A., Pereira, R.L., Iannucci, B., & Rowe, A. (2017, March). OpenChirp: A low-power wide-area networking architecture. In 2017 IEEE International Conference on Pervasive Computing and Communications Workshops (PerCom Workshops) (pp. 569-574).
21. Chen, M., Miao, Y., Jian, X., Wang, X., & Humar, I. (2018). Cognitive-LPWAN: Towards intelligent wireless services in hybrid low power wide area networks. IEEE Transactions on Green Communications and Networking, 3(2), 409-417.https://doi.org/10.1109/TGCN.2018.2873783.
22. Sallum, E., Pereira, N., Alves, M., & Santos, M. (2020). Improving quality-of-service in LoRa low-power wide-area networks through optimized radio resource management. Journal of Sensor and Actuator Networks, 9(1), 10. https://doi.org/10.3390/jsan9010010
23. Moon, B. (2017). Dynamic spectrum access for internet of things service in cognitive radio-enabled LPWANs. Sensors, 17(12), 2818. https://doi.org/10.3390/s17122818.
24. Mikhaylov, K., Stusek, M., Masek, P., Petrov, V., Petajajarvi, J., Andreev, S., ... & Koucheryavy, Y. (2018, May). Multi-rat lpwan in smart cities: Trial of lorawan and nb-iot integration. In 2018 IEEE International Conference on Communications (ICC) (pp. 1-6). IEEE. https://doi.org/10.1109/ICC.2018.8422979
25. Onumanyi, A. J., Abu-Mahfouz, A. M., & Hancke, G. P. (2019). Cognitive radio in low power wide area network for IoT applications: Recent approaches, benefits and challenges. IEEE Transactions on Industrial Informatics, 16(12), 7489-7498. https://doi.org/10.1109/TII.2019.2956507
26. Al-Turjman, F. (2017). Cognitive sensors and IoT: architecture, deployment, and data delivery. CRC Press.
27. Haxhibeqiri, J., De Poorter, E., Moerman, I., & Hoebeke, J.(2018). A survey of LoRaWAN for IoT: From technology to application. Sensors, 18(11), 3995.https://doi.org/10.3390/s18113995.
28. Petroni, A., Cuomo, F., Schepis, L., Biagi, M., Listanti, M.,& Scarano, G. (2018). Adaptive data synchronization algorithm for iot-oriented low-power wide-area networks. Sensors, 18(11), 4053.
29. Djedouboum, A. C., Abba Ari, A. A., Gueroui, A. M., Mohamadou, A., & Aliouat, Z. (2018). Big data collection in large-scale wireless sensor networks. Sensors, 18(12), 4474.https://doi.org/10.3390/s18124474.
30. Al-Fagih, A. E., Al-Turjman, F. M., Alsalih, W. M., & Hassanein, H. S. (2013). A priced public sensing framework for heterogeneous IoT architectures. IEEE Transactions on Emerging Topics in Computing, 1(1), 133-147. https://doi.org/10.1109/TETC.2013.2278698
31. Fantacci, R., Pecorella, T., Viti, R., & Carlini, C. (2014). A network architecture solution for efficient IOT WSN backhauling: challenges and opportunities. IEEE Wireless Communications, 21(4), 113-119. https://doi.org/10.1109/MWC.2014.6882303.
32. Saari, M., bin Baharudin, A. M., Sillberg, P., Hyrynsalmi, S., & Yan, W. (2018, May). LoRa—A survey of recent research trends. In 2018 41st International Convention on Information and Communication Technology, Electronics and Microelectronics (MIPRO) (pp. 0872-0877). IEEE. https://doi.org/10.23919/MIPRO.2018.8400161
33. Bonnefoi, R., Moy, C., & Palicot, J. (2018). Improvement of the LPWAN AMI backhaul’s latency thanks to reinforcement learning algorithms. EURASIP Journal on Wireless Communications and Networking, 2018(1), 1-18. https://doi.org/10.1186/s13638-018-1044-2.
34. Feltrin, L., Buratti, C., Vinciarelli, E., De Bonis, R., & Verdone, R. (2018). LoRaWAN: Evaluation of link-and system-level performance. IEEE Internet of Things Journal, 5(3), 2249-2258. https://doi.org/10.1109/TETC.2013.2278698
35. Famaey, J., Berkvens, R., Ergeerts, G., De Poorter, E., Van den Abeele, F., Bolckmans, T., ... & Weyn, M. (2018). Flexible multimodal sub-gigahertz communication for heterogeneous internet of things applications. IEEE Communications Magazine, 56(7), 146-153. https://doi.org/10.1109/MCOM.2018.1700655
36. Muthanna, M. S. A., Wang, P., Wei, M., Abuarqoub, A., Alzu’bi, A., & Gull, H. (2021). Cognitive control models of multiple access IoT networks using LoRa technology. Cognitive Systems Research, 65, 62-73. https://doi.org/10.1016/j.cogsys.2020.09.002.

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.