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Abstract—A dynamic threshold secret sharing (DTSS) scheme allows the secret to be updated without changing the
shares. The first DTSS scheme was proposed by Laih et al. in 1991. Several other schemes based on different methods
have been proposed since then. In 2007, Chen et al. proposed a verifiable DTSS scheme based on elliptic curves and
bilinear maps, which is almost efficient. In this paper, we propose an alternative verifiable DTSS scheme using elliptic
curves and bilinear maps. The proposed scheme is computationally secure, and the secret and/or threshold parameter
can change to any arbitrary values multiple times. Furthermore, in our scheme, there is no secure channel and
participants do not need to save any information or extra shares ahead of time. Since the running time is an important
factor for practical applications, we provide a complexity comparison of our approach with respect to Chen et al.’s
scheme. The comparison between the proposed scheme and that of Chen et al. indicates that the new scheme is more

efficient, that it means, it has much lower computational complexity, as well as smaller storage requirements.
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. INTRODUCTION

One way to provide both secrecy and availability
for a given secret (highly sensitive information) is to
employ secret sharing schemes. A secret sharing
scheme is a method of distributing a secret among a
set of participants (shareholders) by giving each
participant a share (shadow) in such a way that only
authorized subsets of participants (defined by the
access structure T') can reconstruct the secret from
pooling their shares, but any unauthorized subset of
them cannot. Specifically, in a (t, n)-threshold secret
sharing (TSS) scheme, a secret s is distributed as
shares among n participants in such a way that any
group of at least t participants can recover the secret s,
while no groups having at most t — 1 participants can
uniquely determine the secret s.

In 1979, Shamir [23] and Blakley [2] indepen-
dently found practical solutions to (t, n)-threshold
secret sharing schemes, so as to facilitate the
distributed storage of secret information in an unsafe
environment. Shamir’s threshold scheme is based on
polynomial interpolation over a finite field. Despite
introducing other secret sharing schemes, for instance
[1] and [10], Shamir’s scheme has received more
attention than the others, owing to its effective appli-
cability.

Secret sharing schemes are highly versatile
cryptographic primitives and have been employed in
various applications, such as protection of
cryptographic keys, access control, key recovery
mechanisms, e-voting, ad hoc networks, secure mul-
tiparty computation, to mention but a few.
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The security of a threshold scheme is categorized
nto two levels: information theoretical (perfect)
security and computational security. A (t, n)-threshold
secret sharing scheme is called perfect if any subset of
less than t participants neither can reconstruct the
secret, nor obtain any information on it. It has been
shown that in perfect secret sharing schemes, the size
of each share must be at least the same as the secret’s
[25]; in the case of equality, the scheme is called ideal.
A (t, n)-threshold secret sharing scheme is called
computationally secure if for any subset of less than t
participants, it is computationally infeasible to
reconstruct the secret s in polynomial time [14].

Now, suppose that the secret is kept unchanged in
the scheme for a long period of time and the
adversary’s capabilities increase over time, for exam-
ple by compromising more participants, or the number
of colluding participants increases over time.
Therefore, the adversary or the colluding participants
may finally obtain the secret. One approach to address
the issue can be by increasing the threshold value.
Other solutions to tackle this problem have been
proposed in the literature, but they either have large
storage requirements, or they are limited to a
predefined threshold modification or they require a
secure channel between the dealer and the participants
or between each pair of participants [20].

In classic threshold schemes, when the secret or
threshold is changed, the corresponding shares must
be regenerated and then secretly distributed to par-
ticipants again. This is inefficient due to the overhead
in the generation and distribution of shares, especially
when the number of the shares is large [27].

In 1991, Laih et al. [15] introduced the concept of
dynamic threshold secret sharing (DTSS) scheme in
order to resolve the above mentioned issue. A DTSS
scheme allows the secret to be renewed and/or the
threshold parameter to be changed, while the
originally distributed shares remain unchanging.
DTSS schemes usually require a number of public
values. The participant who wishes to participate in
the secret reconstruction process, derives the
corresponding pseudo-share from his/her master-share
and these public values.

In this paper, we propose a verifiable DTSS
scheme with some desirable features as follows:

e Each participant holds only one permanent,
private share, which is chosen by himself/herself.
Moreover, the proposed scheme requires no
secure channels and consequently the cost of the
scheme can be reduced.

e It has the minimum storage cost, because
participants do not need to store any information
or extra shares ahead in order to change the secret
or threshold later.

e Itis flexible since the threshold can be changed to
any arbitrary values multiple times.

e The combiner can detect and identify dishonest
participants just before secret reconstruction
process. This feature does not allow the cheaters
to participate in the reconstruction process; So,

the cheaters can not prevent the correct secret
reconstruction.

e In our scheme, the public values are independent
of the number of changes in the secret and/or
threshold value.

The proposed scheme is computationally secure.
More precisely, the security of the proposed scheme as
[5] relies on the intractability of the elliptic curve
discrete logarithm problem (ECDLP). Regarding the
security model, computational security is theoretically
weaker than information-theoretical (perfect) security
[4] but computational security is not a practical
limitation at all. In fact, most implementations of
perfect secret sharing schemes result in actual
computational security [14].

We also note that various efficiency measurements
of techniques for access structure change have been
proposed, which tend to be measures of either [16]:

1) The amount of secret information that participants
need to store.

2) The amount of secret information that participants
need to communicate as a part of the structure
change.

3) The amount of public information needed to be
broadcast to facilitate a structure change.

The computational complexity and the number of
public values are two important factors for evaluating
the efficiency of DTSS schemes. Some publications
such as [5], [26] appeared to reduce the value of these
parameters.

The authors compare the new verifiable DTSS
scheme with that of Chen et al. [5]. This comparison
shows that the new scheme reduces the computational
complexity and the size of public values, while
security features remain the same.

The remainder of this paper is organized as
follows. In the next section, we recall the polynomial
interpolation problem and the concepts of elliptic
curves as well as bilinear maps, since they have a
major role in our construction. In Section I, we
briefly review Chen et al.’s scheme. In Section IV, we
describe our verifiable DTSS scheme. A thorough
analysis of the proposed scheme together with a
comparison between the proposed scheme and the
constructions from [5] is made in Section V. Finally,
Section VI concludes the paper.

Il.  PRELIMINARIES

In this section, we recall three problems which
have major roles in proving the correctness and
efficiency of the scheme described in Section IV.

A. Points Interpolation and Polynomial Evaluation

Suppose that we are given n + 1 points (Xo, Yo), ...,
(Xn, Yn) such that the xi’s are distinct in a field K. The
Lagrange interpolating polynomial f(x) is the only
polynomial of degree at most n passing through the
above n + 1 points. Algorithm 4.6.1 from [8] computes
the n + 1 coefficients of f(x) using 3n(n + 1)/2 field
additions, n(n + 1) field multiplications, n(n + 1)/2
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field inversions in K.

Now, let f(x) be a polynomial of degree n over K.
Using Horner’s method, one can efficiently evaluate a
point of f(x) by n field multiplications and n field
additions.

B. Elliptic Curves

Let Fq be a finite field of g = p™ elements, where p
is the characteristic of Fq. We consider separately the
cases where the underlying field Fq has characteristic
different from 2 and 3, or has characteristic equal to 2
or 3 [12], [9].

1. If Fqis a field of characteristic not equal to 2 and 3,
i.e., p > 3, then an elliptic curve E over Fq is the
set of all points (x, y) with x, y € Fq which satisfy
the equation

E:y?=x+ax+b

together with an extra point O, called the point at
infinity, where the constants a, b € Fq and the
condition A = 4a3 + 27b? # 0. The condition A is
called the discriminant of E.

2. If Fq is a field of characteristic 2, then an elliptic
curve E over Fq is the set of all points (together
with a point at infinity O) which satisfy an
equation of the two forms either

y2+xy=x3+ax?+bh, Q)
or
y?+cy=x*+ax+b. 2

An elliptic curve defined by (1) is said to be non-
supersingular and has discriminant A = b # 0,
while one which is defined by (2) is said to be
supersingular and has discriminant A = ¢* # 0.

3. If Fq is a field of characteristic 3, then an elliptic
curve E over Fyq is the set of all points (together
with a point at infinity O) which satisfy an
equation of type either

y2=x3+ax?+b, (3)
or
y=x3+ax+h. (4)

An elliptic curve defined by (3) is said to be non-
supersingular and has discriminant A = — a%b # 0,
while one which is defined by (4) is said to be
supersingular and has discriminant A =—a®#0.

The condition A # 0 ensures that the elliptic curve is
nonsingular (or smooth), that is, there are no points at
which the curve has two or more distinct tangent lines.

Elliptic curve point addition is defined according
to the “chord-tangent process,” and involves a few
arithmetic operations in Fq. Under this addition, the
points of E(Fg) form an abelian group, with the point
O serving as its identity element. By Hasse’s theorem,
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the order of the group is g + 1 —t, where |t| < 2+4. The
type of the group is (N1, ny), i.e., E(Fg) ™ £n) & £0s,
where nyn;, and furthermore nylq — 1 [17]. For all
elliptic curves over finite fields, the group is always
finite and it is also highly likely to be cyclic (or almost
cyclic) [24].

In 1985, Miller [18] and Koblitz [11]
independently proposed the idea of using elliptic
curves in public-key cryptography. Elliptic curve
cryptosystem (ECC) provides the same level of
security as RSA or discrete logarithm (DL) cryp-
tosystems with substantially shorter operands
(approximately 160-256 bits vs. 1024-3072 bits). In
many cases, ECC has performance advantages (fewer
computations) and bandwidth advantages (shorter keys
and signatures) over RSA and discrete logarithm
schemes.

It should be stressed that this security is only
achieved if cryptographically strong elliptic curves are
used. There are several families of curves that possess
cryptographic weaknesses, e.g., supersingular curves.
To avoid the reduction algorithms from [17], [7], the
curve should be non-supersingular. Hence, if a
supersingular elliptic curve is desired in practice, then
it should be carefully chosen.

Let E be an elliptic curve over the finite field Fq,
and suppose P be a point with order m on the elliptic
curve E where m is large (for example, m > 216%) and
Q is some other point on the same curve. The elliptic
curve discrete logarithm problem (ECDLP) is the
problem of finding the integer k € Zn, such that Q = kP,
provided that such an integer exists. We call k the
elliptic discrete logarithm of Q with respect to P.
There is no probabilistic polynomial time algorithm
(in logz q) for solving ECDLP [22]. Of course, this
statement assumes a well-chosen elliptic curve [24].

The Pohlig-Hellman algorithm reduces the
determination of k to the determination of k modulo
each of the prime factors of m. Hence, in order to
achieve the maximum possible security level, m
should be prime [13]. The best algorithm known until
now to solve an ECDLP is the Pollard’s rho method,
which compute an elliptic curve discrete logarithm
with an average of O(+T) steps, where a step here is
an elliptic curve addition. Therefore, this is a
completely exponential algorithm. Since determining
elliptic curve discrete logarithms is harder than in the
case of multiplicative groups of finite fields, one can
use smaller elliptic curve groups while maintaining the
same level of security [24].

The elliptic curve discrete logarithms might be
still intractable even if factoring and the multiplicative
group discrete logarithm are broken [22].

C. Bilinear Maps

Let G = <P> be a cyclic additive group of an elliptic
curve E generated by P whose order is a prime number
. We define the following problems for all a,b,c € Z,":
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Definition 1. The elliptic curve Diffie-Hellman
problem (ECDHP) is the problem of computing the
value of abP from the known values of P, aP and bP
[9]. Clearly, the ECDHP reduces to the ECDLP in
polynomial-time.

Definition 2. The elliptic curve decision Diffie-
Hellman problem (ECDDHP) is the problem of
determining whether cP = abP or not [9].

Now, we consider a cyclic additive group G; =
<P> and a cyclic multiplicative group G,. These two
groups are assumed to have the same large prime order
g. We also assume that the ECDDHP in G; is easy,
while the DDHP in G; is hard, and both the ECDHP in
Gy and the discrete logarithm problem (DLP) in G, are
hard. A bilinear pairing isamap e : G1 x G1 — G2
with the following properties [19], [3]:

1. The map e is bilinear: e(aP, bQ) = e(P, Q)% for all
P,QeGiandany a, b € Z,.

2. e(.,.)is not degenerate: e(P, P) = 1, where 1ez,
is the identity element of G..

3. There exists a computationally efficient algorithm
to compute e(P, Q) e Go forall P, Qe G; .

IIl. CHENETAL.’SDTSS SCHEME

In this section, we briefly explain the DTSS
scheme proposed by Chen et al. [5]. We can divide
Chen et al.’s scheme into four phases: system setup,
secret distribution, secret recovery and secret
redistribution. Each participant Ui (i =0, 1, ..., n — 1)
selects his/fher own private share by himself/herself,
which can be used repetitively in various secret
sharing schemes. In this scheme, the dealer publishes
related public information and only the dealer can
modify the published information, whereas the others
can only read or download it.

A. System Setup

Let G; be a cyclic additive subgroup of order g
(that g is a large prime number) and G, be a
multiplicative group of non-zero elements of order g.
Suppose that e : G1 X G1 — Gz is a bilinear map. The
dealer chooses a generator P of G;, and a
cryptographic hash function h : Gi — Z;", then
publishes g, Gi1, Gz, €, P, h on a public bulletin. Each
participant Ui (i = 0, 1, ..., n — 1) randomly selects a
private share s € Zq", computes the public share P; =
siP, and then submits P; to the dealer. The dealer
verifies whether P # P; # Pj (i # j) in order to keep
different participants from using the same private
share, and then publishes Pi’s (i=0, 1, ..., n — 1) on the
public bulletin.

B. Secret Distribution

In this stage, the dealer chooses the secret s,
computes and publishes some public values. Then, the
dealer does the following steps.

Randomly pick an r € Zy", compute the secret s =
h(rP) € Zy", check whether sP #P;i (i=0, 1, ..., n - 1)
and then publish the value of sP.

Choose the threshold value t, randomly pick a
generator g of Zg", and forman (n + 1 —t) x (n + 1)
matrix M, wheren<q -1,

1

1 ... 1
1 ¢ oo g

-\, =
il]';_l . .: qnlr.l-—H
Compute sP; (i=0, 1, .., n—1), form an (n + 1)
column vector A = (rP, sPq, ..., SPn1)T, where T
represents the transpose of the vector A, and compute
the (n + 1 —t) column vector V,

1iE) e 1 rP Cy
Lgiin o sPy C

' . .
1g" . g n‘ ‘[,-” i (2

Finally, publishgand Ci (i=0, 1, ..., n —1).

C. Secret Recovery

The equation (5) is the system of n + 1 —t linear
equations in n + 1 unknown elements of G;. Clearly, if
t participants submit their shares as sisP, then the
combiner can obtain n + 1 —t linear equations inn + 1
— t unknowns. Therefore, other n +1 —t unknowns will
be revealed, including rP. Consequently, the secret s
can be recovered as s = h(rP). Note that any (n + 1 —t)
x (n + 1 —t) sub-matrices of M is full-rank, thus (5)
has a unique solution over the group G; .

D. Secret Redistribution

The dealer chooses a new threshold value t', a new
secret s', and an r' € Z,". The dealer then proceeds as
above secret distribution phase. Finally, he/she
computes new public information from participants’
public shares, and publishes the new public
information.

IV. THE PROPOSED SCHEME

Here, we propose a verifiable dynamic threshold
secret sharing scheme using elliptic curves and
bilinear maps. The proposed scheme provides
resistance against cheating by malicious participants
and reduces the size of the public values as well as the
computational complexity with respect to [5].

The proposed scheme consists of four phases: (1)
initialization, (2) secret distribution, (3) share
verification and secret reconstruction, and (4) secret
redistribution. Throughout this section, we denote the
n participants by Ui, Uy, ..., U, and the honest dealer
by D who is available during the initialization and run-
ning phases, but only has access to an authenticated
public broadcast channel, on which information is
transmitted instantly and accurately to all participants.

Let g be a sufficiently large prime number (for
example, g should be at least 160 bits long) and G =
<P> be a cyclic additive group of order g, that P is a
generator of G. In addition, suppose Zq is the finite
field of integers modulo g, and distinct nonzero values
X1, X2, ..., Xn € Zq are the participants’ identifiers, as
well as h : {0,1}" — Zq is a hash function mapping a
binary string of arbitrary length to an element of Z,,

@/\/\j‘u\hmmomﬂ Journal of Information & Communication Technology Research
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A. Initialization

First of all, the dealer selects a generator P € G,
and publishes the value of P. Then, each participant
Ui, 1 <i<n, selects a random integer sj € Zq" as his/her
private share, computes P; = sP as his/her
corresponding public share and then sends it to the
dealer through a public channel broadcast message.

Note that Pi(= siP) is an element of the group G
(and correspondingly is a point on an elliptic curve E)
and it is computed by adding P to itself s; times.

On receiving all public shares Pi’s of n
participants, the dealer should ensure P; # P; # P for
every distinct i and j, 1 <i#j<n. Once P; = P;j for
some distinct i and j, those participants should be
demanded to choose different private shares until all
Pi’s are distinct for i = 1, 2, ..., n. Finally, the dealer
publishes all Pi’s (i=1, 2, ..., n).

B. Secret Distribution
Here, the dealer performs the following steps.

1. The dealer secretly chooses a random integer
r e Z4" and publishes the public value of Q = rP.

2. The dealer computes pseudo-shares rP; as well as
h(rPy) fori=1, 2, ..., n. Having n + 1 points (0, s),
(T D{rEy ) (s RErFL)) using Lagrange
interpolation formula, the dealer forms a random
polynomial f (x) € Z4[X] of degree at most n.

f(X)=s+ax+ax?+... +ax" (mod q).

3. Finally, he/she chooses the n — t + 1 smallest
integers di, d, ..., ntr1 € Zg \{Xi| i =1, 2, ..., n},
computes and publishes f (d1), f (d2),..., f (dn-t+1).

C. Share Verification and Secret Reconstruction

One of the significant advantages of our scheme is
that the combiner is able to verify the validity of the
pseudo-shares by using bilinear maps. Suppose at least

t participants L5, Us,.. ... U submit their pseudo-shares
#s (0 wi, ) w0} to the combiner. On receiving

7,0 (k=1, 2, ..., ), the combiner (who may be one of
the participants) first verifies the validity of the
submitted pseudoshares by checking whether e(siQ, P)
= e(Q, P)) for each of the participants who participate
in the secret reconstruction process.

Next, the combiner computes h(#:, &) for k = 1, 2,
..., t. Having the t values #{s:,Q)... .. /ils:, @] as well
as the n — t +1 public values f(di), ..., f(dntr1) and
using Lagrange interpolation formula, the combiner is
able to recover the secret s.

We also remark that each participant U; can
compute the pseudo-share rP; from the public value Q
and his/her private share s;, since:

siQ =sirP =rsiP = rP;.

D. Secret Redistribution

The dealer chooses a new secret s' and/or a new
threshold t', as well as a new random value r'(# r). The
dealer then proceeds as secret distribution phase and
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finally publishes the new public values Q'(= r'P),
fl(dl),---, f'(dnft'+1).

A comprehensive analysis of the proposed
verifiable DTSS scheme and a comparison with the
construction from [5] is presented in the next section.

V. INVESTIGATION OF THE PROPOSED SCHEME

In this section, we discuss the security and
performance of the proposed scheme in two parts. In
the first part, it is shown that the scheme provides
computational security. In the second part, efficiency
of the scheme is investigated and a comparison with
[5] is made. The reason behind this choice of the
reference scheme is due to the simplicity of its
structure. The comparison results show that the
proposed scheme is more efficient, i.e., it has lower
computational complexity and reduces the size of the
public values, while preserving the same security
features.

A. Security Analysis

So as to demonstrate that the proposed scheme
provides computational security, we state the three
following theorems.

Theorem 1. In the proposed scheme, any subset of
participants whose number is less than the
corresponding threshold value t, obtain no
information (from a computational security point of
view) about the related secret s.

Proof. To prove this assertion, suppose there exist
at most t — 1 participants who conspire to determine
the secret s. To achieve this goal, the colluders have to
obtain n + 1 points of f(x) (as defined in 4.3).
However, they have at most n points of it, that is, t — 1
points (¢, filsi Q)), .o (e hls, Q) and then—t+1
public points (d1, f(d1)), ..., (dn-t+1, f(dn-t+1)). The secret
polynomial coefficients tend to be randomly and
uniformly distributed modulo g (This is not a theorem,
but it is an experimentally observed fact.), since f(x)
was first constructed by using n + 1 points which were
chosen at random by the dealer and each of the n
participants. Hence, the secret s takes all the values in
Zy with the equal probability when the unknown point
of f(x) varies over Z; and, as a consequence, the
colluders obtain no information about the secret. On
the one hand, it is computationally infeasible to
compute the value of the private share s; from the two
known public values Pi(= siP) and P, due to the
difficulty of the ECDLP in Gi;. Moreover, it is
computationally infeasible to compute the value of s;
by reducing the ECDLP in G; to an instance of the
DLP in G by wusing a bilinear map
el Fy P = el P, P < (Jg, due to the difficulty of the
DLP in G, On the other hand, it is computationally
infeasible to compute the value of rPi(= siQ) from the
known public values P, Pi(= siP) and Q(= rP), due to
the difficulty of the ECDHP in Gi. Therefore, the
public values leak no information in polynomial-time
about the private shares or pseudo-shares of the non-
colluding participants.

O
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Theorem 2. In the proposed scheme, after
changing r to r', the threshold value from t to t'(> t)
(the secret is not changed), and updating the old
public values Q(= rP), f(d), .. ., f(drt+1) to the new
ones Q'(= rP), f(d), .. ., f(dnr+1), there is no
information leakage from the old public values to the
secret.

Proof. Because all coefficients of the new secret
polynomial f'(x) of degree n (including the secret) tend
to be randomly and uniformly distributed over Zg, the
new public values f'(di),..., f'(dn-r+1) generated by it are
independent of those generated by the old secret
polynomial f(x) of degree n. Thus, there is no
information leakage from the old public values to the
secret.

Theorem 3. The shares provided by the
participants during the secret reconstruction phase
can be verified so that cheaters are identified.

Proof. Suppose that the participant U; submits
his/her pseudo-share siQ to the combiner. As
mentioned earlier, it is computationally infeasible for
an adversary to compute siQ(= rP;) from the known
public values P, Pi(= siP) and Q(= rP). Hence, only
the dealer and the participant U; are able to compute
the value of siQ(= rP;). On receiving siQ, the combiner
employs a bilinear pairing and verifies whether
e(siQ, P) = e(Q, Pi) or not. Now, suppose that a
participant U; cheats during the secret reconstruction
process, thus he/she must submit an invalid value s;"Q
to the combiner (since P, Q and P; are public and
known, therefore the only way for cheating is to
change the value s;Q to a different value s;"Q), and the
combiner will run the verification algorithm and verify
whether e(s;"Q, P) = e(Q, P;) or not; But e(s;'Q, P) #
e(Q, Py, since:

e(s'Q, P) =e(Q, P)”" = ¢(Q, 57P) #e(Q, P))

hence, the cheater U; will be easily identified.

The three above theorems ensure that the proposed
scheme provides the desired level of security.

B. Efficiency Comparison

As mentioned in Section I, the computational and
storage costs represent crucial factors taken into
account when implementing a protocol as a part of a
commercial application. Here, we study the cost of our
construction and compare the proposed scheme with
the scheme of [5] from the following points of view:
the size of public values’ storage and the
computational complexity of the schemes, as well as
the security features. We assume that picking random
elements from the sets Fq and G; has a negligible
computational cost.

Table | defines the notations used in this
subsection. Using the approach of [6], computation of
the inverse of an n x n Vandermonde matrix requires
5n(n — 1)/2 field multiplications, n? field divisions
(i.e., n? field inversions and n? field multiplications),
and 5n(n — 1)/2 field additions. The time complexity of
various operations in terms of time complexity of a

TABLE |. DEFINITION OF GIVEN NOTATIONS

Notations | Definitions

T Time complexity for computing a field
" multiplication

Tadd Time complexity for computing a field addition

Tinv Time complexity for computing a field inversion

T Time complexity for computing an elliptic curve
ec-add addition or doubling

Tec-mul Time complexity for computing kP

Tint Time complexity for interpolating n + 1 points

T Time complexity for computing the inverse of an
inv-van nxn Vandermonde matrix

Th Time complexity for executing a hash function

field multiplication is illustrated in Table Il which is
extracted from [13], [6], [21]. The values in both
columns of Table Il belong to Fq with g = 260, We
assume that picking random elements from the sets Fq,
G and G; has a negligible computational cost.

The comparison results between the proposed
scheme and [5] are illustrated in Table Ill. From the
results, it is easy to infer that the size of public values
in our scheme is smaller than [5]. The required
computational cost for both schemes has been
estimated by accumulating execution times of all the
required operations in terms of Tp.

Let size(x) denote the number of bits used to
represent the natural integer x. We have size(x) =

Jugax| 11, We also remark that a point P on an
elliptic curve E(Fy) in affine coordinates is represented

as (Xp, yp), S0 the size of P is equal to 2(|logs ¢| +1).
As a consequence, the size of our public elements

represents a total of (3n — t + 6)( [lezz 4] +1) bits,
while the size of public elements in Chen et al.’s

scheme is (4n — 2t + 8)(llees 4] +1) bits. Hence, a
priori, our technique provides significant size benefit.

The dealer in the proposed scheme utilizes
Lagrange interpolation formula for constructing the
secret polynomial f(x) and then evaluates n —t + 1
points of it together with only a very few computations
over an elliptic curve group for generating the public
values except the public shares. However in the Chen
et al.’s scheme, the dealer employs multiplication of
two matrices together with almost all computations
over an elliptic curve group for generating the public
values except the public shares. On the other hand, the
combiner in our scheme has to use Lagrange
interpolation formula (over a finite field) for
recovering the secret s, while in Chen et al.’s scheme,
the combiner has to solve a system of n —t + 1 linear
equations in n —t + 1 unknowns (over an elliptic curve
group) in order to reconstruct the secret s. Clearly,
Lagrange interpolating is much simpler than
simultaneously solving linear equations [28]. The
security of the proposed scheme is the same as [5],
that is, both of them are based on the difficulty of the
ECDLP. As a final point, we remark a drawback of
Chen et al.’s scheme, that is to say, the dealer in Chen
et al.’s scheme is not able to change the threshold
value t to t'(> t) without changing the secret, while the
dealer in our scheme is able to do. Therefore, the
proposed scheme is more efficient and can be widely
used in practice.
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TABLE Il. UNIT CONVERSION OF VARIOUS
OPERATIONS IN TERMS OF Tm

Time complexity of | Time complexity in terms
operation units of a field multiplication
Tadd =0
Tinv 3Tm
Tec-add 5Tm
Tec-mul 1200Tn
Tint (5n(n+1)/2)Tr,
Tinv-van (5n(n-1)/2+4n*) Ty,
Th Tm

TABLE I1l. COMPUTATIONAL COMPLEXITY OF THE TWO
VERIFIABLE DTSS SCHEMES

Proposed Scheme Chen et al.’s Scheme [5]

Size of each
private share
(in bits)

|logy g +1 |logy g] +1

Public values’

size (inbits) | Gn-t+6)(lleszal+1)

(4n -2t + 8)(llozz 4 +1)

Size of
renewed public
values (in bits)

(n—t+3)(llogy 4] +1) (2n -2t + 4)(Lloga g +1)

Computational
complexity at
the dealer

N(3.5n —t+12045)Tn+ | 12060(N— )T + 1205nTr +
1200T 2401Tn

1205(t + 1)(n —t)Tm + 4(n —
t+1)?Tn+2.5(n—t+ 1)(n—
)Tm + n(n—t)Tm + 5tTm +
1201Tm

Computational
complexity at
the combiner

2.5n(n + 1)Tm + tTm

VI. CONCLUSION

In this paper, we proposed a verifiable dynamic
threshold secret sharing scheme allowing the secret
and/or the threshold parameter to be changed over an
insecure network without any changes in the private
shares. Like [5], the security of our scheme is based on
the ECDLP, due to this, our scheme requires no secure
channels, and due to the employment of a bilinear
pairing, the combiner is able to verify the validity of
the pseudo-shares in the secret reconstruction process.
Furthermore, the storage requirements of our public
values are much smaller than [5]. To the best of our
knowledge and compared to existing methods in the
literature, our scheme is more efficient, that is, it
requires smaller public values and has lower
computational complexity, while preserving the
desired security features.
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