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Abstract— There has been an increasing demand for automatic classification of digital signal formats during the past 

decades, which seems to be a continouning trend in future too. Most of the previously proposed classifiers can only 

classify a few kinds of digital signals and/or a low order of digital signals. In addition, They usually require a high level 

of Signal to Noise Ratio (SNR). This paper presents a hybrid intelligent system for recognition of digital signal types, 

including three main modules: a feature extraction module, a classifier module, i.e., a Probabilistic Neural Networks 

(PNN), and an optimization module. Simulation results validate the high recognition accuracy of the proposed system 

even at low SNRs. 

Keywords- hybrid system, modulation classification, bees algorithm, probabilstic neural network, higher order 

statistics.  

 

I. INTRODUCTION 

Classifiying the modulation type of the received signal 

is a requisite of many civilian and military applications 

such as electronic surveillance, signal confirmation, 

interference identification, monitoring, spectrum 

management, software radio, intelligent modem, 

satellite communication, and etc [1]. In general, an 

automatic modulation classification system works 

based on one of these two approaches [1]: the Decision 

Theoretic (DT) approach or the Pattern Recognition 

(PR) approach. DT method uses probabilistic 

hypothesis testing arguments to formulate the 

recognition problem [1-3]. The major drawbacks of 

DT approaches are their too complex computations 

and the lack of robustness against the model 

mismatches. Furthermore, due to DT approaches 

limitations, they are not efficient when facing different 

types of digital signals. PR approaches, however, do 

not need such careful treatment, so they are easy to 

implement. The PR method can be further divided into 

two main subsystems: The feature extraction 

subsystem and the classifier subsystem. The former 

extracts the features and the latter determines the 

memberships of signals.  

A variety of modulation recognition techniques 

has been published in the literature. In [4] the authors 

introduced a modulation classifier based on the zero-

crossing characteristic of the intercepted signal. The 

considered signal types were: BPSK, QPSK, 8PSK, 

BFSK, 4FSK, and 8FSK. The decision about the 

modulation type was based on the variance of the zero-

crossing interval sequence, the frequency, and the 

phase difference histograms. In [5], a technique based 

on the constellation shape was proposed. This 

technique used a Fuzzy-C means clustering method for 

classification of PSK4, PSK8, and QAM16 signals. 

The accuracy rate of the identification exceeded 90% 

for SNR >5 dB. In [6], the authors proposed a technique 

for identifying ASK2, ASK4, PSK2, PSK4, FSK2, and 

FSK4 signals. The classifier was based on a decision 
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flow. These digital signal types have been identified 

with a success rate around 90% at SNR=10dB. In [7], 

the authors proposed a technique based on elementary 

fourth-order cumulants. In [8], the authors proposed a 

classifier to discriminate among ASK, 4DPSK, 

16QAM, and FSK digital signals. The chosen features 

were: the kurtosis of the signal, the number of peaks in 

the phase Probability Density Function (PDF), and the 

mean of the signal frequency absolute value. A fuzzy 

classifier was used in this technique. For SNR>5dB, the 

identifier worked properly. For SNR<5 dB, the 

performance began to deteriorate. In [9], the authors 

introduced two classifiers for analog and digital 

modulation recognition: neural network classifier and 

fixed threshold classifier. They showed that the neural 

network classifier perform more efficiently than the 

threshold classifier. In [10], the authors used the mean 

and the next three moments of the instantaneous 

characteristics as the features for signal type 

classification. They applied different classifiers and 

showed that the Artificial Neural Network (ANN) has 

better performance than both KNN and the well-known 

binary decision trees. They reported a success rate of 

90% with SNR range 15–25 dB. In [11], the authors 

proposed an identifier based on cyclic spectral features 

for identification of AM, USB, LSB, FM, ASK, FSK, 

BPSK, QPSK, and SQPSK. It was claimed that cyclic 

spectrum posses more advantages than power spectrum 

in signal type recognition. The success rate of this 

identifier was reported around 90% with SNR range 5–

25 dB. In [12], the authors used the features that 

proposed in [6] and a MLP neural network as the 

classifier. This identifier showed a success rate about 

93% at SNR=8dB for identification of ASK2, ASK4, 

PSK2, PSK2, FSK2, FSK4, FSK4, and QAM16 digital 

signals. In [13], the authors proposed four features to 

classify ASK2, ASK4, PSK2, PSK4, FSK2, and FSK4. 

The features were extracted based on two main 

processing steps. The first step was the multiplication 

of two consecutive signal values. In the second step, the 

mean and the kurtosis of real and imaginary parts of the 

quantity obtained in the first step were used as the input 

features of the classifier. Ref. [14] explored the use of 

Genetic Programming (GP) in combination with KNN 

for automatic modulation classification. Four 

modulation types were considered: BPSK, QPSK, 

QAM16, and QAM64. Cumulants have been used as 

input features for GP. 

In [15], the authors suggested a low complexity 

minimum distance centroid estimator to estimate the 

channel gain and carrier phase jointly. The estimation 

was achieved by minimizing a signal-to-centroid 

distance. A New nonparametric likelihood function 

was proposed for fast classification with unknown 

noise variance and distribution. 

In [16], the authors proposed a method to discover 

unknown digital amplitude-phase modulations over 

block-fading additive noise channels. The proposed 

method applied the iterative Richardson-Lucy 

algorithm to determine the distribution of the 

transmitted symbols, which completely characterized 

the underlying signal constellation. The decoding of 

the received signals can then be carried out based on 

the estimate of the signal constellation. In [17], the 

authors addressed the problem of blind digital 

modulation identification in time-selective Multiple-

Input Multiple-Output channels. The proposed 

identification process was based on blind source 

separation and feature classification. A specific multi 

ANN classifier was adopted to improve the 

recognition of modulation schemes. 

From the published works, it can be clearly 

observed that design of a system for automatic 

recognition of digital signal types entails some 

important issues. If they are suitably addressed, the 

more robust and efficient recognizers can be 

developed. One of these issues is related to the choice 

of the classification approach to be adopted. Literature 

review shows that techniques, using artificial neural 

networks as classifiers, outperform the others. In 

ANNs, the suitable threshold at each node is chosen 

automatically and adaptively. Furthermore, the time 

order of the key features does not affect the probability 

of the correct decision about modulation type of a 

signal. However, many other algorithms, especially 

those utilizing the decision-theoretic approach, have to 

choose the threshold for each key feature and perform 

with different success rates at a same SNR by applying 

the extracted key features in a different order in the 

recognition algorithm [6]. Among the ANNs, perhaps 

the most widespread neural network architecture is the 

multilayer perceptron network (MLPN), which usually 

applies the well-known back propagation algorithm as 

the learning rule. The back-propagation algorithm of 

the MLPN does not present a structure which can be 

easily implemented in a completely parallel manner. 

For this reason, neural networks which operate in 

parallel have been proposed. The PNN has been 

developed in order to respect the requirement of high 

parallelism. 

In this work, the PNN neural network is utilized 

as a classifier. Assuming the true PDF is smooth, the 

estimated PDF by classifier approaches the true PDF 

[18]. Choosing the right features set is another 

challenging issue. In former papers, usually numerous 

features used for modulation classification leading to 

improved efficiency. However, by considering 

different digital signal types (ASK-PSK-QAM) with 

higher orders (M>16), the performance degrades and 

even numerous features are not efficient enough 

anymore. Indeed, one main reason lead to limitations 

of most techniques on recognition of digital signal 

types relates to the features that they utilize. In this 

work, the feature selection is improved in two aspects: 

by using the combination of moment and cumulant up 

to eight orders, that has more efficiency than other 

types of features, and also by selecting the most 

effective features from features set by BA [19]. The rest 
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of the paper is organized as follows. Feature extraction 

module will be described in section 2. Section 3 

describes the classifier and its optimization. Section 4 

presents the BA and feature selection method. Section 

5 illustrates some simulation results. Finally, section 6 

concludes the paper.  

II. FEATURE EXTRACTION 

Different types of communication signals have 

different characteristics [20]. Therefore, finding the 

suitable features for their recognition is a critical 

problem. In this paper, the following radio signals are 

considered for recognition: ASK4, ASK8, PSK2, 

PSK4, PSK8, QAM8, QAM16, QAM32, and QAM64. 

For simplicity, notations of the mentioned signals are 

substituted with P1, P2, P3, P4, P5, P6, P7, P8, and P9 

respectively.  

Based on our research [7,8,12,15], a combination 

of higher order moments and higher order cumulants up 

to eighth provides digital classifiers with improved 

performances. These features can be applied to 

characterize the signal PDF. The behavior of higher 

order moments and cumulants against various 

transformations is an important factor in determining 

how useful these quantities may be to characterize 

signals in systems. The only effect of translation on the 

received signal is changing its mean. The variance and 

all higher order moments or cumulants remain 

unaffected.  The rotation of the received signal 

constellation, caused by multipath or other distortions, 

affects the relative variances, though certain other 

parameters are invariant to rotation. The following 

subsection, briefly describes these features. 

A.     Higher order moments and higher order 

cumulants 

Probability distribution moments are a 

generalization to the concept of the expected value. The 

general expression for the  moment of a random 

variable (R.V.) is given by [20]: 

( ) ( )i

i s m f s ds




 
  (1)                     

where m is the mean of the random variable, and (.)f  

is the PDF of the random variable S . The definition of 

the 
thi moment for a finite length discrete R.V. is given 

by [9]: 

1

( ) ( )
N

i

i k k

k

s m f s


   (2)                        

 

where N is the data length. In this study, signals are 

assumed to be zero mean. Thus: 

1

( )
N

i

i k k

k

s f s


   (3)                        

 

Next, the auto-moment of a random variable may be 

defined as follows: 

[ ( ) ]p q q

pqM E s s   (4) 

 

where p  is called the moment order, p-q and q 

represent the number of the non conjugated and 

conjugated terms, respectively. S 
 stands for complex 

conjugation of S . Considering the signal sequence in 

form of k k ks a jb  , and using the definition of the 

auto-moments, the expressions for different orders can 

be easily derived. For example: 

 

4 2 4 2

62

4 3 2 2 2 3 3 4 4

2 2

6 5 2 4 2 3 3 3

4 2 4 5 5 6 6

6 4 2 2 4 6

[ ( ) ] [( ) ( ) ]

[( 4 6 4 )

( 2 )]

[ 2 4

2 ]

[ ]

M E s s E a jb a jb

E a j a b j a b j ab b j

a j ab b

E a j a b j a b j a b

j a b j ab j b

E a a b a b b

   

    

 

   

  

   

 

 

 

 

   (5) 

 

 

Consider a scalar zero mean random variable S with 

characteristic function: 

 ˆ( ) jtSf t E e                                                                                        (6)                                                                                                           

 

Expanding the logarithm of the characteristic function 

as a Taylor series gives: 

1

( )ˆlog ( ) ( )
!

r

rk jt
f t k jt

r
                                                                                             

(7)                                                                                                           

 

 

The constants rk  in (7) are called the cumulants (of the 

distribution) of S . The symbolism for thp order of 

cumulant is similar to that of the thp  order moment. 

More specifically: 

( ) ( )

[ ,..., , ,..., ]pq

p q terms q terms

C Cum s s s s 



  (8)                                                                                                                                           

 

For example: 

)s,s,s,s,s,s,s,s(CumC81
  

Moments may be expressed in terms of cumulants as: 

     
1

1,.., ...
q

n j jj v j v
v

M s s Cum s Cum s
 



  
      

                                                                                     (9)                           
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where the summation index is over all partitions 

1( ,..., )qv v v  for the set of indices (1,2,..., )n , and q  

is the number of elements in a given partition.  .M

represents moments. The 
thn order cumulant is a 

function of the moments of orders up to (and including)

n :  

 

1

1

1

,..,

( 1) ( 1)! [ ].. [ ]
q

n

q

j j

v j v j v

Cum s s

q E s E s

  

    
                                          

(10)                           

 

where [.]Cum  means cumulant, and the summation  

performs on all partitions )v,...,v(v q1  for the set of 

indices )n,...,2,1( . Assuming 2n  , the available set of 

indices is 1 and 2. Therefore, two different types of 

partitioning are obtained i.e. 1 2( , )v v v . The 

partitions are (1, 2) with 1q  , (1), (2) with 2q  . 

Therefore, equation (10) becomes: 

  1 1

1 2 1 2

2 1

1 2

1 2 1 2

, ( 1) (1 1)! [ ]

( 1) (2 1) [ ] [ ]

[ ] [ ] [ ]

Cum s s E s s

E s E s

E s s E s E s





  

  

 

                                                                                       
(11)                           

 

In the same manner, cumulant expressions up to 

eighth order can be computed. For example 

 

21

2

20402141206161 30510 MMMMMMMC 
2 4 2

80 80 40 20 20 4035 630 420C M M M M M                            

(12)                           

The second, fourth, sixth and eighth order of the 

moments and cumulant are considered as the features. 

These features are: M20, M21, M40, M41, M42, M60, M61, 

M62, M63, M80, M81, M82, M83, M84, C20, C21, C40, C41, 

C42, C60, C61, C62, C63, C80, C81, C82, C83, and C84. It 

should be noted that considering the orders higher than 

eight did not influence the system performance 

sensibly, but complicated the system and increased the 

computation time.  The odd order of the higher order 

moments is zero. Therefore, the total number of the 

statistical features is 26, because the M20 and M21 are 

equal to C20 and C21 respectively. All these features are 

computed for the considered digital signals. Table 1 

shows some of the theoretical values of the selected 

features for a number of the considered digital signal 

types. These values are computed under the constraint 

of unit variance in noise free, and are normalized by 

theoretical signal power. Actually, these computed 

values are obtained assuming that the signal is clean 

and of infinite length. However, in practice, signals are 

usually subject to some types of distortion, either inside 

the transmitter or during transmission, and have finite 

length. Figure 1 and Figure 2 show some of the higher 

order features for a number of considered digital signal 

types. 

 

 

Table 1.  the  values of selected features for a number of considered digital signal types 

 ASK4 ASK8 PSK2 PSK4 PSK8 QAM8 QAM16 QAM32 QAM64 

M41 1.6400 1.7619 1 0 0 1.1111 -0.6800 0 0 

M81 5.2496 7.9211 1 0 0 -1.3580 0 0 0 

M83 5.2496 7.9211 1 0 0 3.0864 0 0 0 

C40 -1.3600 -1.2381 -2 -1 0 -1 -0.6800 -0.1900 -0.6190 

C60 -15.560 -21.882 16 0 0 -1.9259 0 0 0 

C61 8.3200 7.1889 16 -4 0 4.8889 2.0800 0 1.7972 

C62 8.3200 7.1889 16 0 0 4.7464 0 0 0 

C63 8.3200 7.1889 16 4 4 4.8809 2.0800 2.1100 1.7972 

C80 -30.086 9.2703 -244 -34 1 -69.358 -13.980 -1.9926 -11.502 

C84 -30.086 9.2703 -244 -18 -17 -2 17.379 16.6138 24.1104 
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Fig. 1.  The amount of C84 for some of considered digital signal types. 

 

Fig. 2.  The amount of M83 for some of considered digital signal types. 

 

 

Fig. 3.  Block Diagram of a PNN 
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III. CLASSIFIER 

The probabilistic Neural Network (PNN) algorithm 
is a direct continuation of the work on Bayes 
classifiers. PNN learns to approximate the PDF of the 
training examples. More precisely, it is interpreted as 
a function which approximates the probability density 
of the underlying examples. The architecture is 
composed of many interconnected processing units or 
neurons organized in successive layers. The input layer 
unit does not perform any computation and simply 
distributes the input to the neurons in the pattern layer. 
On receiving a pattern x  from the input layer, the 

neuron 
ijx  of the pattern layer computes its output  

 

2
2

( ) ( )1
( ) exp

2(2 )

T

ij ij

ij d
d

x x x x
x

 

  
  

                                                                                          

(13)                           

where d  denotes the dimension of the pattern vector 

x ,  is the smoothing parameter, and
ijx  is the neuron 

vector. The summation layer neurons compute the 
maximum likelihood of pattern x  being classified into 

i
C  by summarizing and averaging the output of all 

neurons that belong to a same class   

 

2
2 1

( ) ( )1 1
( ) exp

2(2 )

i
TN

ij ij

i d
d

ji

x x x x
p x

N   

  
  

  


                                                                                       

(14)                           

 

where 
iN  denotes the total number of samples in class 

iC  . If the apriori probabilities for each class are the 

same, and also the losses associated with making an 
incorrect decision for each class are the same, the 
decision layer unit classifies the pattern in accordance 
with the Bayes decision rule. This means the 
classification is based on the output of all the 
summation layer neurons distribution. A PNN is 
defined as an implementation of statistical algorithm 
called Kernel discriminate analysis in which the 
operations are organized into multilayered feed 
forward network with four layers. The architecture of 
a typical PNN is as shown in Fig.3 [21]. 

 ˆ ( ) arg max ( ) , 1,2,...,iC x p x i m 
                                                                                       

(15)                           

 

where ˆ ( )C x  denotes the estimated class of the pattern 

x , and m is the total number of classes in the training 
samples. 

The training process of a PNN is essentially the act 
of determining the value of the smoothing parameter 
sigma (i.e., the radial deviation of the Gaussian 
functions). As with RBF networks [22], this parameter 
needs to be selected to cause a reasonable amount of 
overlap - too small deviations cause a very spiky 
approximation which cannot generalize, too large 
deviations smooth out details. Since, the parameter 

(the common variance) cannot be determined 
analytically, the original PNN uses all the training 
patterns as centers of the Gaussian kernel functions, 
and assumes a common variance (homoscedastic 
PNN) [23]. In this method, it is assumed that the 
smoothing parameter is set to a pre-specified value. 
However, an appropriate smoothing parameter is often 
data dependent. Therefore, it requires a proper 
procedure for smoothing parameter selection as 
proposed here. When each Gaussian kernel has its own 
variance, the PNN is heteroscedastic. In the proposed 
method, depending on input data, an optimal spread 
value is chosen independently for each class by BA 
algorithm. This results in low selection error, in this 
way, the sensitivity of the PNN to smoothing 
parameter is completely removed. 

IV. BEES ALGORITHM 

As mentioned, the proposed system uses the BA for 
optimizing the recognizer. Next phrases describe the 
BA and optimization of the classifier. 

A. Bees Algorithm 

The BA is an optimization algorithm inspired by the 
natural foraging behavior of honey bees [19, 24] Figure 
4 simply demonstrates the pseudo code for the BA. The 
BA requires a number of parameters to be set, namely: 
number of scout bees (n), the number of patches 
selected out of n visited points (m), the number of elite 
patches out of m selected patches (e), the number of 
bees recruited for the best e patches (nep), the number 
of bees recruited for the other (m-e) selected patches 
(nsp), the size of patches (ngh), and the stopping 
criterion. The algorithm starts with the n scout bees 
being placed randomly in the search space. The fitness 
of the points visited by the scout bees are evaluated in 
step 2. In step 4, bees that have the highest fitness are 
designated as “selected bees” and sites visited by them 
are chosen for neighborhood search. Then, in steps 5 
and 6, the algorithm conducts searches in the 
neighborhood of the selected bees, assigning more bees 
to search near the best e bees. The bees can be chosen 
directly according to the fitness associated with the 
points they are visiting. Alternatively, the fitness values 
are used to determine the probability of the bees being 
selected. Searches in the neighborhood of the best e 
bees, which represent more promising solutions, are 
made more detailed by recruiting more bees to follow 
them than the other selected bees. Together with 
scouting, this differential recruitment is a key operation 
of the BA. In step 6, for each site, only the bee with the 
highest fitness will be selected to form the next bees 
population. In nature, there is no such a restriction. This 
constraint is introduced here to reduce the number of 
points to be explored. In step 7, the remaining bees in 
the population are assigned randomly around the search 
space scouting for new potential solutions. These steps 
are repeated until a stopping criterion is met. At the end 
of each iteration, the colony will have two parts to its 
new population representatives from each selected 
patch and other scout bees assigned to conduct random 
searches.  
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1. Initialize population with random solutions. 

2. Evaluate fitness of the population. 

3. While (stopping criterion not met) Forming new population. 

4. Select elite bees for neighborhood search. Select other bees 

for neighborhood search. 

5. Recruit bees for selected bees and evaluate fitness. 

6. Select the fittest bee from each site. 

7. Assign remaining bees to search randomly and evaluate 

their fitness. 

8. End While. 

 

Fig. 4.  Pseudo code of the basic BA 

B. Hybrid Intelligent System (HIS)  

As known, the great number of features causes high 
computational complexity of the recognizer [25]. In 
addition, some of these features may carry good 
classification information when treated separately, due 
to sharing of the same information content there is a 
little benefit when they combine together. The easiest 
way to reduce the number of features is a feature 
selection method. Feature subset selection algorithms 
can be classified into two categories based on whether 
or not feature selection is done independently of the 
learning algorithm used to construct the c1assifier. 
Filter approaches select salient features only using 
heuristics based on the intrinsic characteristics of the 
data. The selection procedure is independent of the 
estimation or classification process, whereas wrapper 
approaches embed the estimation classifier as a part of 
selection procedure and use the estimation of the 
classifier as feedback to guide the selection direction. 
Thus, filter approaches are computationally more 
efficient than wrapper approaches in cases where the 
original feature number is extremely large. However, 
for feature selection problems in small and medium 
size, the filter approaches totally ignore the effects of 
the selected feature subset on the performance of the 
classifier used for further estimation (i.e., the feature 
selection procedure and the classification step do not 
necessarily optimize the same criterion function). 
Therefore, in such cases, filter approaches generally 
result in worse performance than wrapper approaches 
[25]. In this paper, wrapper type approach has been 
used.  

As mentioned previously, the proposed system 
employs PNN as classifier. The classification accuracy 
is used as feedback to the selection process to inform 
how well a given set of features characterizes patterns. 
The method requires a data set, comprises patterns, 
each with 

totN features to be utilized in the feature 

selection process. The classes of all patterns in the 
training set are known. From the original data sets, new 
data sets can be constructed in which patterns only 
contains a subset of the original features. In other 
words, a pattern in a new data set will have 

sN  features 

selected from the original set of 
tot

N features. A bee 

represents a subset of 
s

N  features and the classifier 

parameter. A bee can be uniquely identified by a real-
binary string (e.g. 52-010110111), where the first part 
demonstrates the smoothing parameter and the second 
represents features. The Real part is just one number. 
The total number of bits in the binary part is 

totN , and 

the total number of non-zero bits is 
sN . The position 

of a bit along the binary string indicates a particular 
feature. If a feature is selected to form a data set, the 
corresponding bit is 1. Otherwise, it is zero. 

In initial phase, the BA starts with a random 
generation of a population of real-binary strings that the 
real number has been generated from a proper interval. 

The data set is divided in two sets. One data set 

(training data) is used to train the PNN. The other data 
set (the test data) is employed to evaluate the 
classification accuracy of the trained PNN. 
Neighborhood searching in the BA performs by 
generating and evaluating neighbors of the fittest bees. 
It works by just varying slightly a few selected numbers 
of features and minor changes on the smoothing 
parameter of best selected answers in that iteration. 
Various operators could be employed to create 
neighbors of a given bee, including monadic operators 
such as mutation, inversion, swap, and insertion (single 
or multiple). Figure 5 shows the flowchart of the 
modulation classifier that has been proposed in this 
work.  
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Fed to classifier (PNN) to evaluate the 
fitness3. Stopping criterion met?

4. Select elite bees (solution) and other bees from M best for 
neighborhood search 

5. Recruit bees for neighborhood search

6. Select fittest bees from each site

7. Assign remaining bees to search again randomly

T
O

 P
N

N

F
R

O
M

  
  
  
P

N
N

Optimum solution

T
O

 P
N

N
 A

N
D

 R
E

P
E

A
T

 T
H

IS
 P

R
O

C
E

S
S

T
O

 P
N

N

FEATURE EXTRACTION

1. Initialize population with random solution (selection of 
different features and the parameter of PNN)

2.FROM PNN

N
O

YES

 
 

 

Fig. 5.  flow chart of the modulation classifier 

 

V. SIMULATION RESULTS 

This section represents simulation results of the 

considered signals classification. It was supposed that 

carrier frequencies were estimated correctly, and the 

signal was heterodyned down. Each signal was 

generated by MATLAB editor. The digital message 

was produced randomly for every trial to ensure results 

would be independent of the message transmitted. 

Estimating moment and cumulant values for all signal 

types was based on the theoretical formulas explained 

in section2. For this process, only the moments and 

cumulants demonstrating some special characteristics 

as the class features were selected. The sample 

frequency was 85.4291 KHz, and the symbol frequency 

was considered as 10 KHz. A total of  3,000 samples 

per signal type were created and stored. The estimation 

was done on a subset of 2000 samples per scheme, out 

of the total 3,000 samples per scheme dataset. Two 

different cases were examined. First, the signals were 

generated noise-free. Second, the signals were distorted 
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by additive white Gaussian noise (AWGN) according 

to SNRs –2, 0, 2, and 5dB. The PNN parameter 

(Smoothing parameter) bounded in the interval 10 to 

50.  

A. Performance of the Straight Identifier (SI) 

In this subsection, the efficiency of the identifier is 

evaluated without optimization and feature selection 

(straight identifier), i.e. full features and the fixed PNN 

parameter (smoothing parameter) are used. By trial and 

error method, it was found that optimum value for 

smoothing parameter is 48.  Therefore, this value was 

considered in simulations. As reported in Table 2, using 

the MLP neural network with resilient back 

propagation learning algorithm, 96.28% recognition 

accuracy has been achieved. While, the recognition 

accuracy percent of the PNN achieved on the test set 

was equal to 98.88%. These results were better than 

those achieved by the SVM-linear and the MLP-back 

propagation. Indeed, the percent of the MLP-BP and 

the SVM-Linear methods respectively were equal to 

97.15% and 97.22%. Table 3 shows the average 

efficiency of SI in different SNRs in 10 runs. 

recognition accuracy of the recognizer without 

optimization 

classifier RA(%) 

MLP (RPROP) 96.28 

MLP (BP) 97.15 

SVM (Linear) 97.22 

PNN 98.88 

 

Table 2.  The average accuracy of si% 

SNR Efficiency (%) 

-2 93.61 

0 98.88 

2 99.17 

5 100 

 

B. Performance of the identifier using BA 

optimization 

 In this subsection, the efficiency of the proposed 

identifier using the BA is evaluated. For starting the 

optimization, one has to specify the number of features 

that varies from 1 to 26. It is obvious that limiting the 

number of features will reduce complexity of the 

identifier and will demand less memory. In this 

problem, the reduction of feature space was carried out 

by using the BA feature selection. In general, selecting 

minimum number of features reduces the recognition 

accuracy in lower SNRs. However, in this paper, a 

novel algorithm has been proposed that is the best 

solution for this problem i.e. reducing the number of 

features and optimizing the identifier simultaneously. 

Therewith, the accuracy of the identifier has been 

improved, and at the same time, its complexity has been 

reduced. Based on simulation results, it was found out 

that some features carried useful information in 

detaching some modulation types, but had weak 

efficiency in other types. For example, M81 could 

detach P6, P7, P8, and P9 but confused P3, P4, and P5, 

whereas C60 denoted P1 ,P2 , P3, and P6 but confused 

P4, P5, and P7 . BA has given the best identification by 

assembling the optimum features.  

Table 4 demonstrates the selected parameter of 

PNN in different SNRs, and tables 5-8 show the 

selected features in different SNRs. These tables 

illustrate that in SNRs above zero usually algorithms 

converge to the same features and constant PNN 

parameter i.e. optimum values. As  observed in lower 

SNRs the average number of features is more than 

higher SNRs (i.e. the average number of features for 

SNR=-2 is 14, for SNR=0 is 13, and for SNRs more 

than two is 10). In addition, the PNN parameter in 

lower SNRs is smoother than higher SNRs (i.e. the 

average of smoothing parameter for SNR=-2 is 41.9, 

for SNR=0 is 27.7, for SNR=2 is 19.9, and for more 

than SNR=2 is 18).  

Table 9 demonstrates the performance of the proposed 

identifier in different SNRs. The average of the 

identifier accuracy in SNR=-2 is 94.63%, in SNR=0 is 

99.54 %, and for SNRs more than zero is 100%. It is 

observed that in SNRs above zero the identifier 

completely detached the modulation types. By 

increasing SNR from -2 to 0, the accuracy increases 

about 5%. Tables 10-11 represent the confusion matrix 

in SNR=-2 and SNR=0. To estimate this matrix, the 

average of confusion matrices of ten runs was 

calculated. Table 12 shows the average accuracy of the 

proposed identifier. 

Table 3.  The selected parameter of pnn 

Run 
 

SNR 
1 2 3 4 5 6 7 8 9 10 

-2 45 48 44 34 37 44 44 44 45 34 

0 11 10 46 38 11 37 11 28 37 48 

2 18 18 37 18 18 18 18 18 18 18 

5 18 18 18 18 18 18 18 18 18 18 
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Table 4.  The selected features in snr=-2 

M20     M21    M40   M41    M42   M60    M61   M62   M63   M80    M81    M82   M83    M84    C40    C41     C42     C60      C61      C62     C63       C80    C81    C82     C83    C84  feature 

run  

 1     0     1     0     1     1      0     1     0     1     1     0     0     1     0     1     1     0      0      0     1     0     0     1     0     1 1 

 1     0     0     1     1     0      0     0     0     0     1     1     0     1     1     1     1     0      0      1     0     1     0     0     0     0 2 
 1     0     1     1     1     0      0     1     0     1     0     1     0     0     1     1     0     1      0      1     1     1     0     1     0     1 3 
 1     0     1     0     1     0      1     1     0     1     0     1     1     0     1     0     1     1      0      0     0     0     0     0     0     1 4 
 1     0     0     1     0     1      0     1     1     0     1     0     1     1     0     0     0     0      1      0     0     1     0     1     1     0 5 
 1     1     1     0     1     0      0     1     1     1     0     1     0     0     1     1     0     1      0      1     1     1     0     1     1     1 6 
 1     0     1     1     1     0      0     1     0     1     0     1     0     0     1     1     0     1      0      1     1     1     0     1     0     1 7 
 1     0     1     1     1     0      0     1     0     1     0     1     0     0     1     1     0     1      0      1     1     1     0     1     0     1 8 
 1     1     1     1     1     1      0     1     1     1     1     0     0     1     0     1     1     0      0      0     1     0     0     1     1     1 9 
 1     0     1     0     1     0      1     1     0     1     0     1     1     0     1     0     1     1      0      0     0     0     0     0     0     1  10 

Table 5.  The selected features in snr=0 

M20     M21    M40   M41     M42   M60    M61   M62   M63   M80    M81    M82   M83    M84    C40   C41    C42     C60      C61      C62     C63      C80    C81     C82      C83     C84  feature 

run  

1     0     1     0      1     0      0     1     0     1     0     1     0     0     0     0     0     0      1     0      1     0     0      1     0     1 1 

0     1     0     1      0     0      1     1     0     1     1     1     0     1     0     0     1     0      1     1      0     0     1      1     0     0 2 
1     1     1     1      1     1      1     0     1     1     1     0     1     0     1     1     0     1      1     1      1     1     0      0     1     0 3 
0     0     1     0      0     1      0     1     0     0     0     0     1     0     0     1     1     0      0     1      1     0     1      1     1     0 4 
1     0     1     0      1     1      0     1     0     1     0     1     0     0     0     0     0     0      1     0      1     0     0      1     1     1 5 
1     0     0     0      0     1      0     1     1     0     1     0     1     1     0     0     0     0      1     0      0     1     0      1     1     0 6 
1     0     1     0      1     1      0     1     0     1     0     1     0     0     0     0     0     0      1     0      1     0     0      1     1     1 7 
1     1     0     0      1     1      1     1     1     1     1     0     0     1     1     1     0     0      0     0      1     1     1      1     0     1 8 
1     0     0     0      0     1      0     1     1     0     1     0     1     1     0     0     0     0      1     0      0     1     0      1     1     0 9 
0     1     0     0      0     1      1     1     0     0     0     1     0     1     1     1     1     0      0     1      1     0     1      1     0     0 10 

Table 6.  The selected features in snr=2 

M20     M21    M40   M41     M42     M60    M61   M62   M63   M80   M81    M82   M83    M84   C40    C41    C42    C60     C61       C62     C63      C80    C81     C82      C83     C84  feature 

run  

0     0     0     1      0      0     0     0     0     1     1     0     0     0     1     0     0     1      1     1     1     1      0     0     0     1 1 

0     0     0     1      0      0     1     0     0     1     1     0     0     0     1     0     0     1      1     1     1     1      0     0     0     1 2 

1     0     0     0      0      1     0     1     0     0     1     0     1     1     0     0     0     0      1     0     0     1      0     1     0     0 3 
0     0     0     1      0      0     1     0     0     1     1     0     0     0     1     0     0     1      1     1     1     1      0     0     0     1 4 
0     0     0     1      0      0     1     0     0     1     1     0     0     0     1     0     0     1      1     1     1     1      0     0     0     1 5 
0     0     0     1      0      0     1     0     0     1     1     0     0     0     1     0     0     1      1     1     1     1      0     0     0     1   6 
0     0     0     1      0      0     1     0     0     1     1     0     0     0     1     0     0     1      1     1     1     1      0     0     0     1   7 
0     0     0     1      0      0     1     0     0     1     1     0     0     0     1     0     0     1      1     1     1     1      0     0     0     1   8 
0     0     0     1      0      0     1     0     0     1     1     0     0     0     1     0     0     1      1     1     1     1      0     0     0     1 9 
0     0     0     1      0      0     1     0     0     1     1     0     0     0     1     0     0     1      1     1     1     1      0     0     0     1 10 
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Table 7.  The selected features in snr=5 

M20  M21    M40  M41    M42    M60   M61   M62   M63   M80   M81   M82   M83   M84   C40    C41  C42    C60      C61      C62      C63      C80     C81     C82      C83     C84 

feature 
 
run 

 0     0     0     1     0       0     1     0     0      1     1      0     0     0     1     0     0     1     1       1     1      1      0      0     0      1 1 

 0     0     0     1     0       0     1     0     0      1     1      0     0     0     1     0     0     1     1       1     1      1      0      0     0      1 2 
 0     0     0     1     0       0     1     0     0      1     1      0     0     0     1     0     0     1     1       1     1      1      0      0     0      1 3 
 0     0     0     1     0       0     1     0     0      1     1      0     0     0     1     0     0     1     1       1     1      1      0      0     0      1 4 
 0     0     0     1     0       0     1     0     0      1     1      0     0     0     1     0     0     1     1       1     1      1      0      0     0      1 5 
 0     0     0     1     0       0     1     0     0      1     1      0     0     0     1     0     0     1     1       1     1      1      0      0     0      1 6 
 0     0     0     1     0       0     1     0     0      1     1      0     0     0     1     0     0     1     1       1     1      1      0      0     0      1 7 
 0     0     0     1     0       0     1     0     0      1     1      0     0     0     1     0     0     1     1       1     1      1      0      0     0      1 8 
 0     0     0     1     0       0     1     0     0      1     1      0     0     0     1     0     0     1     1       1     1      1      0      0     0      1 9 
 0     0     1     0     0       1     0     0     1      1     0      0     0     1     0     0     1     1     1       1      1      0      0      0     0      1 10 

Table 8.  The recognition accuracy of the proposed system 

Run 

 

SNR 

1 2 3 4 5 6 7 8 9 10 

-2 94.72 94.44 95.27 94.16 93.61 94.16 95.55 95.55 92.50 96.38 

0 99.44 99.16 99.72 99.44 99.44 99.68 99.44 99.72 100 99.44 

2 100 100 100 100 100 100 100 100 100 100 

5 100 100 100 100 100 100 100 100 100 100 

Table 9.  The confusion matrix in snr=-2 

 P1 P2 P3 P4 P5 P6 P7 P8 P9 

P1 31.8 8.2        

P2 10.2 29.8        

P3   40       

P4    40      

P5     39.6    0.4 

P6      40    

P7     0.2  39.8   

P8      0.1  39.7 0.2 

P9     0.2   0.1 39.7 

Table 10.  The confusion matrix in snr=0 

 P1 P2 P3 P4 P5 P6 P7 P8 P9 

P1 38.8 1.2        

P2 0.8 39.2        

P3   40       

P4    40      

P5     40     

P6      40    

P7       40   

P8        40  

P9         40 
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Table 11.  The performance of the proposed system (his) 

SNR Efficiency (%) 

-2 94.63 

0 99.54 

2 100 

5 100 

    

C. The effect of the optimization(BA) 

In this subsection, the effect of optimization on the 

proposed system is studied. Figure 6 shows a 

comparison between performances of the non-

optimized classifier and the optimized classifier. It can 

be seen that the optimization, generally, improves the 

performances of the classifier for all of SNRs. 

In order to compare the performance of BA with 

other evolutionary algorithms, several algorithms such 

as Artificial Bee Colony (ABC) [26], Genetic 

Algorithm (GA) [27], and Particle Swarm 

Optimization (PSO) [28] are applied to evaluate the 

proposed method. These results have been obtained in 

AWGN channel at SNR=0dB. According to results in 

Table 13, the best accuracy obtained for the test set by 

BA-PNN is 99.54%. It can be seen that the success rates 

of BA is higher compared to other nature inspired 

algorithms. To evaluate the influence of user- defined 

parameters of BA on its performance and to guide the 

adequate parameter setting according to the problem at 

hand, the number of scout bees was changed. It was 

perceived that by increasing the number of bees the 

performance would increase. Furthermore, it seemed 

that there can be an optimum value for this parameter 

that for each problem it should be found by different 

methods. Figure 7 shows the performance of the 

identifier against variations in the number of scout 

bees at SNR=-4. From simulation results, it is found 

that the identifier in high SNRs is robust owing to the 

number of scout bees. Second, the effect of the number 

of the iterations is surveyed. Figure 8 shows the result 

of this survey. From figure 8, it can be observed that 

increasing the number of iterations will improve the 

accuracy of the recognizer. Other parameters of BA 

were chosen establishing the same scenario. Table 14 

shows parameters values adopted for BA.

 

Fig. 6.  Comparison between  performances of non-optimized identifier and 

optimized identifier 

Table 12.  Comparison between performances of ba-pnn and other recognition techniques 

Recognition Techniques Recognition Accuracy (%) 

ABC-PNN 94.96 

GA- PNN 93.64 

PSO- PNN 89.81 

BA- PNN 99.54 

-2 -1 0 1 2 3 4 5
93

94

95

96

97

98

99

100

P
e
rf

p
rm

a
n
c
e
 o

f 
Id

e
n
ti
fi
e
r(

c
o
rr

e
c
t 

c
la

s
s
if
ic

a
ti
o
n
 %

)

SNR

 

 

Non-Optimized Identifier

Optimized Identifier

 [
 D

ow
nl

oa
de

d 
fr

om
 jo

ur
na

l.i
tr

c.
ac

.ir
 o

n 
20

25
-1

1-
21

 ]
 

                            15 / 19

http://journal.itrc.ac.ir/article-1-78-en.html


 
 

Table 13.  The parameters of the BA 

BA parameters Symbol Value 

Number of scout bees n 25 

Number of selected sites m 6 

Number of elite bees e 4 

Initial patch size ngh 0.1 

Number bees around elite points nep 15 

Number of bees around other selected points nsp 10 

 

Fig. 7.  Sensitivity of accuracy to the number of scout bees in SNR=-4 

 

Fig. 8.  The effect of iteration on performance of the identifier in SNR=-4 

D. Performance comparison 

As mentioned in [5], direct comparison with 

other works is difficult in signal type classification. 

This is mainly because of the fact that there is no 

single unified data set available. Table 15 shows the 

comparison among the important previous papers 

and the hybrid proposed system. In comparison with 

other works, the proposed recognizer has many 

advantages. This system includes a variety of digital 

signal types. It discloses great generalization ability 

for classifying the considered digital signal types. 

The proposed classifier has a success rate of around 

95% at SNR =-2 dB. The performance of the 

classifier is higher than 99% for SNR > 0 dB. In 

addition, this performance has been achieved with 

few samples. Results imply that our chosen features 

manifest efficient properties in signal 

representation. 
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Table 14.  Comparative study of different works in case of considered modulation, required snr, and recogntion 

accuracy 

Recognition 

accuracy (%) 
SNR(dB) Consider digital signal Ref 

98 15 BPSK, QPSK, 8PSK, BFSK, 4FSK, 8FSK [4] 

90 5 PSK4, PSK8, QAM16 [5] 

90 10 ASK2, ASK4, PSK2, PSK4, FSK2, FSK4 [6] 

96 10 BPSK, PAM4, QAM16, PSK8 [7] 

90 5 ASK4, 4DPSK, QAM16, FSK [8] 

96 15 AM, DSB, VSB, LSB, USB, FM, PSK2, PSK4, ASK2, ASK4, FSK2, FSK4 [11] 

93 15-25 PSK2, PSK4, PSK8, OQPSK, MSK, QAM16, QAM32, FSK2, FSK4 [12] 

90 5-15 AM, USB, LSB, FM, ASK, FSK, BPSK, QPSK, SQPSK [13] 

93 8 ASK2, ASK4, PSK2, PSK4, FSK2, FSK4, QAM16 [14] 

90 3 PAM4, BPSK, PSK8, QAM16 [29] 

80.2 1 
QAM16, QAM32, QAM64, PSK2, PSK8, ASK4, ASK8, FSK4, FSK8, MSK 

[30] 

98 0 ASK4, ASK8, PSK2, PSK4, PSK8, QAM8, QAM16, QAM32, QAM64 
Proposed 

hybrid system 

VI. CONCLUSION 

Automatic identification of digital signal formats is 

a crucial task of novel communication systems. In this 

paper, a hybrid intelligent system was proposed for this 

purpose with many advantages. In this system,  a 

suitable features set was selected with high efficiency 

in representing the communication signal formats. As 

the identifier, a PNN neural network was applied that 

used the BA as optimizer. Using the mentioned features 

together with the classifier resulted in a highly efficient 

recognizer. This recognizer discriminated many 

various digital signal types with high accuracy even at 

very low SNRs. However, many features were used for 

this recognition. In order to reduce the complexity of 

the recognizer, an optimizer (BA) was applied. This 

reduced the number of features without trading off the 

generalization ability and the accuracy. The optimized 

recognizer also had high performance for recognition 

of different kinds of digital signals for all considered 

SNRs. This high efficiency has been achieved with the 

least number of features, which have been selected 

using the BA.  For future works, this system can be 

used for recognition of modulation in fading channels. 

Furthermore, another set of digital signal types can be 

considered to evaluate the recognition ability of the 

proposed system.  
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