
 [
 D

ow
nl

oa
de

d
fr

om
 jo

ur
na

l.i
tr

c.
ac

.ir
 o

n
20

24
-0

4-
09

]

 1 / 13

https://journal.itrc.ac.ir/article-1-26-en.html

properties, i.e., increasing data volume and dynamic
and evolving nature, mining data streams raised several
challenges [6, 7, 8]. The length of data stream would be
infinite and an algorithm is needed to process the data
in one pass [7, 8]. Therefore, traditional learning
algorithms that require several passes on the training
data cannot be directly applied to the streaming
environment [8, 9]. To solve this problem, ensemble
classification techniques have been proposed.

Ensemble approaches have the advantage that they
can be updated efficiently, and they can be easily made
to adopt the changes in the stream. Several ensemble
approaches have been devised for the classification of
evolving data streams [10, 11, 12]. The general
technique practiced by these approaches is that the data
stream is divided into equal-sized chunks. Each of these
chunks is used to train a classifier. An ensemble of 𝑀
such classifiers is used to test unlabeled data.

Manual labeling of data is both costly and time-
consuming [14, 15]. Therefore, labeled data may be
very scared in a real streaming environment, where
huge volumes of data appear at high speed. Thus, only
a limited amount of training data may be available for
building the classification models, leading to poorly
trained classifiers [16, 17, 18]. One recently proposed
solution to address this issue is to use active learning
(AL) techniques which selectively label number of
informative instances that can form an accurate
predictive model [19, 20, 21]. The goal of active
learning is to maximize the prediction accuracy by only
labeling a limited number of instances. Meanwhile, the
main challenge is about to identify “important”
instances that should be labeled to improve the model
training due to the fact that one could not afford to label
all samples [18]. For example, uncertainty sampling
[22, 23], query by committee (QBC) [20] or query by a
margin [21] principles takes instances in which the

current learners have the highest uncertainty as the most
needed instances for labeling.

Thus, in practice, only small fraction of each data
chunk is likely to be labeled, leaving a major portion of
the chunk as unlabeled. By only selecting the most
informative instances for labeling, active learning could
reduce the labeling cost when labeled instances are hard
to obtain [24]. Facing the same situation, semi-
supervised learning utilizes unlabeled instances to
strengthen trained classifiers on labeled instances [25,
26]. In general, active learning methods ignore the
effect of unlabeled instances. However, unlabeled
instances could strengthen supervised learning tasks
under suitable assumptions. A variety of semi-
supervised learning methods were proposed based on
this idea. Semi-supervised learning methods can be
used to strengthen active learners [24, 27, 28].
Therefore, this paper proposed a hybrid method that
combines active learning and semi-supervised learning
to come up with the mentioned challenges.

In this paper, we present a combination of AL and
self-training approach to which we will refer as semi-
supervised active learning for data stream mining
(SeSAL). To the best of our knowledge, no semi-
supervised active learning combination exists for data
streams. We introduce minimal variance as a
confidence measure in self-training. In multi-class
conditions, AL performs better than SeSAL. The nature
of Self-training causes this problem. Because of the
small initial labeled set, with a high number of classes,
self-training weaken itself by generating incorrectly
labeled data that redound poor classifier. To avoid such
an error propagation, we propose a dynamic self-
training algorithm and apply it in our combination
framework (DSeSAL). Concerning accuracy reduction
in the iterations of self-training algorithm, we indicate
a tolerance measure that prevents such downfall, stop

Fig. 1. General process of data stream mining

Input Applying da-ta streams
approaches

Output

Data Streams
Generators

Sensor Networks

Satellites

Internet Traffic

Call Records

Data Streams

Knowledge

Selecting Some Part of Data
Stream

Preprocessing of Data Streams

Incremental Learning

Knowledge Extraction

Single Pass

Volume 9- Number 4 – Autumn 2017 38

 [
 D

ow
nl

oa
de

d
fr

om
 jo

ur
na

l.i
tr

c.
ac

.ir
 o

n
20

24
-0

4-
09

]

 2 / 13

https://journal.itrc.ac.ir/article-1-26-en.html

the semi-supervised approach and switch to AL phase.
This procedure guarantees to derive a model to predict
future instances’ label as accurately as possible.

The rest of this paper is organized as follows: In the
next section, related works are reviewed. In Section 3,
active learning and semi-supervised learning are
recalled as the foundation of our hybrid framework. In
Section 4, the proposed framework is presented.
Experimental results are reported in Sections 5. Section
6, includes the conclusion.

II.RELATED WORK

 In addition to data stream classification, our
research is closely related to the existing works on both
semi-supervised and active learning. There have been
many works in stream data classification. There are two
main approaches: single model classification and
ensemble classification. Single model classification
techniques incrementally update their model with new
data to cope with the evolution of the stream [1, 30].
These techniques usually require complex operations to
modify the internal structure of the model and may have
a poor performance if there is a concept-drift in the
stream [4, 31, 32]. In data streams with continuous
volumes, the classifier ensemble has shown to be
effective in tackling data volume and concept drifting
challenges [11, 33, 34]. [30] and [33] proposed a
streaming ensemble algorithm that combines decision
tree models using majority voting. Kolter and Maloof
in [35] proposed an AddExp ensemble method by using
weighted online learners to handle drifting concepts.
[28, 36] and [37] have proposed a weighted ensemble
framework for concept drifting data streams and proved
that the error rate of a classifier ensemble is less than a
single classifier trained from the aggregated data of all
consecutive k chunks. These ensemble approaches have
the advantage that they can be more efficiently built
than updating a single model and they observe higher
accuracy than their single model counterpart [4].

The combination of classifier ensemble and active
learning has been reported in much research [19, 39, 40,
41]. Semi-supervised and active learning frameworks
concerning data stream classification, are established
research areas. Here, some recent and reliable research
in this field is introduced. Clustering-training is a semi-
supervised framework that select confident unlabeled
samples using clustering. Then uses them to retrain the

classifier incrementally which is proposed in [42, 43].
Yan Yu et al. in [44] propose an anomaly detection
algorithm for evolving data stream based on semi-
supervised learning, SSAD. The SSAD algorithm
utilizes an attenuation rule to decrease the effect of
historical data on the detection result, which can help
the algorithm to learn from current data that
characterizes the traffic pattern more accurately. SSAD
also uses semi-supervised learning to extend labeled
dataset as a training dataset to do with the problem of
lack of the labeled data.

Realizing that labeling all stream data is expensive
and extremely time-consuming, Fan et al. in [45],
proposed an active mining (AM) framework that labels
samples only if it is necessary. In short, AM uses a
decision tree (trained from the currently labeled data) to
compare the distributions of the incoming samples and
the data collected by hand using the tree branches
(without observing the class labels). If two sets of
samples are subject to different distributions, then
labeling process is triggered to randomly select a few
incoming samples for labeling. Xingquan Zhu et al. in
[37] propose a classifier ensemble based active learning
framework, with an objective of maximizing the
prediction accuracy of the classifier ensemble built
from labeled stream data. We use this framework in our
method and describe it in more details in the next
section.

III.PRELIMINARY

In this section, we recall the two main principles of
our hybrid proposed framework: Active learning and
Semi-supervised learning.

A. Active Learning

Algorithm 1 describes the general AL framework.
A utility function 𝑈𝑀(𝑃𝑖) is the core of each AL
approach. It estimates how useful it would be for a
specific base learner to have an unlabeled example
labeled and, subsequently included in the training set
[17].

B. Semi-Supervised Learning

There are many semi-supervised learning methods
developed. Self-training learning is the one that needs
only one classifier, which is important to meet the speed
requirement [28]. We choose Self-training to strengthen
the learning engine in AL framework with unlabeled
instances. In self-training, first, a classifier is trained
with the small amount of labeled data. The classifier is
then used to classify the unlabeled data. Typically, the
most confident unlabeled points, together with their
predicted labels, are added to the training set. The

Algorithm 1 General AL framework

Given:
B: number of examples to be selected
L: set of labeled examples
P: set of unlabeled examples
UM: utility function

Algorithm:
Loop until stopping criterion is met

1. Learn model 𝑀 from L

2. For all pi ∈ 𝑃: 𝑢pi
 ← 𝑈𝑀(𝑃𝑖)

3. Select B examples pi ∈ 𝑃 with highest utility 𝑢pi

4. Query human annotator for labels of all B examples
5. Move newly labeled examples from P to L

Return L

Algorithm 2 Self-training

Given:

Labeled data {(xi, yi)}i=1
l , unlabeled data {xi}j=l+1

l+u

Algorithm:

1. Initially, let L = {(xi, yi)}i=1
l and U = {xi}j=l+1

l+u .

2. Repeat:
 3. Train f from L using supervised learning.
 4. Apply f to the unlabeled instances in U.

 5. Remove a subset S from U; add x, f(x) x ∈ S}
to L.

Volume 9- Number 4 – Autumn 2017 39

 [
 D

ow
nl

oa
de

d
fr

om
 jo

ur
na

l.i
tr

c.
ac

.ir
 o

n
20

24
-0

4-
09

]

 3 / 13

https://journal.itrc.ac.ir/article-1-26-en.html

classifier is re-trained and the procedure repeated [25,
29]. Note the classifier uses its own predictions to teach
it. The overall process of self-training is shown in
Algorithm 2.

IV.PROPOSED METHOD

There are two important properties in a real stream
environment which lead to many challenges [3];
incremental growth of data volumes and continuous
evolvement of decision concepts. In addition, massive
volumes of data arrive at high speed, so labeled data
may be rare, and it is not possible to manually label all
the data as soon as they arrive. In this condition, the
best way is to use the advantages of abundant
unlabeled data. So, we introduce DSeSAL framework, to
overcome such difficulties and challenges. In this
framework, our contributions are as follows:

A. Combination of Active learning and self-

training.

B. Introduce minimal variance as a confidence

measure in self-training.

C. Propose a dynamic self-training algorithm and

combination with active learning.

D. Indicate tolerance measure that prevents an

accuracy reduction in the iteration of the self-training.

We apply semi-supervised learning with active
learning in a hybrid manner that benefit from both
unlabeled data and selective sampling scenario. The
way we combine semi-supervised and active learning
is shown in Fig. 2. Naturally, stream data could be
stored in the buffer and processed when the buffer is
full, so we divide the stream data into equal-sized
(user-specified) chunks and exploit our learning
process on each of them. Due to the limited number of
labeled data in each chunk, we utilize unlabeled data to
build a stronger model from each chunk, by applying a
semi-supervised approach (Fig. 3).

In order to simplify the problem and deliver an
applicable combining framework data streams, we

assume that the concepts in the data are constantly
evolving, so the proposed framework is carried out on
a regular basis, and the objective is to find important
samples out of a certain number of newly arrived
instances for labeling.

The proposed framework in Fig. 3 can be applied to
a variety of stream applications as long as instance
labeling is of concern. The employment of a classifier
ensemble ensures that framework can handle massive
volumes of stream data effectively and adopt the
changes in the stream [1].

Based on the framework in Fig. 3, we assume that
once the algorithm moves to chunk Sn, all instances in
previous chunks, … , Sn−3, Sn−2, Sn−1, are inaccessible
except classifiers built from them (i.e., … ,Cn−3, Cn−2,
Cn−1).

Relying on the above assumptions, the objective
becomes labeling instances in data chunk Sn such that
a classifier Cn built from the labeled and unlabeled
instances in Sn. The classifier Cn along with the most
recent K − 1 classifiers Cn−k+1, … , Cn−1 , can form a
classifier ensemble with maximum prediction accuracy
on unlabeled instances in Sn.

A. Variance Reduction for Error Minimization

In this part, we first argue that minimizing the
classifier variance is equivalent to minimizing its error
rate and then apply variance as a confidence measure in
our semi-supervised approach. In addition, we shortly
explain an active learning approach and optimal-weight
calculation method that we use in the classifier
ensemble.

 Confidence measure in self-training

Let x be an input instance and ci is a class label and
p(ci|x) is a classifier’s probability estimation in
classifying x, and then the actual probability fci

(x) is

shown as follows:

where εi(x), is an added error. If we consider that the
added error of the classifier mainly comes from two
sources, i.e., classifier bias and variance [46, 47, 48],
then the added error εi(x) in (1) can be decomposed

𝑓𝑐𝑖
(𝑥) = 𝑝(𝑐𝑖|𝑥) + 𝜀𝑖(𝑥) (1)

L1 U1 L n-k+1 Un-k+1

L n-k+2 Un-k+2

Ln Un

Input: Data streams (Chunking)

Classifier 1

Cn-k+1

Cn-k+2

Cn

 Chunkn-k+1 Chunk1 Chunkn-k+2 Chunkn

Classifier Ensemble M

Wn

Wn-k+2

Wn-k+1

W1

Active Learning phase

P
re

d
ic

ti
o

n

Semi-Supervised Learning phase

Fig. 2. A general classifier ensemble framework for
learning from data streams

Hybrid Framework

Chunked
Data

Semi-supervised

Learning

Active Learning

Classified

Data

Fig. 3. Hybrid of Semi-supervised and Active Learning black
box

Volume 9- Number 4 – Autumn 2017 40

 [
 D

ow
nl

oa
de

d
fr

om
 jo

ur
na

l.i
tr

c.
ac

.ir
 o

n
20

24
-0

4-
09

]

 4 / 13

https://journal.itrc.ac.ir/article-1-26-en.html

into two terms, i.e., βci
 and ηci

(x) , where βci

represents the bias of the current learning algorithm,
and ηci

(x) is a random variable that accounts for the

variance of the classifier (with respect to class ci),
which gives [49, 50]:

According to [51], classifiers that trained by using
the same learning algorithm but different versions of
the training data suffer from the same level of bias but
different variance values. Assuming that we are using
the same learning algorithm in our analysis, without
loss of generality, we can ignore the bias term.
Consequently, the learner’s probability in classifying x
into class ci becomes:

According to [51] concluded that the classifier’s
expected added error can be defined as:

Where p′(.) denotes the derivate of p(.) and p(ci|x
∗)

is the probability distribution of class i for all points

x∗, s = p′ cj|x
∗ − p′(ci|x

∗), which is independent of

the trained model. ηci
(x) is a random variable that

accounts for the variance of the classifier (with respect

to class ci) and σηci

2 denotes the variance of ηci
(x). As

Equation (4) indicates the expected added error of a
classifier is proportional to its variance; thus, reducing
this quantity reduces the classifier’s expected error
rate.

Based on the framework in Fig. 3, we apply
variance-base self-training in SSL phase. The main
idea is first to train a classifier on labeled data. The
classifier is then used to predict the labels for the
unlabeled data. A subset of the unlabeled data, jointly
with their predicted labels, is then selected to augment
the labeled data. Typically, this subset consists of few
unlabeled instances with the most confident
predictions. The classifier is now re-trained on the
larger set of labeled data, and the procedure repeats
[43]. We use C4.5 [53] as our base learner. For
selecting a subset of unlabeled instances, we use
minimum classifier variance on current unlabeled set
in each chunk based on Fig. 3. Following above
conclusion, smaller variance means the prediction of

our model is more confident. In our system, σηci

2 is

calculated by:

where Λx , an evaluation set (Λx = Ln ∪ Ix̂ , where

Ix̂denotes Ixwith a predicted class label.), is used to
calculate the classifier variance, |Λx| denotes the

number of instances in Λx , yci
x is the genuine class

probability of instance x. If x is labeled as classci, then

yci
x is equal to 1; otherwise, it is equal to 0 and fci

(x)

denotes the probability of base classifier in classifying
x into class ci . Consequently, the variance of the
classifier over all class c1, c2,… , cl is given by:

 Variance and optimal weight classifier ensemble

As shown in Fig. 3, k base classifiers form a
classifier ensemble M. The probability of the ensemble
M in classifying an instance x is given by a linear
combination of the probabilities produced by all of its
base classifier. Each classifier Cm has a weight value
wm. The probability of M in classifying x into class ci
is given by (7), where fci

m(x) denotes the probability of

base classifier Cm in classifying x into class ci, i.e.,

This probability can be expresses as:

where ηci
E (x) is a random variable accounting for the

variance of the classifier ensemble M with respect to
class ci, and

The variance of ηci
E (x) becomes

σηci
m

2 is explained in SSL Phase. The total variance of

the ensemble M is then given by:

According to (4), expected added error can be written
as:

Equation (12) states that to minimize the error rate
of a classifier ensemble, we can minimize its variance
instead. This objective can be achieved through the
adjustment of the weight value associated with each of

𝑓𝑐𝑖
(𝑥) = 𝑝(𝑐𝑖|𝑥) + 𝛽𝑐𝑖

+ η𝑐𝑖
(𝑥) (2)

𝑓𝑐𝑖
(𝑥) = 𝑝(𝑐𝑖|𝑥) + η𝑐𝑖

(𝑥) (3)

Erradd =
σηci

2 + σηcj

2

s
=

σηc

2

s
 (4)

σηci
E

2 = ∑ (𝑤𝑚)2σηci
m

2

𝑛

𝑚=𝑛−𝑘+1

(∑ 𝑤𝑚

𝑛

𝑚=𝑛−𝑘+1

)

2

⁄ (10)

σηci

2 =
1

|Λx|
∑ (yci

x − fci
(x))

2

(x,c)ϵΛx

 (5)

σηc

2 = ∑σηci

2

l

i=1

 (6)

 𝑓𝑐𝑖

𝐸(𝑥) = ∑ 𝑤𝑚𝑓𝑐𝑖

𝑚(𝑥)
𝑛

𝑚=𝑛−𝑘+1
∑ 𝑤𝑚

𝑛

𝑚=𝑛−𝑘+1
⁄

= 𝑝(𝑐𝑖 |𝑥) + ∑ 𝑤𝑚ηci

m
𝑛

𝑚=𝑛−𝑘+1
∑ 𝑤𝑚

𝑛

𝑚=𝑛−𝑘+1
⁄

(7)

𝑓𝑐𝑖

𝐸(𝑥) = 𝑝(𝑐𝑖|𝑥) + ηci

E (x) (8)

ηci

E = ∑ 𝑤𝑚ηci

m

𝑛

𝑚=𝑛−𝑘+1

∑ 𝑤𝑚

𝑛

𝑚=𝑛−𝑘+1

⁄ (9)

σηE
2 = ∑ σηci

E
2

l

i=1

= ∑ (𝑤𝑚)2σηc
m

2

𝑛

𝑚=𝑛−𝑘+1

(∑ 𝑤𝑚

𝑛

𝑚=𝑛−𝑘+1

)

2

⁄ (11)

Erradd
E =

σηE
2

S
 (12)

Volume 9- Number 4 – Autumn 2017 41

 [
 D

ow
nl

oa
de

d
fr

om
 jo

ur
na

l.i
tr

c.
ac

.ir
 o

n
20

24
-0

4-
09

]

 5 / 13

https://journal.itrc.ac.ir/article-1-26-en.html

M’s base classifier Cm . In [37], an optimal-weight
calculation method is applied to assign weight values
to the classifiers such that they can form an ensemble
with minimum error rate. To find the weight
values wm,m = n − k + 1, … , n , an optimization
problem is solved, and then weight values for each
individual classifier of the classifier ensemble M are
given by:

The minimization of the classifier ensemble error rate
through variance reduction acts as a principle to
actively select mostly needed instances for labeling.

B. A COMBINED FRAMEWORK OF DYNAMIC

SELF-TRAINING AND ACTIVE LEARNING

The process of the DSeSAL method is given in

Algorithm 3. Following the conclusions derived from

Section IV, we propose a combined framework of AL
and SSL approaches for data stream classification. We

introduce variance-based self-training. Self-training is

characterized by the fact that the learning process uses

its own predictions to teach it.
On the other hand, in stream environments, initial

labeled data may be very scarce. So, it is conceivable
that an early mistake made by the base classifier

(which is not perfect to start with, due to a small initial
labeled set) can weaken itself by generating incorrectly
labeled data. Re-training with this data will lead to an
even worse classifier in the next iteration. It is so
expected in multi-class condition. Due to the limited
initial labeled set, the base classifier may not be able to
identify and learn unseen classes. To alleviate this
problem, we propose dynamic self-training, as shown
on Steps 5.1 to 5.10 in Algorithm 3.

To avoid error propagation in self-training
iterations, we specify a tolerance value Τ for accuracy
reduction. In our system, Τ is calculated by:

where Accb is the base model accuracy on unlabeled
data in the related chunk and Acc1 is the accuracy of
the model that build from the first iteration in self-

training. Self-training iterations continue provided:

This condition prevents classifier accuracy
deterioration and guarantees to derive a model to
predict future instances’ label as accurately as possible.
The way that the condition in Equation (15) is applied
in self-training algorithm, is shown in Fig 4. In
Algorithm 3, steps 6 to 11, present the AL procedure.

𝑤𝑚 =
1

1 + σηc
m

2 (∑ 1n
t=n−k+1,t≠m σ

ηc
t

2⁄)
 (13)

𝐴𝑐𝑐𝑖 > (𝐴𝑐𝑐𝑖−1 − Τ) 𝑎𝑛𝑑 𝐴𝑐𝑐𝑖 > (𝐴𝑐𝑐𝑖−2 − Τ 2⁄) (15)

Τ = | 𝐴𝑐𝑐𝑏 − 𝐴𝑐𝑐1| (14)

Input: (1) current data chunk Sn; and (2) 𝑘 − 1 classifiers 𝐶𝑛−𝑘+1, … , 𝐶𝑚, … , 𝐶𝑛−1built from the most recent data chunks;

Parameters: (1) 𝛼, the percentage of instances should be labeled from 𝑆𝑛 by AL; (2) 𝛽; maximum percentage of instances should

be labeled from 𝑆𝑛 by DSSL; (3) 𝛾, # of instances labeled in each SSL iteration

Objective: Updated ensemble 𝑀

1. 𝐿𝑛 ← ∅; 𝑈𝑛 ← 𝑆𝑛

2. 𝐿𝑛 ← Randomly label a tiny portion, e.g. 1~2.5% of instances from 𝑈𝑛.

3. 𝐸 ← 0 //recording the iteration of SSL (E = β γ⁄)

4. Build a classifier 𝐶𝑛 from 𝐿𝑛 and calculate the base model accuracy 𝐴𝑐𝑐𝑏 .

5. While 𝐿𝑛 < |𝑆𝑛|. 𝛽 //SSL phase continue until reach the stop point

5.1. For each instance 𝐼𝑥in 𝑈𝑛

a. Use the current classifier to predict a class label for 𝐼𝑥.

b. Build an evaluation set Λ𝑥 = 𝐿𝑛 ∪ 𝐼�̂�, where 𝐼�̂�denotes 𝐼𝑥with a predicted class label.

c. Calculate the confidence measure (classifier variance) on Λ𝑥(Eqs. (5) and (6)).

End For

5.2. 𝑗 ← 0 // recording the number of labeled instances in each SSL iteration

5.3. Choose instance 𝐼𝑥in 𝑈𝑛with smallest variance, put labeled 𝐼𝑥 into𝐿𝑛, i.e. 𝐿𝑛 = 𝐿𝑛 ∪ 𝐼𝑥; 𝑈𝑛 = 𝑈𝑛/ 𝐼𝑥.

5.4. 𝑗 ← 𝑗 + 1

5.5. If 𝑗 < 𝛾

a. Repeat Step 5.3.

5.6. Else

a. 𝐸 = 𝐸 + 1

5.7. Update classifier by a new 𝐿𝑛.

5.8. Calculate the current model accuracy 𝐴𝑐𝑐𝑖 .

5.9. If 𝐸 = 1

a. calculates the tolerance value Τ (Eq. (11)).

5.10. If 𝐴𝑐𝑐𝑖 < (𝐴𝑐𝑐𝑖−1 − Τ) 𝑂𝑅 𝐴𝑐𝑐𝑖 < (𝐴𝑐𝑐𝑖−2 − Τ 2⁄)

a. Return the model to previous state.

b. Return the 𝐿𝑛 and 𝑈𝑛 to previous state.

c. break

End While

6. Initialize weight value 𝑤𝑚for each classifier 𝐶𝑚, 𝑚 = 𝑛 − 𝑘 + 1, … , 𝑛, where 𝑤𝑚is equal to 𝐶𝑚’s prediction accuracy on 𝐿𝑛.

 7. Use 𝐶𝑛−𝑘+1, … , 𝐶𝑚, … , 𝐶𝑛−1 to form a classifier ensemble 𝑀 as shown in Fig. 1.

 8. For each instance 𝐼𝑥in 𝑈𝑛, Calculate ensemble variance (Eq. (11)) as instance 𝐼𝑥’s expected ensemble variance on 𝑀.

9. Choose instance 𝐼𝑥in 𝑈𝑛with largest variance, label 𝐼𝑥and put labeled 𝐼𝑥 into𝐿𝑛, i.e. 𝐿𝑛 = 𝐿𝑛 ∪ 𝐼𝑥; 𝑈𝑛 = 𝑈𝑛/ 𝐼𝑥.

10. Recalculate the ensemble variance of each base classifier 𝐶𝑚 on 𝐿𝑛 and find optimum weight value 𝑤𝑚(Eq. (13)) for all base

classifiers (update the ensemble by new weight values).

 11. Check if α percentages of instances are labeled.

Algorithm 3 The DSeSAL method

Volume 9- Number 4 – Autumn 2017 42

 [
 D

ow
nl

oa
de

d
fr

om
 jo

ur
na

l.i
tr

c.
ac

.ir
 o

n
20

24
-0

4-
09

]

 6 / 13

https://journal.itrc.ac.ir/article-1-26-en.html

Selecting the informative instance and update the
ensemble are shown in Steps 6 to 9 and Step 10,
respectively.

V. EXPERIMENTAL RESULT

A. Implementation

A set of experiments is carried out to compare our
algorithm with the results of [37] (MV), random
sampling (RS) and uncertainty sampling (US). All
methods are implemented in MATLAB with an
integration of WEKA data mining tool (Witten, &
Frank, 2005). All the tests are conducted on a PC
machine with a 2.71GH CPU and 2.0G memory.

B. Data Streams

Synthetic data: In order to simulate the magnitude
and speed of concept drift in data streams, a hyper-plane
based synthetic data stream generator is applied which
is so popular in stream data mining research [11, 12,
33]. The hyper-plane of the data generation is
controlled by a non-linear function defined by Equation
(16). Given an instance 𝑥 , its 𝑓(𝑥) value defined by
Equation (16) determines its class label. Assume 𝑓(𝑥)
value larger than a threshold 𝜃 indicates that x belongs
to class A, otherwise, 𝑥 belongs to class B, then
changing the values of ai, 𝑖 = 1, … , 𝑑 and threshold 𝜃
may make an instance 𝑥 have different probability
𝑝(𝑐𝑖|𝑥) with respect to a particular class 𝑐𝑖.

In Equation (16), d is the total dimensions of the
input data x. Each dimension xi, i = 1,… , d, is a value
randomly generated in the range of [0, 1]. A weight
value ai, i = 1, … , d , is associated with each input
dimension and the value of ai is initialized randomly in
the range of [0, 1] at the beginning. In data generation
process, we will gradually change the value of ai to
simulate concept drifting. The general concept drifting
is controlled through the following three parameters [1,
11, 33]: (1) t, controlling the magnitude of the concept
drifting (in every N instances): (2) p, controlling the
number of attributes whose weights are involved in the
change; (3) h and ni ∈ {−1, 1}, controlling the weight
adjustment direction for attributes involved in the

change. After the generation of each instance x, ai is
adjusted continuously by ni ⋅ t / N (as long as ai is

involved in the concept drifting), and value a0 is
recalculated to change the decision boundaries
(concept drifting). Meanwhile, after the generation of
N instances, there is a h percentage of chances that
weight change will invert its direction, i.e., ni = −ni
for all attributes ai involved in the change. In
summary, c2-I100k-d10-p5-N1000-t0.1-h0.2 denotes
a two-class data stream with 100k instances, each
containing 10 dimensions. The concept drifting
involves 5 attributes, and their weights change with a
magnitude of 0.1 in every 1000 instances and weight
inverts the direction with 20% of chance.

 Real-world data: Due to the unavailability of
public benchmark data streams (from classification
perspectives), we select five relatively large datasets
from UCI data repository [54] and treat them as data
streams for our experiments. The datasets we selected
are Adult, Magic Gamma Telescope, Covtype, Shuttle
and Letter (as listed in Table 1).

Among these datasets, all of them except Letter are
considered dense datasets, which means that a small
portion of examples can learn genuine concepts quite
well. The class distribution in the Covtype and Shuttle
datasets are severely biased. Letter is a sparse dataset
and 26 classes of examples are evenly distributed, and
a small portion of examples are insufficient to learn
genuine concepts underlying the data.

C. Evaluation

All results are 10-fold cross-validation accuracies
which we set in Weka. C4.5 is our base learner in all
experiments.

Learning with Fixed α and β Values: We apply
our proposed framework to two types of synthetic data
streams: two-class (Table 2) and four-class (Table 3).
The accuracies in the tables denote an ensemble
classifier’s average accuracy in predicting instances in
the current data chunk Sn, with chunk sizes varying
from 250 to 2000. We fix the α and β values to 0.1 and
set the k value to 10, which means that 10% of the
instances are labeled for each data chunk, and only the

N
am

e

o
f

in
stan

ce
s

o
f

attrib
u

tes

o
f

classe
s

M
ajo

rity:
M

in
o

rity
class ratio

Adult 48,842 15 2 0.761:0.239

Magic 19,020 10 2 0.351:0.649

Covtype 581,012 55 7 0.488:0.005

Shuttle 58,000 9 7 0.034:0.8

Letter 20,000 17 26 0.041:0.037

f(x) = ∑
ai

xi + (xi)2

d

i=1
 (16)

Table. I. Data characteristics of the real-world data used for
evaluation

Fig. 4. Error propagation prevention condition in self-
training process

Yes

No

Calculating the

accuracy of Current

model (𝐴𝑐𝑐𝑖)

One loop of Self-

training approach

Acci > (Acci-1 – T)

and

Acci > (Acci-2 – T/2)

Go to Active Learning Phase

Ln Un

Chunkn

Volume 9- Number 4 – Autumn 2017 43

 [
 D

ow
nl

oa
de

d
fr

om
 jo

ur
na

l.i
tr

c.
ac

.ir
 o

n
20

24
-0

4-
09

]

 7 / 13

https://journal.itrc.ac.ir/article-1-26-en.html

most recent ten classifiers are used to form a classifier
ensemble.

The results from Table 2 and 3 indicate that the
performance of all methods deteriorates as a
consequence of the shrinking chunk size. This is
because a smaller data chunk contains a few examples,
and sparse training examples usually produce inferior
learners in general. The advantage of having a small
chunk size is the training efficiency.

For any particular method, Table 2 and 3 indicate
that the results in multi-class data streams are
significantly worse than a binary class data stream.

This shows that learning from a multiclass data stream
is more challenging than a binary class data stream.

Fig. 5 shows the results from Table 2 and 3 as two
histograms. Comparing all five methods, we can easily
conclude that SeSAL and DSeSAL receive the best
performance across all data streams. The US is not an
option for learning from data streams, and its
performance is constantly worse than RS regardless of
whether the underlying data are binary or multiple
classes. The results from RS are surprisingly good, and
it is generally quite difficult to beat RS with a
substantial amount of improvement.

2) Learning with Different β Value: β is a percentage

of instances should be labeled from Sn by self-training

in SeSAL model. In Fig. 6, we compare SeSAL average

accuracy w.r.t. different β values on synthetic data.

3) Learning with Different 𝛂 Value: In Fig. 7, we
compare all five methods w.r.t. different α values. Not
surprisingly, when α value increases, all methods gain
better prediction accuracies. This is due to the
increasing number of labeled instances helps build
strong base classifiers.

Overall, SeSAL, DSeSAL and MV achieve the best
performance, and US is inferior to RS in the majority
of the cases. For multiclass data streams, the
performance of US is unsatisfactory and is largely
inferior to the RS. To get the best performance and the
lowest cost, we choose 0.1 for α value.

Chunk Size RS US MV SeSAL DSeSAL

250 74.54 75.51 81.84 83.35 84.02

500 83.07 85.16 87.62 89.56 89.79

750 86.10 88.14 89.48 92.63 92.67

1000 86.43 88.79 90.12 94.17 94.37

2000 86.47 88.69 89.16 93.78 94.15

Table. II. Average classification accuracy on c4-I50k-d10-
p5-N1000-t0.1-h0.2 (α and β=0.1)

Chunk Size RS US MV SeSAL DSeSAL

250 42.27 41.34 47.21 51.13 53.76

500 50.47 49.91 54.51 57.98 59.24

750 58.11 56.48 60.12 64.63 67.04

1000 63.08 61.92 65.14 68.52 71.51

2000 71.87 70.98 73.09 77.84 79.86

Table. III. Average classification accuracy on c4-I50k-d10-
p5-N1000-t0.1-h0.2 (α and β=0.1)

Fig. 6. SeSAL average accuracy on synthetic data (chunk
size=500, α=0.1)

30

40

50

60

70

80

90

100

250 500 750 1000 2000

A
c
c
u

r
a

c
y

Chunk Size

RS

US

MV

SeSAL

DSeSAL

(b)
(a)

30

40

50

60

70

80

90

250 500 750 1000 2000

A
c
c
u

r
a

c
y

Chunk Size

RS

US

MV

SeSAL

DSeSAL

Fig. 5. Average classification accuracy histogram on (α and β=0.1): (a) c2-I50k-d10-p5-N1000-t0.1-h0.2, (b) c4-I50k-d10-

p5-N1000-t0.1-h0.2

Volume 9- Number 4 – Autumn 2017 44

 [
 D

ow
nl

oa
de

d
fr

om
 jo

ur
na

l.i
tr

c.
ac

.ir
 o

n
20

24
-0

4-
09

]

 8 / 13

https://journal.itrc.ac.ir/article-1-26-en.html

4) Time Complexity and Runtime Performance:
The time complexity of the proposed model in
Algorithm 3 can be decomposed into two major parts:
time complexity of semi-supervised phase and active
learning part. As mentioned above, we use MV for
Active learning phase. The time complexity of this
phase is 𝑂(𝑁2.𝑀) [37].

same measure (variance) in semi-supervised and
active learning phases of the unlabeled instance
selection. The total time complexity is bounded by two
important factors: 1) the number of instances in each
chunk N and 2) the number of data chunks M. Because
model training in each chunk is nonlinear w.r.t. the
chunk size, we may prefer a relatively small chunk size
to save the computational cost.

The time complexity of the semi-supervised part is
also O(N2.M), where M is the number of chunks, each
of which contains N instances. Because we use the

In Fig. 8, we report the system runtime
performance, where the x-axis denotes the chunk size,
and the y-axis denotes the average system runtime
w.r.t. a single data chunk. Not surprisingly, RS has
demonstrated itself to be the most efficient method due
to its simple random selection nature. The MV, SeSAL
and DSeSAL methods is the most time-consuming
approach mainly because the calculation of the
ensemble variance and the weight updating requires
additional scanning in each chunk. The larger the
chunk size, the more expensive the MV, SeSAL, and
DSeSAL can be, because the weight we obtain the best

tradeoff between computational cost and accuracy,
when the chunk size is 500.

5) SeSAL and DSeSAL Performance on Real-
World Data: For each data stream, we report its results
using chunk size 500. We fix α and β value to 0.1 and
set value k to 10, which means that only the most recent
10 classifiers are used to form a classifier ensemble. In
Fig. 9, we report the algorithm performances on five
real-world data.

According to the results illustrated in Table 4 and
Fig. 9, SeSAL provides superior performance than MV
on four datasets. These are dense datasets, which
means that a small portion of examples can learn
genuine concepts quite well. The Letter is a sparse
dataset and 26 classes of examples are evenly
distributed, and a small portion of examples are
insufficient to learn genuine concepts underlying the
data. In letter, SeSAL performs inferior to MV in the
majority of cases, but DSeSAL solves this problem and
provides a reasonable result. The performances of
SeSAL and DSeSAL in binary class datasets are close
to each other. In fact, DSeSAL eliminates the lack of
SeSAL in multi-class problems.

Different from synthetic data streams where the
decision concepts in data chunks gradually change
following the formula given in Eq. (13), the data
chunks of the real-world data do not share such
property, and the concept drifting among data chunks
are not clear to us (in fact, we do not even know the
genuine concepts of the data). Because of this, we
compare algorithms on two types of test sets. In Fig. 9,

Table. IV. Average accuracies on real-world datasets

Datasets MV SeSAL DSeSAL

Adult 83.5756 86.0346 86.1398

Magic 79.1676 83.3018 83.7278

Covtype 66.9895 71.3863 78.9498

Shuttle 97.8795 98.8871 99.567

Letter 37.3099 27.9810 47.3161

(a) (b)

Fig. 7. Classification average accuracy on (chunk size=500, β=0.1): (a) c2-I50k-d10-p5-N1000-t0.1-h0.2, (b) c4-I50k-d10-
p5-N1000-t0.1-h0.211

Fig. 8. System runtime with respect to different chunk sizes
(c4-I50k-d10-p5-N1000-t0.1-h0.2 stream, α and β=0.1)

Volume 9- Number 4 – Autumn 2017 45

 [
 D

ow
nl

oa
de

d
fr

om
 jo

ur
na

l.i
tr

c.
ac

.ir
 o

n
20

24
-0

4-
09

]

 9 / 13

https://journal.itrc.ac.ir/article-1-26-en.html

the algorithms are tested on all instances in data
chunkSn . In Fig. 10, the algorithms are tested on a
separate test set generated from 10-fold cross-
validation. The x-axis denotes the ratio of the initial
labeled set to chunk size.

The results in Figs. 9 and 10 indicate that, overall,
the accuracies evaluated on individual data chunks are
slightly better than the accuracies acquired from the
isolated test set. But overall, an algorithm’s relative
performance on each individual data chunk or on a
separate test set does not make a big difference.

VI.CONCLUSION

In this paper, we propose a new research topic on
the combination of active and semi-supervised
learning for data streams with increasing data volumes
and evolving nature. Our goal is to derive a model to
predict future instances’ label as accurately as possible.
In a real stream environment, labeled data may be

fairly scarce and labeling all data is quite difficult and
expensive. Active learning and semi-supervised
learning are two approaches to alleviate the burden of
labeling large amounts of data. We use Active learning
and semi-supervised learning to get the advantage of
both methods, to boost the performance of learning
algorithm.

In our proposed framework, we use self-training
with a new confidence measure to take advantage of
unlabeled instances to augment the performance of
learning algorithm. In multiclass conditions, we face
an error propagation and accuracy reduction in SSL
phase. To address this problem, we propose a dynamic
self-training algorithm (DSeSAL). We control the
accuracy reduction by specifying a tolerance measure.
Moreover, in our experiments on real data sets, we
compared our algorithm with a fully supervised active
learning method. The experiments show that the

proposed method outperforms the compared methods.

(a) (b)

(c) (d)

(e)

Fig. 9. Classifier ensemble accuracy on data chunk S¬¬n (chunk size=500, α and β=0.1): (a) Adult ,(b) Magic ,(c) CoverType
,(d) Shuttle ,(e) Letter

Volume 9- Number 4 – Autumn 2017 46

 [
 D

ow
nl

oa
de

d
fr

om
 jo

ur
na

l.i
tr

c.
ac

.ir
 o

n
20

24
-0

4-
09

]

 10 / 13

https://journal.itrc.ac.ir/article-1-26-en.html

References

[1] Domingos, Pedro, and Geoff Hulten. “Mining high-speed data

streams.” In Proceedings of the sixth ACM SIGKDD
international conference on Knowledge discovery and data

mining, 2000, pp. 71-80. ACM.

[2] Han, Jiawei, Jian Pei, and Micheline Kamber. Data mining:
concepts and techniques. Elsevier, 2011.

[3] Kholghi, Mahnoosh, Hamed Hassanzadeh, and
MohammadReza Keyvanpour. “Classification and evaluation

of data mining techniques for data stream requirements.” In
Computer Communication Control and Automation (3CA),

2010 International Symposium on, vol. 1, pp. 474-478. IEEE,
2010.

[4] Masud, Mohammad M., Jing Gao, Latifur Khan, Jiawei Han,

and Bhavani Thuraisingham. “A practical approach to classify
evolving data streams: Training with limited amount of

labeled data.” In Data Mining, 2008. ICDM'08. Eighth IEEE
International Conference on, pp. 929-934. IEEE, 2008.

[5] Rutkowski, Leszek, Maciej Jaworski, Lena Pietruczuk, and

Piotr Duda. "A new method for data stream mining based on
the misclassification error." IEEE transactions on neural

networks and learning systems 26, no. 5 (2015): 1048-1059.

[6] Aggarwal, Charu C. Data streams: models and algorithms.
vol. 31. Springer Science & Business Media, 2007.

[7] Kholghi, Mahnoosh, and Mohammadreza Keyvanpour. "An

analytical framework for data stream mining techniques based
on challenges and requirements." arXiv preprint

arXiv:1105.1950 (2011).

[8] Wang, Haixun, Jian Yin, Jian Pei, Philip S. Yu, and Jeffrey
Xu Yu. “Suppressing model overfitting in mining concept-

drifting data streams.” In Proceedings of the 12th ACM

SIGKDD international conference on Knowledge discovery

and data mining, pp. 736-741. ACM, 2006.

[9] Krawczyk, Bartosz, Leandro L. Minku, João Gama, Jerzy
Stefanowski, and Michał Woźniak. "Ensemble learning for

data stream analysis: a survey." Information Fusion 37
(2017): 132-156.

[10] Yang, Ying, Xindong Wu, and Xingquan Zhu. “Combining

proactive and reactive predictions for data streams.” In
Proceedings of the eleventh ACM SIGKDD international

conference on Knowledge discovery in data mining, pp. 710-
715. ACM, 2005.

[11] Gao, Jing, Wei Fan, Jiawei Han, and Philip S. Yu. “A general

framework for mining concept-drifting data streams with
skewed distributions.” In Proceedings of the 2007 SIAM

International Conference on Data Mining, pp. 3-14. Society
for Industrial and Applied Mathematics, 2007.

[12] Wang, Haixun, Wei Fan, Philip S. Yu, and Jiawei Han.
“Mining concept-drifting data streams using ensemble

classifiers.” In Proceedings of the ninth ACM SIGKDD
international conference on Knowledge discovery and data

mining, pp. 226-235. AcM, 2003.

[13] Brzezinski, Dariusz, and Jerzy Stefanowski. "Combining
block-based and online methods in learning ensembles from

concept drifting data streams." Information Sciences 265
(2014): 50-67.

[14] Scholz, Martin, and Ralf Klinkenberg. “An ensemble

classifier for drifting concepts.” In Proceedings of the Second
International Workshop on Knowledge Discovery in Data

Streams, pp. 53-64. Porto, Portugal, 2005.

[15] Witten, Ian H., Eibe Frank, Mark A. Hall, and Christopher J.
Pal. Data Mining: Practical machine learning tools and

techniques. Morgan Kaufmann, 2016.

(a) (b)

(c)

Fig. 10. Classifier ensemble accuracy on a separate test set (chunk size=500, α and β=0.1): (a) Adult, (b) CoverType, (c) Letter

Volume 9- Number 4 – Autumn 2017 47

 [
 D

ow
nl

oa
de

d
fr

om
 jo

ur
na

l.i
tr

c.
ac

.ir
 o

n
20

24
-0

4-
09

]

 11 / 13

https://journal.itrc.ac.ir/article-1-26-en.html

[16] Zhu, Xingquan, and Xindong Wu. “Class noise vs. attribute

noise: A quantitative study.” Artificial intelligence review 22,
no. 3 (2004): 177-210.

[17] Azimi, Farzaneh, and Karim Faez. "improvement of learning

from concept drifting data streams with unlabeled and mixed
data."

[18] Rutkowski, Leszek, Maciej Jaworski, Lena Pietruczuk, and

Piotr Duda. “A new method for data stream mining based on
the misclassification error.” IEEE transactions on neural

networks and learning systems 26, no. 5 (2015): 1048-1059.

[19] Settles, Burr. “Active learning literature survey.” University

of Wisconsin, Madison 52, no. 55-66 (2010): 11.

[20] Settles, Burr. “From theories to queries: Active learning in
practice.” Active Learning and Experimental Design W

(2011): 1-18.

[21] Hassanzadeh, Hamed, and Mohammadreza Keyvanpour. "A
two-phase hybrid of semi-supervised and active learning

approach for sequence labeling." Intelligent Data Analysis 17,
no. 2 (2013): 251-270.

[22] Campbell, Colin, Nello Cristianini, and Alex Smola. “Query

learning with large margin classifiers.” In ICML, 2000, pp.
111-118.

[23] Aggarwal, Charu C., and S. Yu Philip. "A survey of uncertain

data algorithms and applications." IEEE Transactions on
Knowledge and Data Engineering 21, no. 5 (2009): 609-623.

[24] Muslea, Ion, Steven Minton, and Craig A. Knoblock. “Active

learning with multiple views.” Journal of Artificial
Intelligence Research 27 (2006): 203-233.

[25] Huang, Gao, Shiji Song, Jatinder ND Gupta, and Cheng Wu.
"Semi-supervised and unsupervised extreme learning

machines." IEEE Transactions on Cybernetics 44, no. 12
(2014): 2405-2417.

[26] Imani, Maryam Bahojb, Mohamad Reza Keyvanpour, and

Reza Azmi. "Semi-supervised Persian font recognition."
Procedia Computer Science 3 (2011): 336-342.

[27] Gadde, Akshay, Aamir Anis, and Antonio Ortega. "Active

semi-supervised learning using sampling theory for graph
signals." In Proceedings of the 20th ACM SIGKDD

international conference on Knowledge discovery and data
mining, pp. 492-501. ACM, 2014.

[28] Zhu, Xiaojin, John Lafferty, and Zoubin Ghahramani.

“Combining active learning and semi-supervised learning
using gaussian fields and harmonic functions.” In ICML 2003

workshop on the continuum from labeled to unlabeled data in
machine learning and data mining, vol. 3. 2003.

[29] Chapelle, Olivier, Bernhard Scholkopf, and Alexander Zien.

“Semi-supervised learning (chapelle, o. et al., eds.;
2006)[book reviews].” IEEE Transactions on Neural

Networks 20, no. 3 (2009): 542-542.

[30] Rutkowski, Leszek, Lena Pietruczuk, Piotr Duda, and Maciej
Jaworski. “Decision trees for mining data streams based on

the McDiarmid's bound.” IEEE Transactions on Knowledge
and Data Engineering 25, no. 6 (2013): 1272-1279.

[31] Chandra, Swarup, Justin Sahs, Latifur Khan, Bhavani
Thuraisingham, and Charu Aggarwal. "Stream mining using

statistical relational learning." In Data Mining (ICDM), 2014
IEEE International Conference on, pp. 743-748. IEEE, 2014.

[32] Zhang, Peng, Xingquan Zhu, and Li Guo. “Mining data

streams with labeled and unlabeled training examples.” In
Data Mining, 2009. ICDM'09. Ninth IEEE International

Conference on, pp. 627-636. IEEE, 2009.

[33] Street, W. Nick, and YongSeog Kim. “A streaming ensemble
algorithm (SEA) for large-scale classification.” In

Proceedings of the seventh ACM SIGKDD international
conference on Knowledge discovery and data mining, pp.

377-382. ACM, 2001.

[34] Bose, RP Jagadeesh Chandra, Wil MP Van Der Aalst, Indre
Zliobaite, and Mykola Pechenizkiy. "Dealing with concept

drifts in process mining." IEEE transactions on neural
networks and learning systems 25, no. 1 (2014): 154-171.

[35] Kolter, Jeremy Z., and Marcus A. Maloof. “Using additive

expert ensembles to cope with concept drift.” In Proceedings
of the 22nd international conference on Machine learning, pp.

449-456. ACM, 2005.

[36] Brzezinski, Dariusz, and Jerzy Stefanowski. "Reacting to

different types of concept drift: The accuracy updated
ensemble algorithm." IEEE Transactions on Neural Networks

and Learning Systems 25, no. 1 (2014): 81-94.

[37] Zhu, Xingquan, Peng Zhang, Xiaodong Lin, and Yong Shi.
“Active learning from stream data using optimal weight

classifier ensemble.” IEEE Transactions on Systems, Man,
and Cybernetics, Part B (Cybernetics) 40, no. 6 (2010): 1607-

1621.

[38] Zhu, Xingquan, Xindong Wu, and Qijun Chen. “Eliminating
class noise in large datasets.” In ICML, vol. 3, pp. 920-927.

2003.

[39] Melville, Prem, and Raymond J. Mooney. “Diverse

ensembles for active learning.” In Proceedings of the twenty-
first international conference on Machine learning, p. 74.

ACM, 2004.

[40] Mamitsuka, Hiroshi, and Naoki Abe. “Active ensemble
learning: Application to data mining and bioinformatics.”

Systems and Computers in Japan 38, no. 11 (2007): 100-108.

[41] Huang, Shucheng. “An active learning method for mining
time-changing data streams.” In Intelligent Information

Technology Application, 2008. IITA'08. Second International
Symposium on, vol. 2, pp. 548-552. IEEE, 2008.

[42] Wu, Shuang, Chunyu Yang, and Jie Zhou. “Clustering-

training for data stream mining.” In Data Mining Workshops,
2006. ICDM Workshops 2006. Sixth IEEE International

Conference on, pp. 653-656. IEEE, 2006.

[43] Xiong, Sicheng, Javad Azimi, and Xiaoli Z. Fern. “Active
learning of constraints for semi-supervised clustering.” IEEE

Transactions on Knowledge and Data Engineering 26, no. 1
(2014): 43-54.

[44] Yu, Yan, Shanqing Guo, Shaohua Lan, and Tao Ban.

“Anomaly intrusion detection for evolving data stream based
on semi-supervised learning.” Advances in Neuro-

Information Processing (2009): 571-578.

[45] Fan, Wei, Yi-an Huang, Haixun Wang, and Philip S. Yu.

“Active mining of data streams.” In Proceedings of the 2004
SIAM International Conference on Data Mining, pp. 457-461.

Society for Industrial and Applied Mathematics, 2004.

[46] Friedman, Jerome H. “On bias, variance, 0/1—loss, and the
curse-of-dimensionality.” Data mining and knowledge

discovery 1, no. 1 (1997): 55-77.

[47] Moore, David S., and George P. McCabe. Introduction to the
Practice of Statistics. WH Freeman/Times Books/Henry Holt

& Co, 1989.

[48] RodríGuez, Juan D., Aritz Pérez, and Jose A. Lozano. “A
general framework for the statistical analysis of the sources of

variance for classification error estimators.” Pattern
recognition 46, no. 3 (2013): 855-864.

[49] Kong, Eun Bae, and Thomas G. Dietterich. “Error-Correcting

Output Coding Corrects Bias and Variance.” In ICML, pp.
313-321. 1995.

[50] Tumer, Kagan, and Joydeep Ghosh. “Analysis of decision

boundaries in linearly combined neural classifiers.” Pattern
Recognition 29, no. 2 (1996): 341-348.

[51] Tumer, Kagan, and Joydeep Ghosh. “Error correlation and
error reduction in ensemble classifiers.” Connection science

8, no. 3-4 (1996): 385-404.

[52] Zhu, Xiaojin, and Andrew B. Goldberg. “Introduction to
semi-supervised learning.” Synthesis lectures on artificial

intelligence and machine learning 3, no. 1 (2009): 1-130.

[53] Quinlan, J. Ross. C4. 5: programs for machine learning.
Elsevier, 2014.

[54] Newman, David J., Seth Hettich, Cason L. Blake, and

Christopher J. Merz. “{UCI} Repository of machine learning
databases.” (1998).

MohammadReza Keyvanpour is an Associate

Professor at Alzahra University, Tehran, Iran. He
received his B.S. in software engineering from

Iran University of Science & Technology,
Tehran, Iran. He received his M. S. and Ph.D. in

software engineering from Tarbiat Modares
University, Tehran, Iran. His research interests

include information retrieval and data mining.

Volume 9- Number 4 – Autumn 2017 48

 [
 D

ow
nl

oa
de

d
fr

om
 jo

ur
na

l.i
tr

c.
ac

.ir
 o

n
20

24
-0

4-
09

]

 12 / 13

https://journal.itrc.ac.ir/article-1-26-en.html

Mahnoosh Kholghi received her B.S. in

Software Engineering from Islamic Azad

University, Karaj Branch, Karaj, Iran. She also

received her M.S. in Software Engineering at

Islamic Azad University, Qazvin Branch,

Qazvin, Iran. Her research interests include Data

Stream Mining and Machine Learning.

Sogol Haghani received her B.S. in computer

science from Kharazmi University, Tehran, Iran.

She is currently working toward her master

degree in the Department of computer

engineering and data mining laboratory at

Alzahra University, Tehran, Iran. Her research

interests include data mining such as social

networks and artificial neural networks.

49 Volume 9- Number 4 – Autumn 2017

 [
 D

ow
nl

oa
de

d
fr

om
 jo

ur
na

l.i
tr

c.
ac

.ir
 o

n
20

24
-0

4-
09

]

Powered by TCPDF (www.tcpdf.org)

 13 / 13

https://journal.itrc.ac.ir/article-1-26-en.html
http://www.tcpdf.org

