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Abstract—This paper investigates a novel method to solve distributed optimization problems in the presence of 

communication delays between the networked agents that cooperate together to find an optimal solution of a global cost 

function composed of local ones. In the problem of distributed optimization in a network of multi-agent because of 

existing phenomena such as communication delay, deriving approaches having appropriate performance so that the 

states of all agents converge to the same value always has been a substantial challenge. Delay-dependent conditions in 

the form of linear matrix inequities are derived to analyze the convergence of the introduced scheme to the optimal 

solution. It is demonstrated that the maximum allowable time delay in the network and convergence rate of the 

optimization procedure are increased by the suggested strategy. Finally, comparative simulation results are considered 

to illustrate the superior performance of the introduced scheme compared to a rival one in the literature. 

Keywords: Distributed optimization; Communication delay;  Linear Matrix Inequality;  Multi-agent systems. 

 

Article type: Research Article 

© The Author(s). 

Publisher: ICT Research Institute 

 

 

 

I. INTRODUCTION  

In the problem of distributed optimization, a global 
cost function composed of several local ones is 
optimized by the cooperation of networked agents. 
Each agent which has access only to one local objective 
function contributes to the solution of the problem 
through local computations and information exchange 
with the neighbors. Due to widespread applications of 
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distributed optimization in real-world systems such as 
distributed estimation in sensor networks, motion 
planning, distributed predictive control, resource 
allocation over networks, and the economic power 
dispatch problem, this issue has attracted much 
attention in recent years [1-6].  

      The majority of works in the area of distributed 
optimization for multi-agent systems are focused on 
discrete-time formulations [7-11]. However, because of 
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the simple application of the Lyapunov stability 
theorem for convergence analysis and also potential 
applications in continuous-time physical systems, much 
attention has been recently concentrated on the study of 
continuous-time distributed optimization [12-16].  

      In most of the aforementioned publications, 

communication channels between agents were 

assumed to be ideal, for instance, see the work of Weng 

et al [17], while time delays are inevitable in data 

exchange between agents in the networks due to a 

finite bandwidth of the communication medium and 

limited speed of agents for calculating and sending 

their outputs [18, 19]. Also, in practical systems such 

as unmanned aerial vehicles (UAVs), when the 

information would be transmitted by an UAV to others 

occurring time delay is inevitable. Compensation of 

destructive effect of communication delays on the 

performance and stability of solution process is an 

important challenge that is addressed only by a few 

papers in the literature. Therefore, it is beneficial to 

propose the approaches that consider communication 

delay in multi agent systems [20].  

      Authors in [21] by utilizing the mirror descent 

method, derived a distributed algorithm to solve a 

distributed optimization problem, which phenomenon 

of time delays in a multi-agent system are considered 

and analyzed the effects of delay on convergence rate. 

In [22], based on the dual averaging notion, an 

algorithm was derived to solve distributed cooperative 

optimization problems subject to delayed sub-gradient 

data in a networked system with delay. In [23], the 

problem of distributed optimization in the presence of 

inter-agent communication delays was solved via a 

proportional-integral consensus algorithm in a 

passivity-based framework. It was proved that the 

transmission delays can be handled while ensuring the 

convergence property using scattering transformation. 

Authors have developed a distributed optimization 

approach for a continuous-time multi-agent system 

subject to communication delays in [24]. Sufficient 

conditions in the form of linear matrix inequities were 

presented for convergence to analysis. In the paper by 

Lin et al [25], distributed optimization problem was 

solved by implementing a sub-gradient projection 

algorithm for a networked system subject to 

communication delays and nonidentical constraints. 

Moreover, a distributed optimization problem of multi-

agent systems with delayed sampled data is considered 

in [26], then based on Lyapunov theory and graph the 

convergence of all the agents to the optimal solution 

was proved.  

      In this paper, inspired by [24] and [25], a novel 

technique is developed to solve efficiently the 

distributed optimization problem in the presence of 

communication delays utilizing the sub-gradient 

projection idea. The key idea to improve the 

approaches of [24] and [25] is that, for each agent 

based on the communication graph, a weighted 

information of its neighbors in the gradient term is 

implemented to update the value of the state of each 

agent. The main contributions of the proposed 

approach can be highlighted as follows: 

 (1) convergence of the proposed algorithm is assured 

using the Lyapunov-Krasovskii stability argument; 

 (2) it is demonstrated that compared to the rival 

method in [24], the convergence rate is increased by 

the proposed strategy; moreover, convergence to the 

optimal solution is achieved for higher values of 

transmission delay.  

       The remainder of this paper proceeds as follows. 

In section 2, first, the necessary background materials 

are called form literature and then the problem of 

distributed optimization for the system with multi-

agent is modeled. The proposed algorithm is given in 

Section 3, then, the convergence of the optimization 

process is analyzed. In Section 5, comparative 

simulation results are presented to verify the 

superiority of the suggested scheme compared to the 

rival method in the literature. Ultimately, the 

conclusion is given in 6.  

II. PROBLEM STATEMENT AND PRELIMINARIES 

Considering a network of Λ  agents  interacting 

over a directed graph ( )Ξ ,V E  that consists of nodes 

(agents) set,  1, ,ΛV =   and an edge set, E V V 

. An edge from i  to j , described by ( ),i j  , 

denotes that j  can obtain data from i ; then j  is 

known a neighbor of i . The set ( ) Λ | ,i j i j E=   

denotes all neighbors of the agent i . The considered 

graph is assumed to be strongly connected; namely, for 
every pair of nodes, there is a directed path connecting 

them. The adjacency matrix of the graph ( )Ξ ,V E  is 

represented by A  which is a Λ Λ  matrix, whose 

entries ija  are given as:  

( )      , ,

.

1

0
ij

if i j and i j
a

otherwise

 
= 


 (1) 

The out-degree and in-degree of a node i  in the 

graph are 
1


n

i

out ij
j

b a
=

=   and 
1


n

i

in ji
j

b a
=

=  , respectively. 

The considered graph Ξ  is supposed to be weighted-

balanced; that is, 
i i

in outb b=  for any agent i V   [27, 

28]. The overall cost function of the minimization 
problem is considered as follows:  

 ( )
1

( )i
i

F x f x


=

=   (2) 

wherein the agent i  only accesses to its local cost, 

( )if x  which im -strongly is convex in x . That is, 

( ) ( ) ( ) ( )( )
2 2( )i i if z f x l z x f z f x −  −  −  and 

if  is il -Lipchitz over nR ; that is for all 

,   bx z C  R . The aim is to find variables 

( )1 2, , , n

nx x x x=  R  such that the general objective 

function ( )F x  in (2) attains its minimal value. For 

minimization of (2), the agents, V  in the network 

coordinate their decisions through a set of 
communication links. To formulate this fact, the 
coupling among agents is transformed to a set of 
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constraints [29]. Therefore, the minimization of 
structure (2) is defined as:  

( ) ( )

 

Λ

1

min 

,   1,...,Λ ,   Λ ,. .

i
i

i j i

imize F x f x

x js t x i

=

= 

= = 

 
(3) 

where 
n

ix R  denotes the state of the agent i . The 

role of each agent i  is to contribute to finding the 

optimal solution of the problem (3) via cooperation 

with other agents. Inspired by the distributed 

optimization techniques in literature such as dual- 

decomposition and consensus fashions [15, 30, 31] the 

following networked system is obtained to find the 

solution of the optimization problem.  

 

( )

1

1





N

i ij i j
j

N

i i i i ij i j
j

z x x

x f x z x x

 

  

=

=

 = −  

 = −  − − −  

 

(4) 

where ,      and   are positive weights and the 

weighting that agent i  associates to the agent j  is ij

. Note that the system (4) inherits the properties of dual-
decomposition and consensus methods in solving the 
distributed optimization problem; namely, the fast 
transient behavior of consensus and desirable 
convergence of dual-decomposition. 

Since the agents exchange information together 
through a communication graph subject to time-delay, 
the information of neighbors are not immediately in 
hand to be used in (4), i.e. at step time t , the amount of 

( )( )jx t d t−  is available instead of ( )jx t , where 

( )d t  is assigned to demonstrate time-varying delay 

among agents i  and j , which is bounded as 

( )0 d t d  , with ( ) 1d t  . In the next section, 

system (4) is refined to tackle this issue efficiently. 
Before proceeding, some useful facts which will be 
employed in the derivation of our results are recalled 
from the literature. 

Lemma 1. [15]. Laplace matrix concerned with the 
graph Ξ  is described as the following representation: 

Λ Λ Λ, i

ij
j

ij ij

ij

a i j

L
a i j

 

= 


 =  =  
− 

R  
(5) 

It is alternatively can be construed as outL D A= − , 

with  1 2, , , n

out out out outD diag b b b=   n nR . The 

Laplacian L  of graph Ξ  is a positive semi-definite 

matrix and for a connected graph, the Laplacian has a 

single zero eigenvalue and the corresponding 

eigenvector is a vector of ones, defined by 

 1 : ,nk kR  which 1
n

n R .  

Lemma 2. [32]. For an undirected connected graph 
with symmetric L , there exist   Λ 1−  real eigenvalues 

in the open right half plane (RHP) 

1 2 Λ0   =   .   The matrix L  can be 

diagonalized through an orthogonal transformation as 
the following:  

L = T
RJR  

where the diagonal matrix J  is as 

( )

( )

1 Λ 1

Λ 1 1

0 0

0 Y

 −

− 

 
=  
  

J  

 

in which Y  has a ( ) ( )Λ 1 Λ 1−  −  diagonal matrix 

containing the mentioned RHP eigenvalues of L  and 
R  is constructed using the right eigenvectors of L  as 

1 2[ , ,..., ]Nr r r=R , wherein  ,     1,2, ,Λir i   

defining the right eigenvectors of L  where 1T

i ir r = , 

and 1 Λ1 / Λr = .  Lemma 3. [33]. For any function 

( )  2 ,0x t L s −  and any positive matrix Ψ , the 

following inequality holds  

( ) ( ) ( )( ) ( )( )0 0 01T T

t s s
x t x t dt x t dt x t dt

t
− − −

      

   Lemma 4 [34]. Assume that we have 
1 1

1 , , b b
n nn n

b
Q Q


  R R  been positive matrices. For 

all 0ja   with 1
b

j
j

 =  and for all j in n

jiS


R , 

1,2, , ,     1, , 1j b i j=  =  − , where  

0
*

j ji

i

Q S

Q

 
 

 
 

The following relation holds: 

1 1 12 11

2 2 22

1

*1

* *

* *

T

b

b
bT

j j j
j

j

b b b

e Q S S e

e Q S e
e Q e

a

e Q e

=

     
     
     
     
     
          

  

for all 1

1 , , b
nn

b
e e  R R .    

III. MAIN RESULTS 

In this section, a novel continuous-time system is 
provided to be replaced with (4) in the case of delayed 
information; then convergence of the proposed method 
is analyzed. The merits of the proposed method are 
illustrated in the next section by simulation. The 
delayed subgradient information received at time step 

t  is used to update evolution of ( )ix t  in the agent i  

can be defined as the following form:  

( ) ( )( ) ( )( )

( ) ( ) ( )( )

( ) ( )( ) ( )( )

Λ

1

Λ

, Λ

Λ

1







i

i ij i j
j

i ij

i i a i n j
j i j

i ij i j
j

z t x t d t x t d t

x t f w x t w x t d t

z t x t d t x t d t

 



 

=

 

=

 = − − −  

 
= −  + − 

 

 − − − − −  

 

(6) 

for i th agent and its neighbors, the weight coefficients 
i

aw  and 
ij

nw  are devoted, respectively; such that 

matrices Λ Λ[ ]i

a aw diag w =  and 

Λ Λ  [ ] ,   Λ ,  ij

n n iw w j j i=    satisfy: 

Λ

, Λ

1,   1,...,Λ
i

i ij

a n
j i j

w w i
 

+ = = .   Now, we can rewrite 

system (6) in the compact form as the following 

representation: 
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( ) ( ( ))

( ) ( ( ) ( ( ))) ( )

( ( )),

a n

t t d t

t F t t d t t

t d t







= −

= −  + − −

− −

z Lx

x w x w x z

Lx

 
(7) 

where ( )1 2 Λ, ,...,T T Tx x x x= , 

( )( ) ( ) ( ) ( )1 1 2 2 Λ Λ( ( ) , ( ) ,..., ( ) )T T T TF x t f x t f x t f x t =    , 

( )1 2 Λ, ,...,T T Tz z z z= , 
Λ Λ  n n

nL I =  L R  and   

represents the Kronecker product. Note that time delay 

appears in the x  component. Therefore, the initial 

value x  needs to be known as a function tx  in 

( )Λ,0 , nC d −  R  which is the space of continuous 

functions mapping the interval ,0d −   into ΛnR  

subject to norm ( )0
sup

d 
  

−
=

„ „
. 

A. Optimality Analysis 

In the following theorem, it is proven that the system 
(7) converges to the optimal solution of (3), subject to 

delayed transmission.  Let ,if i V  is differentiable 

and im -strongly convex, and its gradient is il -

Lipschitz also, the graph Ξ  is strongly connected and 
weighted-balanced.  

Theorem 3.1: For any 
n R , 

( ) ( ) Λ{ , | (1 ) }T

nS z x I z =  =  is a positive invariant 

set and 
*  x  is an optimal solution of (3) if and only if 

( )( ) ( )* * *, 0a n nF w x w x x S−  +   is an equilibrium 

of systems (7).    

Proof. See the appendix. 

B. Convergence analysis 

Next, in order to find the optimal solution 
*  x  to 

system (7), sufficient conditions in the form of LMIs 
are presented to guarantee the convergence.  

Theorem 3.2: The System (7) with time-delay 

( ) 1d t    and the initial condition ( )0nS  is 

convergent to the optimal solution of (3) if there exist 

( ) ( )Λ 1 Λ 1−  −  matrix S , 4P , 2P , and positive 

definite matrices 1 2 3 3,   ,   , Q Q Q P  and positive scalars 

, 11  and 22  such that: 

2

2

0
*

Q S

Q

 
 

 
 

11 1 4

4 22 1 2

2 3

0T

T

I P

P I P

P P





−

−

 
 

 
 
 

 

11 4 14 15

22 22 1 24 25

33 35

44 45

55 56

4

27 4

2 2

47 48

57 58 2

1 2

1

2

0 0

*

* * 0 0

* * * 0

* * * *

* * * * * *

* * * * * *

* * * * * *

* * * * * *

0 0

0

0

0

0

0 0 0

0

* 0

* *

T

P

p I S

P

P

P dQ

d Q J

I d Q

I

Q









 



−

−

−

 −  


 −  

  


 
  








− 


 −

− −


  
   −


− −


− 


−   
(8) 

 

With 

2

22 1 2 3 11 1 1

1

2ˆ(2 ( )) ,Q Q Q m I p a I
a


 − = − + + −   

2

11 11 1

1

14 11 11

1

2ˆ(2 ( )) ,

1 2ˆ(2 ( )) ,
2

m I p a
a

m I p z
a







 = −

 = −

 

15 11 12

1

1 2ˆ(2 ( )) ,
2

m I p z
a


 = −  

24 11 21

1

25 2 22 2

11 22

1

1 2ˆ(2 ( )) ,
2

1 2ˆ(2 ( )) ,
2

m I p z
a

P J p J Q S

m I p z
a




 




 = −

 = − + −

+ −

 

27 22 11 1 33 2 2

35 2 3

44 11 11

1

45 11 12

1

47 11 12 48 11 11

1 1

55 3 2

11 22

1

( ) , ,

,

2ˆ(2 ( )) ,

1 2ˆ(2 ( )) ,
2

1 2 1 2
( ) , ( )

2 2

(1 ) 2

2ˆ(2 ( )) ,

T

T

p p I P P

P J P J

m I p g
a

m I p z
a

p k p k
a a

Q Q S

S m I p g
a



 







 






− = − −  = − −

 = − +

 = −

 = −

 =  =

 = − − − +

+ + −

 

56 2 57 11 22

1

58 11 21 66 1 2

1

1 2
, ( ) ,

2

1 2
( ) ,

2

Q S p k
a

p k Q Q
a





 = −  =

 =  = − −
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which  1 2 Λ
   

min , ,...,m m m m
−
=  that im -strongly is 

convex,  1 2 Λ
ˆ max , ,...,I I I I=  that iI  is Lipschitz 

coefficient, 1 Λ[ ]i

a Na diag w  , 

 

11 12 11 12

21 22 21 22

11 12

21 22

,

.

T T

a n n n

T

n

z z g g

z z g g

k k

k k

   
= =   

   

 
= 

 

w w w w

w

  

Proof: see the appendix. 

It is noteworthy to mention that as stated in the next 

section, the values of the weight coefficients have been 

employed to derive sufficient conditions of the 

convergence. In other words, aw  and nw   affect the 

feasibility of LMIs (8). 

IV. BENEFIT AND APPLICATION OF THIS 

KIND OF OPTIMIZATION 

BENEFIT: This paper is assigned to investigate the 

problem of distributed multi-agent optimization over 

delaying networks. The optimization equation (6) is 

derived for objective enduring higher values of 

transmission delay and increasing of the converge rate. 

Differently from (4) in which the gradient of if  is 

computed only on ix , in the proposed system (6); the 

gradient term is evaluated on a weighted sum of ix  

and all delayed jx . In equation (6), both weight 

coefficients aw  and nw  would be chosen by the 

designer, and as demonstrated in the proceeding, these 

weight coefficients are implemented in establishing the 

sufficient conditions to assure the convergence of the 

proposed approach (i.e. in Linear Matrix Inequalities 

(LMIs) (8)). In addition, as shown later in the 

simulations, this idea leads to improved performance 

compared to [24].  

APPLICATIONS: As we know, the distributed 

optimization technique is the backbone for the learning 

and formation control of many practical applications. 

For instance, networked mobile robots are 

collaborating with each other in order to reach a certain 

task, therefore, they have to cooperate together to 

minimize a collective cost such that a central 

computing station was not employed. As a case study, 

we can use this proposed optimization approach in 

[35], where networked mobile robots are connected 

through a communication graph and are aimed to 

minimize their speeds and maximize their distance 

from each other.  This kind of optimization approach 

also could be implemented in problems such as [15], 

and collaborative multi-robot systems for search and 

rescue [36]. 

V. SIMULATION RESULTS 

  In this section, the advantages of the addressed 
distributed optimization method are provided by two 
examples. 

 Example 1: In this example, the results of the 

performance of the proposed scheme are compared to 

a rival one in the literature. A network including five 

agents is considered subject to a graph which can be 

seen in Figure. 1. The communication graph is weight-

balanced and strongly connected.  
Note that in order to easily see, fewer agents are 

deliberately considered in the network for simulation 
results. Although if we consider a network with more 
agents, better results would be obtained for the 
proposed method. Local cost functions with xR  are 

as the following  

( ) ( ) ( ) ( )

( )

22

1 2

2

3

0.9 2 1 , 4 ,

0.5 1,

f x x x f x x

f x x

= + + = −

= −
 

( ) ( ) ( )
2

2

4 5sin , 3
2 2

x x
f x f x x

 
= + = − 

 
 (9) 

which are strongly convex and globally Lipschitz. It 

can be simply verified that the general cost function 
Λ 5

1

 i
i

F f
=

=

=  , gets its minimum value 16.05minF = , at 

1.51minx = . In the first simulation, the delay value is 

supposed to be constant 0.62d = . The values of the 

weight coefficients are chosen as follows: 

 

 
 

Fig 1.  The communication topology of five agents 

1.3 0 0 0 0

0 1.3 0 0 0

,0 0 1.3 0 0

0 0 0 1.3 0

0 0 0 0 1.3

a

 
 
 
 =
 
 
 
 

w  

0 0 0.3 0 0

0.3 0 0 0 0

,0 0.1 0 0 0.2

0 0 0.3 0 0

0 0 0 0.3 0

n

− 
 
−
 
 = − −
 

− 
 − 

w  

 

Figure 2 (a) shows the result obtained by the algorithm 

of [26] and Figure 2(b) depicts the consequence of the 

proposed algorithm with     0.6  = = = . Although, 

two methods can tolerate the same time delay it is clear 

that the convergence speed in Figure 2(b) is 

considerably faster than Figure 2(a).  

Volume 13- Number 4 – 2021 (18 -27) 
 
 

22 

 [
 D

O
I:

 1
0.

52
54

7/
itr

c.
13

.4
.1

8 
] 

 [
 D

ow
nl

oa
de

d 
fr

om
 jo

ur
na

l.i
tr

c.
ac

.ir
 o

n 
20

24
-0

4-
26

 ]
 

                             5 / 10

http://dx.doi.org/10.52547/itrc.13.4.18
https://journal.itrc.ac.ir/article-1-495-en.html


 

Fig 2.  The agents’ state trajectories for 0.62d =  . (a): 

the method of [26] and (b) the proposed method. 

 

Fig 3.  The agents’ state trajectories for 0.78d = . (a): 

the method of [26] and (b) the proposed method. 

In Figure. 3 state trajectories of agents are shown for
0.78d =  with rival and suggested schemes to verify 

that the maximum allowable delay in our method is 
much larger compared to [24]. To convenient evolution 
of maximum tolerable delay value, maximum 
allowable delays are reported in table 1 for the 
introduced method and rival schemes.  It is clear that 
the converging criterion of the proposed method is less 
conservative compared to the maximum allowable 
delay of the rival scheme.  

TABLE I.  THE PERFORMANCE OF THE PROPOSED APPROACH 

Approaches  * ** 

The proposed method  0.82 0.8171 

The Method of [24] 0.64 0.6093 

* Actual value    

**Obtained from stability     condition     

 

Example 2: Consider the following local cost 

functions subject to the communication graph in 

Figure. 4:  
8

1

( ) ( ).i
i

F x f x
=

=    
(11) 

where 

( ) ( )

( ) ( )

( ) ( ) ( )

( )

( ) ( ) ( )

2 2

1 2

2

3

2 2

4 5

2

6

22

7 8

( 6) , 0.8 2,

0.9 2 1 ,

4 , 0.5 1,

sin ,
2 2

0.6 , 3

f x x f x x

f x x x

f x x f x x

x x
f x

f x x x f x x

= − = +

= + +

= − = −

 
= + 

 

= + = −

  

(12) 

 

Now, System (7) including eight agents is employed to 

solve optimization structure (11) subject to (12). It is 

assumed that we have the communication delays via a 

determined value. The parameters in system (7) are 

selected as 0.6,    0.5  = = = . The values of the 

weight coefficients are chosen as follows: 
 

1.3 0 0 0 0 0 0 0

0 1.3 0 0 0 0 0 0

0 0 1.3 0 0 0 0 0

0 0 0 1.3 0 0 0 0
,

0 0 0 0 1.3 0 0 0

0 0 0 0 0 1.3 0 0

0 0 0 0 0 0 1.3 0

0 0 0 0 0 0 0 1.3

a

 
 
 
 
 
 =
 
 
 
 
 
  

w

 
 

0 0.3 0 0 0 0 0 0

0 0 0.1 0 0 0.1 0.1 0

0.3 0 0 0 0 0 0 0

0 0.3 0 0 0 0 0 0
,

0 0 0 0.3 0 0 0 0

0 0 0 0 0.3 0 0 0

0 0 0 0 0 0 0 0.3

0 0.3 0 0 0 0 0 0

n

− 
 

− − −
 
 −
 

− =
 −
 

− 
 −
 

−  

w

 

 

Fig 4.  The communication topology of eight agents. 

 

Fig 5.  The agents’ state trajectories for 0.6d = .  
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Fig 6.  The agents’ state trajectories for 0.72d = . 

 

Fig 7.  The agents’ state trajectories for 0.80d = .of 

sensor design. 

According to the communication graph in Figure. 4, the 
simulation results for time-delay 0.60d = , 0.72d =  

and 0.80d =  are shown in Figures. 5-7, respectively. 

Figure. 7, unlike Figure. 5 and 6, ( )x t  is not 

convergent.  

VI. CONCLUSIONS 

  In this paper, the problem of distributed multi-
agent optimization over delaying networks is 
investigated. A novel method has been presented to 
solve a distributed continuous-time optimization 
problem with a multi-agent system subject to 
communication delay. Sufficient conditions have been 
derived in terms of LMIs to check the convergence of 
the algorithm to the optimal solution utilizing 
Lyapunov-Krasovskii's theory. Comparative 
simulation results have been presented to demonstrate 
that maximum allowable delay and rate of convergence 
are both improved compared to the recent rival method 
in the literature. Many issues are still open for future 
research, for instance considering uncertainties, and 
quantization effects [37] in the parameters of a multi-
agent system. 

VII. APPENDIX 

Proof. of Theorem 3.1. 

Regarding that communication delay occurs in the 
x  component of the delayed system (7), the initial 

value of system (7) is ( )0z . From Lemma 2, we have 

( ) ( ) ( )Λ Λ Λ Λ1 0
T T

nI L I I  =   ; So  

( ) ( ) ( )

( )( )
Λ Λ Λ Λ1 1

0

T T

n

I t I

L t d t

 = 

− 

z

x
 (13) 

 which states that the set ( )S   is invariant for any  , 

therefore: 

( ) ( )Λ Λ(1 ) (1 ) 0T T

n nI t I = z z  (14) 

 which implies ( ) ( )Λ Λ1 0
T

I =  z . 

Additionally, assume ( )* *,z x  denotes the 

equilibrium point of (7) in ( )0nS , and recall the 

Laplace matrix L  concerned with a graph, then from 
Lemma 2, we have  

 

( )* * * *0 0 F  = = −  − −LX X LX z  (15) 

 wherein 
* *

Λ1= X x . By multiplying Λ(1 )T

nI  to 

(15) from the left and regarding (13), we have 

( )* 0F X−  = . Regarding weight coefficients 

assigned to agents in (6), the related 
* * *

a nX w x w x= +  

results in 
* *X x=  and we have the following:  

( ) ( )
Λ

* *

1

0 i

i

F X f x 
=

−  = −  =  (16) 

 to find the optimal condition of *X . In addition, due 

to 
*0 Lx=  and ( )* * *0 F = −  − −X Lx z , we can 

obtain ( )* *F= − z X . The proof of converse is 

uncomplicated. Note that the initial value for solving 

the problem (6) requires to be located in ( )0nS  

otherwise, if ( )Λ Λ(1 ) 0 0T

nI =  z , due to (15) we 

have ( )Λ Λ(1 ) 0T

nI F x     that verifies the system 

(6) may converge to the vector x  that is not the 

optimal solution.  
Proof. of Theorem 3.2. Consider definitions 

*= −z z z  and *= −x x x  , the equilibrium point 
transformers to the origin by replacing z  and x  within 
the structure (7).  

( )

( ) ( )( ) ( )

( )( )( )

,n

n a n

n

I

I t I

t d t

= 

=  + 

 −

z R v

x R w u R

w u

 (17) 

R  is in the form of  1 2

T
r R   with ( )1 Λ1/ Λ 1r = . 

Let v  be 1 2:Λ( , )T T Tv v  with 1

nv R , 
( )Λ 1

2:Λ

n
v

−
R  and 

in a similar process: 1 2:Λ( , )T T Tu u=u . Since the initial 

condition belongs to ( )0nS , system (7) can be 

converted to  
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( )( )

( )

( ) ( )( )

( )

1

2:Λ 2:Λ

1 1

2:Λ 2 2:Λ

2:Λ

0n

T

T

v

v u t d t

u h

u h u t d t

v t





 

=

= −

= −

= − − −

−

J

r z

R z J

 

(10) 

wherein nJ I= J , 1 1 nr I= r , 2 2 nR I= R  and

( ) ( ) ( )* *h F F= + −z z z z  (19) 

 Concerning the initial condition and 1 0nv = , we can 

have 1 0v  . Then, we only need to focus on the other 

three relations of (18).  

1 2 3 4V V V V V= + + +  (20) 

 with   

 

( ) ( )

( ) ( )

1 2 2:Λ 1 2:Λ 3

0

2:Λ 2 2:Λ 4





t
T T

t d

t
T

td

V V u s u s dsV

d u s u s dsd V


 



−

+−

= = 

=  

P Q

Q

 

( )
( ) ( )2:Λ 3 2:Λ.

t
T

t d t

u s u s ds
−

=  Q  (21) 

 In which ( )1,2,3i i nQ I i=  =Q , 

1 2:Λ 2:Λ( , , )T T T Tu u v = , and nP I= P  such that:  

  

11 4

4 22 1 2

2 3

T

T

p P

P P p I P

P P

−

 
 

=  
 
 

                           (22) 

 It is obvious that 0V  . Derivation of 1 2 3,    ,    V V V  and 

4V  are calculated along the trajectories of systems (21) 

as the following representation: 

1 11 1 1 22 2: 2

22 2: 2: 1 4 2

1 4 2:

2 ( )( ( )) 2 ( ) ( )

2 ( ) ( ( )) 2 ( ) ( )

2 ( ) ( ( ))

T T T T

T T T

T

V p u t h p u t h

p u t u t d t u t P h

u t P u t d t

 

 





 



= − −

− − −

− −

r z R z

J R z

J

 

1 4 2: 2: 4 1

22 2: 2:

2 ( ) ( ) 2 ( ) ( )

2 ( ) ( )

T T T T

T

u t P v t u t P h

p u t v t

 

 

− −

−

r z
 

2: 2 2:

2: 2 2

2: 2 2:

2: 2 2:

2: 3 2:

2 ( ) ( ( ))

2 ( ) ( )

2 ( ) ( ( ))

2 ( ) ( )

2 ( ) ( ( )),

T

T T

T

T

T

u t P u t d t

v t P h

v t P u t d t

v t P v t

v t P u t d t









 



 

 

 

+ −

−

− −

−

+ −

J

R z

J

J

 (23) 

( ) ( )

( ) ( )
2 2:Λ 1 2:Λ

2:Λ 1 2:Λ

T

T

V u t u t

u t d u t d

=

− − −

Q

Q
 (24) 

0

3 2: 2 2:

0

2: 2 2:

2

2: 2 2:

2: 2 2:

( ) ( )

( ) ( )

( ) ( )

( ) ( )

T

d

T

d

T

t T

t d

V d u s u t d

d u t u t d

d u t u t

d u u d



  

  

 −

 −

 

 −

= 

− + +

=

− 

Q

Q

Q

Q

  (25) 

4 2: 3 2:

2: 3 2:

2: 3 2: 2:

3 2:

( ) ( )

(1 ( )) ( ( )) ( ( ))

( ) ( ) (1 ) ( ( ))

( ( )).

T

T

T T

V u t u t

d t u t d t u t d t

u t u t u t d t

u t d t



 

 

  



=

− − − −

− − −

 −

Q

Q

Q

Q

„
  (26) 

Now, consider the first two expressions in 1V , the 

following relations can be obtained:  

 

11 1 1

22 2: 2

11

22 11 2: 2

2 ( )( ( ))

2 ( ) ( )

2 ( ) ( )

2 ( ) ( )

T T

T T

T T

T T

p u t h

p u t h

p t h

p p u h













 = −

−

= −

− −

r z

R z

u R z

R z

  (27) 

Note that Λ

T I=R R  yields to 2 2 Λ 1

T I −=R R , then we 

have 2 1=R . from the right term in equation (17), we 

have ( ) ( )T T T T T T T

a nt t d= + −z u w R u w R . On the 

other hand, the following inequality holds:  

1 1
( )

1
( )

T T T T T T T T

a ni i

a a

T T T

ni

a

t d
w w

t d
w

= + −

− −

u R u w R u w R

u w R

  (28) 

 Where u  refers to ( )tu , replacing (28) in (27) and 

using Λ Λ

1 1 T

a ai i

a a

I
w w

= =w w  results in the equation:

11 11

1 1

22 11 2: 2

2 2
( ) ( ) ( )

2 ( ) ( )

T T T T

n

T T

p h p t d h

p p u h

 

 

 

 = − + −

− −

z z u w R z

R z

  (29) 

 As regards F  is strongly convex and F  is Lipchitz, 

the followings hold: 

( ) ( ) ( )
2 2

2
ˆ  T Th h I hR z z z z„ „  (30) 

( )
       

T T Th m m
− −

 =z z z z u u  (31) 

 in which 

 
( )( )

( )

(

)

T T T T T T T

a n a

n

t d

t d

= + −

+ −

u u u w R u w R Rw u

Rw u
. 

Inequality (31) yields to  

( ) ( ) ( )( )

( ) ( ) ( )( )

2 2

1 1

( )   0 

  ( )   0

ˆ

ˆ

T T

T T

I h h h

I h h h

 

 

−

−

z z R z R z

z z r z r z

…

…
 (32) 

 So, finally, we have:  

11

1

11

1

22 11 2: 2

2 2

ˆ(2 2 ) ( )

2 ( ) ( )

2 ( ) ( )

( ( )) ( ( ))

T

T T T

n

T T

T

I p h

p t d h

p p u h

h h
















  −

+ − 

− −

−

z z

u w R z

R z

R z R z

 

1 1 11
ˆ( ( )) ( ( )) ( 2 )T Th h m I p  −  −r z r z u u  (33) 
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11

1

22 11 2: 2

2 2 1 1

2 ( ) ( )

2 ( ) ( )

( ( )) ( ( )) ( ( )) ( ( )).

T T T

n

T T

T T

p t d h

p p u h

h h h h







 



+ − 

− −

− −

u w R z

R z

R z R z r z r z

 

                                     

 Note that we can have the following equation  

( )

( ) ( ) ( )

T T T T T

a a a n

T T T T

n a n n

t d

t d t d t d

= + −

+ − + − −

u u u w w u u w w u

u w w u u w w u
 

and be defined 1 2:Λ( , )T T Tu u=u  in terms of 1

Tu  and 2:Λ

Tu

. Since 
2

1 Λ

T

a a a I=w w  we have:  

1

1 2:

2:

2 2

1 1 1 2: 1 1 2:

T

T T T T T

a a a a T

T T T

u
u u

u

u a u u a I u





 − 

 
 =   

 

= +

u w w u w w
                  (34) 

 Let 
11 12

21 22

T

a n

z z

z z

 
=  
 

w w   then we can obtain 

 

1 11 1

2: 22 2: 1 12 2:

2: 21 1

( )

( ) ( )

( ) ( )

T T T

a n

T T T T

T

t d u z u

u z u t d u z u t d

u t d z u t d

  



− =

+ − + −

+ − −

u w w u

  (35) 

 Defining
11 12

21 22

T

n a

Y Y

Y Y

 
=  
 

w w  , we reach to 

1 11 1

2: 22 2: 1 12 2:

2: 21 1

( ) ( ) ( )

( ) ( )

( )

T T T

n a

T T

T

t d u t d Y u t d

u t d Y u u t d Y u

u t d Y u

  



− = − −

+ − + −

+ −

u w w u

  (36) 

 and, defining 
11 12

21 22

T

n n

g g

g g

 
=  
 

w w   , we have 

1 11 1

2: 22 2:

1 12 2:

2: 21 1

( ) ( ) ( ) ( )

( ) ( )

( ) ( )

( ) ( )

T T T

n n

T T

T T

T

t d t d u t d g u t d

u t d g u t d

u t d g u t d

u t d g u t d

 





− − = − −

+ − −

+ − −

+ − −

u w w u

  (37) 

 by parsing 
11 12

21 22

T

n

k k

k k

 
=  
 

w   yields to,  

11

1

11

1 11 1

1

11

2: 22 2

1

11

1 12 2

1

11

2: 21 1

1

2 ( ) ( )

2 ( ) ( )

2 ( ) ( )

2 ( ) ( )

2 ( ) ( )

T T T

n

T T

T T

T T

T T

p
t d h

p
u t d k h

p
u t d k h

p
u t d k h

p
u t d k h

























− =

−

+ −

+ −

+ −

u w R z

r z

R z

R z

r z

  

 Regarding (33)-(37), upper-bounded of Ω  can be 

acquired that ultimately, it will be used to make final 

LMIs. 
Additionally, by substituting 

( ) ( )( ) ( )2:Λ 2 2:Λ 2:Λ

Tu h u t d t v t = − − − −R z J  into the 

first term of 3V , we have: 

( ) ( ) ( ) ( )2 1

2:Λ 2 2:Λ 2

T T Td u t Q u t t U Q U t −=          (38) 

 Where 

1 2: 2:

1 2: 2:

2 1

( ) ( ( ), ( ), ( ),

( ( )) ( ( )), ( ),

( ) , ( ) )

T T T

T T T

T T T

t u t u t v t

u t d t u t d t u t d

h h

  

 

=

− − −

z R z r

  (39) 

 and  

2 2 2[0, 0, , 0, , 0, , 0]U dQ d Q d Q = − − −J   (40) 

 Now, consider the following term in (25):  

( )
( ) ( )2:Λ 2 2:Λ

t
T

t d t

d u Q u d  
−

−   

 Then, by using Lemma 2 and Lemma 2, the following 

relations can be obtained:  

2: 2 2:

( )

2: 2 2:

2: 2 2: 1 2 1( )

( ) ( )

( ) ( )

( ) ( )
( )

t T

t d

t d t T

t d

t T T

t d t

d u Q u d

d u Q u d

d
d u Q u d e Q e

d t

  

  

  

 −

−

 −

 −

− =

− 

− − „

 

1

2 2 2

2

2

1

2

2

1 2 12 1

2 2 2

( )

( )

( )

*

T

T

T

ed
e Q e

ed d t

d
Q

ed t

ed
Q

d d t

e Q S e

e Q e

 
− = − 

−  

 
 

  
   

  − 

    
−    
    

„   (41) 

 where ( ) ( )( )1 2:Λ 2:Λe u t u t d t= − −  and 

( )( ) ( )2 2:Λ 2:Λe u t d t u t d= − − − . combining (38) and 

(41), the following upper bound is obtained for 3V

1 2 12 11

3 2

2 2 2

( ) ( )
*

T

T T
e Q S e

V t U U t
e Q e

 −     
 −     

    
Q   (42) 

 Now, If we combine all the above equations, we can 

have ( )( ) ( ) ( ) ( )1

2ΠT T T

nV t I t t U U t   − + Q„  

where Π  is LMIs (8). Due to the considered 

Lyapunov-Krasovskii candidate, if ( ) 0V t   then the 

origin is asymptotically stable. Therefore, it can be 

simply moved to LMIs (8).  
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