
 [
 D

ow
nl

oa
de

d 
fr

om
 jo

ur
na

l.i
tr

c.
ac

.ir
 o

n 
20

24
-0

4-
09

 ]
 

                             1 / 13

https://journal.itrc.ac.ir/article-1-26-en.html


properties, i.e., increasing data volume and dynamic 
and evolving nature, mining data streams raised several 
challenges [6, 7, 8]. The length of data stream would be 
infinite and an algorithm is needed to process the data 
in one pass [7, 8]. Therefore, traditional learning 
algorithms that require several passes on the training 
data cannot be directly applied to the streaming 
environment [8, 9]. To solve this problem, ensemble 
classification techniques have been proposed.  

Ensemble approaches have the advantage that they 
can be updated efficiently, and they can be easily made 
to adopt the changes in the stream. Several ensemble 
approaches have been devised for the classification of 
evolving data streams [10, 11, 12]. The general 
technique practiced by these approaches is that the data 
stream is divided into equal-sized chunks. Each of these 
chunks is used to train a classifier. An ensemble of 𝑀 
such classifiers is used to test unlabeled data. 

Manual labeling of data is both costly and time-
consuming [14, 15]. Therefore, labeled data may be 
very scared in a real streaming environment, where 
huge volumes of data appear at high speed. Thus, only 
a limited amount of training data may be available for 
building the classification models, leading to poorly 
trained classifiers [16, 17, 18]. One recently proposed 
solution to address this issue is to use active learning 
(AL) techniques which selectively label number of 
informative instances that can form an accurate 
predictive model [19, 20, 21]. The goal of active 
learning is to maximize the prediction accuracy by only 
labeling a limited number of instances. Meanwhile, the 
main challenge is about to identify “important” 
instances that should be labeled to improve the model 
training due to the fact that one could not afford to label 
all samples [18]. For example, uncertainty sampling 
[22, 23], query by committee (QBC) [20] or query by a 
margin [21] principles takes instances in which the 

current learners have the highest uncertainty as the most 
needed instances for labeling.  

Thus, in practice, only small fraction of each data 
chunk is likely to be labeled, leaving a major portion of 
the chunk as unlabeled. By only selecting the most 
informative instances for labeling, active learning could 
reduce the labeling cost when labeled instances are hard 
to obtain [24]. Facing the same situation, semi-
supervised learning utilizes unlabeled instances to 
strengthen trained classifiers on labeled instances [25, 
26]. In general, active learning methods ignore the 
effect of unlabeled instances. However, unlabeled 
instances could strengthen supervised learning tasks 
under suitable assumptions. A variety of semi-
supervised learning methods were proposed based on 
this idea. Semi-supervised learning methods can be 
used to strengthen active learners [24, 27, 28]. 
Therefore, this paper proposed a hybrid method that 
combines active learning and semi-supervised learning 
to come up with the mentioned challenges. 

In this paper, we present a combination of AL and 
self-training approach to which we will refer as semi-
supervised active learning for data stream mining 
(SeSAL). To the best of our knowledge, no semi-
supervised active learning combination exists for data 
streams. We introduce minimal variance as a 
confidence measure in self-training. In multi-class 
conditions, AL performs better than SeSAL. The nature 
of Self-training causes this problem. Because of the 
small initial labeled set, with a high number of classes, 
self-training weaken itself by generating incorrectly 
labeled data that redound poor classifier. To avoid such 
an error propagation, we propose a dynamic self-
training algorithm and apply it in our combination 
framework (DSeSAL). Concerning accuracy reduction 
in the iterations of self-training algorithm, we indicate 
a tolerance measure that prevents such downfall, stop 

Fig. 1. General process of data stream mining 
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the semi-supervised approach and switch to AL phase. 
This procedure guarantees to derive a model to predict 
future instances’ label as accurately as possible. 

The rest of this paper is organized as follows: In the 
next section, related works are reviewed. In Section 3, 
active learning and semi-supervised learning are 
recalled as the foundation of our hybrid framework. In 
Section 4, the proposed framework is presented. 
Experimental results are reported in Sections 5. Section 
6, includes the conclusion. 

II.RELATED WORK 

 In addition to data stream classification, our 
research is closely related to the existing works on both 
semi-supervised and active learning. There have been 
many works in stream data classification. There are two 
main approaches: single model classification and 
ensemble classification. Single model classification 
techniques incrementally update their model with new 
data to cope with the evolution of the stream [1, 30]. 
These techniques usually require complex operations to 
modify the internal structure of the model and may have 
a poor performance if there is a concept-drift in the 
stream [4, 31, 32]. In data streams with continuous 
volumes, the classifier ensemble has shown to be 
effective in tackling data volume and concept drifting 
challenges [11, 33, 34]. [30] and [33] proposed a 
streaming ensemble algorithm that combines decision 
tree models using majority voting. Kolter and Maloof 
in [35] proposed an AddExp ensemble method by using 
weighted online learners to handle drifting concepts. 
[28, 36] and [37] have proposed a weighted ensemble 
framework for concept drifting data streams and proved 
that the error rate of a classifier ensemble is less than a 
single classifier trained from the aggregated data of all 
consecutive k chunks. These ensemble approaches have 
the advantage that they can be more efficiently built 
than updating a single model and they observe higher 
accuracy than their single model counterpart [4]. 

The combination of classifier ensemble and active 
learning has been reported in much research [19, 39, 40, 
41]. Semi-supervised and active learning frameworks 
concerning data stream classification, are established 
research areas. Here, some recent and reliable research 
in this field is introduced.  Clustering-training is a semi-
supervised framework that select confident unlabeled 
samples using clustering. Then uses them to retrain the 

classifier incrementally which is proposed in [42, 43]. 
Yan Yu et al. in [44] propose an anomaly detection 
algorithm for evolving data stream based on semi-
supervised learning, SSAD. The SSAD algorithm 
utilizes an attenuation rule to decrease the effect of 
historical data on the detection result, which can help 
the algorithm to learn from current data that 
characterizes the traffic pattern more accurately. SSAD 
also uses semi-supervised learning to extend labeled 
dataset as a training dataset to do with the problem of 
lack of the labeled data.  

Realizing that labeling all stream data is expensive 
and extremely time-consuming, Fan et al. in [45], 
proposed an active mining (AM) framework that labels 
samples only if it is necessary. In short, AM uses a 
decision tree (trained from the currently labeled data) to 
compare the distributions of the incoming samples and 
the data collected by hand using the tree branches 
(without observing the class labels). If two sets of 
samples are subject to different distributions, then 
labeling process is triggered to randomly select a few 
incoming samples for labeling. Xingquan Zhu et al. in 
[37] propose a classifier ensemble based active learning 
framework, with an objective of maximizing the 
prediction accuracy of the classifier ensemble built 
from labeled stream data.  We use this framework in our 
method and describe it in more details in the next 
section. 

III.PRELIMINARY 

In this section, we recall the two main principles of 
our hybrid proposed framework: Active learning and 
Semi-supervised learning. 

A. Active Learning 

Algorithm 1 describes the general AL framework. 
A utility function 𝑈𝑀(𝑃𝑖)  is the core of each AL 
approach. It estimates how useful it would be for a 
specific base learner to have an unlabeled example 
labeled and, subsequently included in the training set 
[17].   

B. Semi-Supervised Learning  

There are many semi-supervised learning methods 
developed. Self-training learning is the one that needs 
only one classifier, which is important to meet the speed 
requirement [28]. We choose Self-training to strengthen 
the learning engine in AL framework with unlabeled 
instances. In self-training, first, a classifier is trained 
with the small amount of labeled data. The classifier is 
then used to classify the unlabeled data. Typically, the 
most confident unlabeled points, together with their 
predicted labels, are added to the training set. The 

Algorithm 1 General AL framework 

Given:  
B: number of examples to be selected 
L: set of labeled examples 
P: set of unlabeled examples 
UM: utility function 

Algorithm: 
Loop until stopping criterion is met 

1. Learn model 𝑀 from L 

2. For all pi ∈ 𝑃: 𝑢pi
 ←  𝑈𝑀(𝑃𝑖) 

3. Select B examples pi ∈ 𝑃 with highest utility 𝑢pi
 

4. Query human annotator for labels of all B examples 
5. Move newly labeled examples from P to L 

Return L 

Algorithm 2 Self-training 

Given:  

Labeled data {(xi, yi)}i=1
l  , unlabeled data {xi}j=l+1

l+u  

Algorithm: 

1. Initially, let L = {(xi, yi)}i=1
l  and U = {xi}j=l+1

l+u . 

2. Repeat: 
     3. Train f from L using supervised learning. 
     4. Apply f to the unlabeled instances in U. 

     5. Remove a subset S from U; add   x, f(x)  x ∈ S} 
to L. 
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classifier is re-trained and the procedure repeated [25, 
29]. Note the classifier uses its own predictions to teach 
it. The overall process of self-training is shown in 
Algorithm 2. 

 

IV.PROPOSED METHOD 

There are two important properties in a real stream 
environment which lead to many challenges [3]; 
incremental growth of data volumes and continuous 
evolvement of decision concepts. In addition, massive 
volumes of data arrive at high speed, so labeled data 
may be rare, and it is not possible to manually label all 
the data as soon as they arrive. In this condition, the 
best way is to use the advantages of abundant 
unlabeled data. So, we introduce DSeSAL framework, to 
overcome such difficulties and challenges. In this 
framework, our contributions are as follows: 

A. Combination of Active learning and self-

training. 

B. Introduce minimal variance as a confidence 

measure in self-training. 

C. Propose a dynamic self-training algorithm and 

combination with active learning. 

D. Indicate tolerance measure that prevents an 

accuracy reduction in the iteration of the self-training. 

We apply semi-supervised learning with active 
learning in a hybrid manner that benefit from both 
unlabeled data and selective sampling scenario.  The 
way we combine semi-supervised and active learning 
is shown in Fig. 2. Naturally, stream data could be 
stored in the buffer and processed when the buffer is 
full, so we divide the stream data into equal-sized 
(user-specified) chunks and exploit our learning 
process on each of them. Due to the limited number of 
labeled data in each chunk, we utilize unlabeled data to 
build a stronger model from each chunk, by applying a 
semi-supervised approach (Fig. 3).  

In order to simplify the problem and deliver an 
applicable combining framework data streams, we 

assume that the concepts in the data are constantly 
evolving, so the proposed framework is carried out on 
a regular basis, and the objective is to find important 
samples out of a certain number of newly arrived 
instances for labeling. 

The proposed framework in Fig. 3 can be applied to 
a variety of stream applications as long as instance 
labeling is of concern. The employment of a classifier 
ensemble ensures that framework can handle massive 
volumes of stream data effectively and adopt the 
changes in the stream [1]. 

Based on the framework in Fig. 3, we assume that 
once the algorithm moves to chunk Sn, all instances in 
previous chunks, … , Sn−3, Sn−2, Sn−1, are inaccessible 
except classifiers built from them (i.e., … ,Cn−3, Cn−2, 
Cn−1). 

Relying on the above assumptions, the objective 
becomes labeling instances in data chunk Sn such that 
a classifier Cn built from the labeled and unlabeled 
instances in Sn. The classifier Cn along with the most 
recent  K − 1 classifiers  Cn−k+1, … , Cn−1 , can form a 
classifier ensemble with maximum prediction accuracy 
on unlabeled instances in  Sn. 

A. Variance Reduction for Error Minimization 

In this part, we first argue that minimizing the 
classifier variance is equivalent to minimizing its error 
rate and then apply variance as a confidence measure in 
our semi-supervised approach. In addition, we shortly 
explain an active learning approach and optimal-weight 
calculation method that we use in the classifier 
ensemble.   

 Confidence measure in self-training 

Let x be an input instance and ci is a class label and 
p(ci|x)  is a classifier’s probability estimation in 
classifying x, and then the actual probability fci

(x) is 

shown as follows: 

where εi(x), is an added error. If we consider that the 
added error of the classifier mainly comes from two 
sources, i.e., classifier bias and variance [46, 47, 48], 
then the added error εi(x) in (1) can be decomposed 

𝑓𝑐𝑖
(𝑥) = 𝑝(𝑐𝑖|𝑥) + 𝜀𝑖(𝑥) (1) 

L1        U1 L n-k+1              Un-k+1 

 

L n-k+2              Un-k+2 

 
Ln         Un 
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Fig. 2. A general classifier ensemble framework for 
learning from data streams 
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into two terms, i.e., βci
 and ηci

(x) , where βci
 

represents the bias of the current learning algorithm, 
and ηci

(x) is a random variable that accounts for the 

variance of the classifier (with respect to class ci ), 
which gives [49, 50]: 

According to [51], classifiers that trained by using 
the same learning algorithm but different versions of 
the training data suffer from the same level of bias but 
different variance values. Assuming that we are using 
the same learning algorithm in our analysis, without 
loss of generality, we can ignore the bias term. 
Consequently, the learner’s probability in classifying x 
into class ci becomes: 

According to [51] concluded that the classifier’s 
expected added error can be defined as:  

Where p′(. ) denotes the derivate of p(. ) and p(ci|x
∗) 

is the probability distribution of class i for all points 

x∗, s = p′ cj|x
∗ − p′(ci|x

∗), which is independent of 

the trained model. ηci
(x) is a random variable that 

accounts for the variance of the classifier (with respect 

to class ci) and σηci

2  denotes the variance of ηci
(x). As 

Equation (4) indicates the expected added error of a 
classifier is proportional to its variance; thus, reducing 
this quantity reduces the classifier’s expected error 
rate. 

Based on the framework in Fig. 3, we apply 
variance-base self-training in SSL phase. The main 
idea is first to train a classifier on labeled data. The 
classifier is then used to predict the labels for the 
unlabeled data. A subset of the unlabeled data, jointly 
with their predicted labels, is then selected to augment 
the labeled data. Typically, this subset consists of few 
unlabeled instances with the most confident 
predictions. The classifier is now re-trained on the 
larger set of labeled data, and the procedure repeats 
[43]. We use C4.5 [53] as our base learner. For 
selecting a subset of unlabeled instances, we use 
minimum classifier variance on current unlabeled set 
in each chunk based on Fig. 3. Following above 
conclusion, smaller variance means the prediction of 

our model is more confident. In our system, σηci

2  is 

calculated by: 

where  Λx , an evaluation set ( Λx = Ln ∪ Ix̂ , where 

Ix̂denotes Ixwith a predicted class label.), is used to 
calculate the classifier variance, |Λx|  denotes the 

number of instances in  Λx , yci 
x  is the genuine class 

probability of instance x. If x is labeled as classci, then 

yci 
x  is equal to 1; otherwise, it is equal to 0 and fci

(x) 

denotes the probability of base classifier in classifying 
x  into class ci . Consequently, the variance of the 
classifier over all class c1, c2,… , cl is given by: 

 Variance and optimal weight classifier ensemble 

As shown in Fig. 3, k  base classifiers form a 
classifier ensemble M. The probability of the ensemble 
M in classifying an instance x  is given by a linear 
combination of the probabilities produced by all of its 
base classifier. Each classifier Cm has a weight value 
wm. The probability of M in classifying x into class ci 
is given by (7), where fci

m(x) denotes the probability of 

base classifier  Cm in classifying x into class ci, i.e., 

This probability can be expresses as: 

where ηci
E (x) is a random variable accounting for the 

variance of the classifier ensemble M with respect to 
class ci, and 

The variance of ηci
E (x) becomes 

σηci
m

2  is explained in SSL Phase. The total variance of 

the ensemble M is then given by: 

According to (4), expected added error can be written 
as: 

Equation (12) states that to minimize the error rate 
of a classifier ensemble, we can minimize its variance 
instead. This objective can be achieved through the 
adjustment of the weight value associated with each of 

𝑓𝑐𝑖
(𝑥) = 𝑝(𝑐𝑖|𝑥) + 𝛽𝑐𝑖

+ η𝑐𝑖
(𝑥) (2) 

𝑓𝑐𝑖
(𝑥) = 𝑝(𝑐𝑖|𝑥) + η𝑐𝑖

(𝑥) (3) 

Erradd = 
σηci

2 + σηcj

2

s
=  

σηc

2

s
 (4) 

σηci
E

2 = ∑ (𝑤𝑚)2σηci
m

2

𝑛

𝑚=𝑛−𝑘+1

( ∑ 𝑤𝑚

𝑛

𝑚=𝑛−𝑘+1

)

2

⁄  (10) 

σηci

2 =
1

|Λx|
∑ (yci 

x − fci
(x))

2

(x,c)ϵΛx

 (5) 

σηc

2 = ∑σηci

2

l

i=1

 (6) 

   𝑓𝑐𝑖

𝐸(𝑥) = ∑ 𝑤𝑚𝑓𝑐𝑖

𝑚(𝑥)
𝑛

𝑚=𝑛−𝑘+1
∑ 𝑤𝑚

𝑛

𝑚=𝑛−𝑘+1
⁄

= 𝑝(𝑐𝑖 |𝑥) + ∑ 𝑤𝑚ηci

m
𝑛

𝑚=𝑛−𝑘+1
∑ 𝑤𝑚

𝑛

𝑚=𝑛−𝑘+1
⁄  

(7) 

𝑓𝑐𝑖

𝐸(𝑥)  = 𝑝(𝑐𝑖|𝑥) + ηci

E (x) (8) 

ηci

E = ∑ 𝑤𝑚ηci

m

𝑛

𝑚=𝑛−𝑘+1

∑ 𝑤𝑚

𝑛

𝑚=𝑛−𝑘+1

⁄  (9) 

σηE
2 = ∑ σηci

E
2

l

i=1

= ∑ (𝑤𝑚)2σηc
m

2

𝑛

𝑚=𝑛−𝑘+1

( ∑ 𝑤𝑚

𝑛

𝑚=𝑛−𝑘+1

)

2

⁄  (11) 

Erradd
E = 

σηE
2

S
 (12) 
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M’s base classifier  Cm . In [37], an optimal-weight 
calculation method is applied to assign weight values 
to the classifiers such that they can form an ensemble 
with minimum error rate. To find the weight 
values wm,m = n − k + 1, … , n , an optimization 
problem is solved, and then weight values for each 
individual classifier of the classifier ensemble M are 
given by: 

The minimization of the classifier ensemble error rate 
through variance reduction acts as a principle to 
actively select mostly needed instances for labeling. 

B. A COMBINED FRAMEWORK OF DYNAMIC 

SELF-TRAINING AND ACTIVE LEARNING 

The process of the DSeSAL method is given in 

Algorithm 3. Following the conclusions derived from 

Section IV, we propose a combined framework of AL 
and SSL approaches for data stream classification. We 

introduce variance-based self-training. Self-training is 

characterized by the fact that the learning process uses 

its own predictions to teach it. 
On the other hand, in stream environments, initial 

labeled data may be very scarce. So, it is conceivable 
that an early mistake made by the base classifier 

(which is not perfect to start with, due to a small initial 
labeled set) can weaken itself by generating incorrectly 
labeled data. Re-training with this data will lead to an 
even worse classifier in the next iteration. It is so 
expected in multi-class condition. Due to the limited 
initial labeled set, the base classifier may not be able to 
identify and learn unseen classes. To alleviate this 
problem, we propose dynamic self-training, as shown 
on Steps 5.1 to 5.10 in Algorithm 3. 

To avoid error propagation in self-training 
iterations, we specify a tolerance value Τ for accuracy 
reduction. In our system, Τ is calculated by: 

where Accb is the base model accuracy on unlabeled 
data in the related chunk and  Acc1 is the accuracy of 
the model that build from the first iteration in self-

training. Self-training iterations continue provided: 

This condition prevents classifier accuracy 
deterioration and guarantees to derive a model to 
predict future instances’ label as accurately as possible. 
The way that the condition in Equation (15) is applied 
in self-training algorithm, is shown in Fig 4. In 
Algorithm 3, steps 6 to 11, present the AL procedure. 

𝑤𝑚 =
1

1 + σηc
m

2 (∑ 1n
t=n−k+1,t≠m σ

ηc
t

2⁄ )
 (13) 

𝐴𝑐𝑐𝑖 > (𝐴𝑐𝑐𝑖−1 − Τ) 𝑎𝑛𝑑  𝐴𝑐𝑐𝑖 > (𝐴𝑐𝑐𝑖−2 − Τ 2⁄ ) (15) 

Τ = | 𝐴𝑐𝑐𝑏 −  𝐴𝑐𝑐1| (14) 

Input: (1) current data chunk Sn; and (2) 𝑘 − 1 classifiers 𝐶𝑛−𝑘+1, … , 𝐶𝑚, … , 𝐶𝑛−1built from the most recent data chunks; 

Parameters: (1) 𝛼, the percentage of instances should be labeled from 𝑆𝑛 by AL; (2) 𝛽; maximum percentage of instances should 

be labeled from 𝑆𝑛 by DSSL; (3) 𝛾, # of instances labeled in each SSL iteration  

Objective: Updated ensemble 𝑀 

1. 𝐿𝑛 ← ∅; 𝑈𝑛 ← 𝑆𝑛 

2. 𝐿𝑛 ← Randomly label a tiny portion, e.g. 1~2.5% of instances from 𝑈𝑛. 

3. 𝐸 ← 0                                                              //recording the iteration of SSL (E = β γ⁄ ) 

4. Build a classifier 𝐶𝑛 from 𝐿𝑛 and calculate the base model accuracy 𝐴𝑐𝑐𝑏 .   

5. While 𝐿𝑛 < |𝑆𝑛|. 𝛽                                         //SSL phase continue until reach the stop point 

5.1. For each instance 𝐼𝑥in 𝑈𝑛 

a. Use the current classifier to predict a class label for 𝐼𝑥.       

b. Build an evaluation set Λ𝑥 = 𝐿𝑛 ∪ 𝐼�̂�, where 𝐼�̂�denotes 𝐼𝑥with a predicted class label. 

c. Calculate the confidence measure (classifier variance) on Λ𝑥(Eqs. (5) and (6)). 

End For 

5.2. 𝑗 ← 0                                                          // recording the number of labeled instances in each SSL iteration 

5.3. Choose instance 𝐼𝑥in 𝑈𝑛with smallest variance, put labeled 𝐼𝑥 into𝐿𝑛, i.e. 𝐿𝑛 = 𝐿𝑛 ∪ 𝐼𝑥; 𝑈𝑛 =  𝑈𝑛/ 𝐼𝑥. 

5.4. 𝑗 ← 𝑗 + 1 

5.5. If 𝑗 < 𝛾 

a. Repeat Step 5.3. 

5.6. Else 

a. 𝐸 = 𝐸 + 1     

5.7. Update classifier by a new 𝐿𝑛. 

5.8. Calculate the current model accuracy 𝐴𝑐𝑐𝑖 .  

5.9. If 𝐸 = 1     

a. calculates the tolerance value Τ (Eq. (11)).    

5.10.  If 𝐴𝑐𝑐𝑖 < (𝐴𝑐𝑐𝑖−1 − Τ) 𝑂𝑅 𝐴𝑐𝑐𝑖 < (𝐴𝑐𝑐𝑖−2 − Τ 2⁄ )  

a. Return the model to previous state. 

b. Return the 𝐿𝑛 and 𝑈𝑛 to previous state. 

c. break 

End While  

6.  Initialize weight value 𝑤𝑚for each classifier 𝐶𝑚, 𝑚 = 𝑛 − 𝑘 + 1, … , 𝑛, where 𝑤𝑚is equal to 𝐶𝑚’s prediction accuracy on 𝐿𝑛. 

    7. Use 𝐶𝑛−𝑘+1, … , 𝐶𝑚, … , 𝐶𝑛−1 to form a classifier ensemble 𝑀 as shown in Fig. 1. 

    8. For each instance 𝐼𝑥in 𝑈𝑛, Calculate ensemble variance (Eq. (11)) as instance  𝐼𝑥’s expected ensemble variance   on 𝑀. 

9. Choose instance 𝐼𝑥in 𝑈𝑛with largest variance, label 𝐼𝑥and put labeled 𝐼𝑥 into𝐿𝑛, i.e. 𝐿𝑛 = 𝐿𝑛 ∪ 𝐼𝑥; 𝑈𝑛 =  𝑈𝑛/ 𝐼𝑥.  

10. Recalculate the ensemble variance of each base classifier 𝐶𝑚  on 𝐿𝑛 and find optimum weight value 𝑤𝑚(Eq. (13)) for all base 

classifiers (update the ensemble by new weight values). 

    11. Check if α percentages of instances are labeled. 

  

 

Algorithm 3 The DSeSAL method 
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Selecting the informative instance and update the 
ensemble are shown in Steps 6 to 9 and Step 10, 
respectively. 

V. EXPERIMENTAL RESULT 

A. Implementation 

A set of experiments is carried out to compare our 
algorithm with the results of [37] (MV), random 
sampling (RS) and uncertainty sampling (US).  All 
methods are implemented in MATLAB with an 
integration of WEKA data mining tool (Witten, & 
Frank, 2005). All the tests are conducted on a PC 
machine with a 2.71GH CPU and 2.0G memory. 

B. Data Streams 

Synthetic data: In order to simulate the magnitude 
and speed of concept drift in data streams, a hyper-plane 
based synthetic data stream generator is applied which 
is so popular in stream data mining research [11, 12, 
33]. The hyper-plane of the data generation is 
controlled by a non-linear function defined by Equation 
(16). Given an instance 𝑥 , its 𝑓(𝑥)  value defined by 
Equation (16) determines its class label. Assume 𝑓(𝑥) 
value larger than a threshold 𝜃 indicates that x belongs 
to class A, otherwise, 𝑥  belongs to class B, then 
changing the values of ai, 𝑖 = 1, … , 𝑑 and threshold 𝜃 
may make an instance 𝑥  have different probability 
𝑝(𝑐𝑖|𝑥) with respect to a particular class 𝑐𝑖. 

In Equation (16), d is the total dimensions of the 
input data x. Each dimension xi, i = 1,… , d, is a value 
randomly generated in the range of [0, 1]. A weight 
value ai, i = 1, … , d , is associated with each input 
dimension and the value of ai is initialized randomly in 
the range of [0, 1] at the beginning. In data generation 
process, we will gradually change the value of ai to 
simulate concept drifting. The general concept drifting 
is controlled through the following three parameters [1, 
11, 33]: (1) t, controlling the magnitude of the concept 
drifting (in every N instances): (2) p, controlling the 
number of attributes whose weights are involved in the 
change; (3) h and ni ∈ {−1, 1}, controlling the weight 
adjustment direction for attributes involved in the 

change. After the generation of each instance x, ai is 
adjusted continuously by ni ⋅ t / N (as long as ai is  

involved in the concept drifting), and value a0  is 
recalculated to change the decision boundaries 
(concept drifting). Meanwhile, after the generation of 
N  instances, there is a h  percentage of chances that 
weight change will invert its direction, i.e., ni = −ni 
for all attributes ai  involved in the change. In 
summary, c2-I100k-d10-p5-N1000-t0.1-h0.2 denotes 
a two-class data stream with 100k instances, each 
containing 10 dimensions. The concept drifting 
involves 5 attributes, and their weights change with a 
magnitude of 0.1 in every 1000 instances and weight 
inverts the direction with 20% of chance. 

 Real-world data: Due to the unavailability of 
public benchmark data streams (from classification 
perspectives), we select five relatively large datasets 
from UCI data repository [54] and treat them as data 
streams for our experiments. The datasets we selected 
are Adult, Magic Gamma Telescope, Covtype, Shuttle 
and Letter (as listed in Table 1). 

Among these datasets, all of them except Letter are 
considered dense datasets, which means that a small 
portion of examples can learn genuine concepts quite 
well. The class distribution in the Covtype and Shuttle 
datasets are severely biased. Letter is a sparse dataset 
and 26 classes of examples are evenly distributed, and 
a small portion of examples are insufficient to learn 
genuine concepts underlying the data. 

C. Evaluation 

All results are 10-fold cross-validation accuracies 
which we set in Weka. C4.5 is our base learner in all 
experiments. 

Learning with Fixed α and β Values: We apply 
our proposed framework to two types of synthetic data 
streams: two-class (Table 2) and four-class (Table 3). 
The accuracies in the tables denote an ensemble 
classifier’s average accuracy in predicting instances in 
the current data chunk Sn, with chunk sizes varying 
from 250 to 2000. We fix the α and β values to 0.1 and 
set the k value to 10, which means that 10% of the 
instances are labeled for each data chunk, and only the 
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Adult 48,842 15 2 0.761:0.239 

Magic 19,020 10 2 0.351:0.649 

Covtype 581,012 55 7 0.488:0.005 

Shuttle 58,000 9 7 0.034:0.8 

Letter 20,000 17 26 0.041:0.037 

 

f(x) = ∑
ai

xi + (xi)2

d

i=1
  (16) 

Table. I. Data characteristics of the real-world data used for 
evaluation 

Fig. 4. Error propagation prevention condition in self-
training process 
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most recent ten classifiers are used to form a classifier 
ensemble. 

The results from Table 2 and 3 indicate that the 
performance of all methods deteriorates as a 
consequence of the shrinking chunk size. This is 
because a smaller data chunk contains a few examples, 
and sparse training examples usually produce inferior 
learners in general. The advantage of having a small 
chunk size is the training efficiency. 

For any particular method, Table 2 and 3 indicate 
that the results in multi-class data streams are 
significantly worse than a binary class data stream. 

This shows that learning from a multiclass data stream 
is more challenging than a binary class data stream. 

Fig. 5 shows the results from Table 2 and 3 as two 
histograms. Comparing all five methods, we can easily 
conclude that SeSAL and DSeSAL receive the best 
performance across all data streams. The US is not an 
option for learning from data streams, and its 
performance is constantly worse than RS regardless of 
whether the underlying data are binary or multiple 
classes. The results from RS are surprisingly good, and 
it is generally quite difficult to beat RS with a 
substantial amount of improvement. 

2)  Learning with Different β Value: β is a percentage 

of instances should be labeled from Sn by self-training 

in SeSAL model. In Fig. 6, we compare SeSAL average 

accuracy w.r.t. different β values on synthetic data.  

3) Learning with Different 𝛂  Value: In Fig. 7, we 
compare all five methods w.r.t. different α values. Not 
surprisingly, when α value increases, all methods gain 
better prediction accuracies. This is due to the 
increasing number of labeled instances helps build 
strong base classifiers. 

Overall, SeSAL, DSeSAL and MV achieve the best 
performance, and US is inferior to RS in the majority 
of the cases. For multiclass data streams, the 
performance of US is unsatisfactory and is largely 
inferior to the RS. To get the best performance and the 
lowest cost, we choose 0.1 for α value. 

Chunk Size RS US MV SeSAL DSeSAL 

250 74.54 75.51 81.84 83.35 84.02 

500 83.07 85.16 87.62 89.56 89.79 

750 86.10 88.14 89.48 92.63 92.67 

1000 86.43 88.79 90.12 94.17 94.37 

2000 86.47 88.69 89.16 93.78 94.15 

Table. II. Average classification accuracy on c4-I50k-d10-
p5-N1000-t0.1-h0.2 (α and β=0.1) 

Chunk Size RS US MV SeSAL DSeSAL 

250 42.27 41.34 47.21 51.13 53.76 

500 50.47 49.91 54.51 57.98 59.24 

750 58.11 56.48 60.12 64.63 67.04 

1000 63.08 61.92 65.14 68.52 71.51 

2000 71.87 70.98 73.09 77.84 79.86 

Table. III. Average classification accuracy on c4-I50k-d10-
p5-N1000-t0.1-h0.2 (α and β=0.1) 

Fig. 6. SeSAL average accuracy on synthetic data (chunk 
size=500, α=0.1) 
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Fig. 5. Average classification accuracy histogram on (α and β=0.1): (a) c2-I50k-d10-p5-N1000-t0.1-h0.2, (b) c4-I50k-d10-

p5-N1000-t0.1-h0.2 
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4) Time Complexity and Runtime Performance: 
The time complexity of the proposed model in 
Algorithm 3 can be decomposed into two major parts: 
time complexity of semi-supervised phase and active 
learning part. As mentioned above, we use MV for 
Active learning phase. The time complexity of this 
phase is 𝑂(𝑁2.𝑀) [37]. 

same measure (variance) in semi-supervised and 
active learning phases of the unlabeled instance 
selection. The total time complexity is bounded by two 
important factors: 1) the number of instances in each 
chunk N and 2) the number of data chunks M. Because 
model training in each chunk is nonlinear w.r.t. the 
chunk size, we may prefer a relatively small chunk size 
to save the computational cost. 

The time complexity of the semi-supervised part is 
also O(N2.M), where M is the number of chunks, each 
of which contains N instances. Because we use the   

In Fig. 8, we report the system runtime 
performance, where the x-axis denotes the chunk size, 
and the y-axis denotes the average system runtime 
w.r.t. a single data chunk. Not surprisingly, RS has 
demonstrated itself to be the most efficient method due 
to its simple random selection nature. The MV, SeSAL 
and DSeSAL methods is the most time-consuming 
approach mainly because the calculation of the 
ensemble variance and the weight updating requires 
additional scanning in each chunk. The larger the 
chunk size, the more expensive the MV, SeSAL, and 
DSeSAL can be, because the weight we obtain the best 

tradeoff between computational cost and accuracy, 
when the chunk size is 500. 

5)  SeSAL and DSeSAL Performance on Real-
World Data: For each data stream, we report its results 
using chunk size 500. We fix α and β value to 0.1 and 
set value k to 10, which means that only the most recent 
10 classifiers are used to form a classifier ensemble. In 
Fig. 9, we report the algorithm performances on five 
real-world data.  

According to the results illustrated in Table 4 and 
Fig. 9, SeSAL provides superior performance than MV 
on four datasets. These are dense datasets, which 
means that a small portion of examples can learn 
genuine concepts quite well. The Letter is a sparse 
dataset and 26 classes of examples are evenly 
distributed, and a small portion of examples are 
insufficient to learn genuine concepts underlying the 
data. In letter, SeSAL performs inferior to MV in the 
majority of cases, but DSeSAL solves this problem and 
provides a reasonable result. The performances of 
SeSAL and DSeSAL in binary class datasets are close 
to each other. In fact, DSeSAL eliminates the lack of 
SeSAL in multi-class problems. 

Different from synthetic data streams where the 
decision concepts in data chunks gradually change 
following the formula given in Eq. (13), the data 
chunks of the real-world data do not share such 
property, and the concept drifting among data chunks 
are not clear to us (in fact, we do not even know the 
genuine concepts of the data). Because of this, we 
compare algorithms on two types of test sets. In Fig. 9, 

Table. IV. Average accuracies on real-world datasets 

Datasets MV SeSAL DSeSAL 

Adult 83.5756 86.0346 86.1398 

Magic 79.1676 83.3018 83.7278 

Covtype 66.9895 71.3863 78.9498 

Shuttle 97.8795 98.8871 99.567 

Letter 37.3099 27.9810 47.3161 

(a) (b) 

Fig. 7. Classification average accuracy on (chunk size=500, β=0.1): (a) c2-I50k-d10-p5-N1000-t0.1-h0.2, (b) c4-I50k-d10-
p5-N1000-t0.1-h0.211 

Fig. 8.  System runtime with respect to different chunk sizes 
(c4-I50k-d10-p5-N1000-t0.1-h0.2 stream, α and β=0.1) 
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the algorithms are tested on all instances in data 
chunkSn . In Fig. 10, the algorithms are tested on a 
separate test set generated from 10-fold cross-
validation. The x-axis denotes the ratio of the initial 
labeled set to chunk size.  

The results in Figs. 9 and 10 indicate that, overall, 
the accuracies evaluated on individual data chunks are 
slightly better than the accuracies acquired from the 
isolated test set. But overall, an algorithm’s relative 
performance on each individual data chunk or on a 
separate test set does not make a big difference. 

VI.CONCLUSION 

In this paper, we propose a new research topic on 
the combination of active and semi-supervised 
learning for data streams with increasing data volumes 
and evolving nature. Our goal is to derive a model to 
predict future instances’ label as accurately as possible. 
In a real stream environment, labeled data may be 

fairly scarce and labeling all data is quite difficult and 
expensive. Active learning and semi-supervised 
learning are two approaches to alleviate the burden of 
labeling large amounts of data. We use Active learning 
and semi-supervised learning to get the advantage of 
both methods, to boost the performance of learning 
algorithm. 

In our proposed framework, we use self-training 
with a new confidence measure to take advantage of 
unlabeled instances to augment the performance of 
learning algorithm. In multiclass conditions, we face 
an error propagation and accuracy reduction in SSL 
phase. To address this problem, we propose a dynamic 
self-training algorithm (DSeSAL). We control the 
accuracy reduction by specifying a tolerance measure. 
Moreover, in our experiments on real data sets, we 
compared our algorithm with a fully supervised active 
learning method. The experiments show that the 

proposed method outperforms the compared methods. 

(a) (b) 

(c) (d) 

(e) 

Fig. 9. Classifier ensemble accuracy on data chunk S¬¬n (chunk size=500, α and β=0.1): (a) Adult ,(b) Magic ,(c) CoverType 
,(d) Shuttle ,(e) Letter 
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