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Abstract--In recent years, several topologies with multiple-path between each pairs of end hosts for data center (DC)
networks have been proposed. Howewver, the path diversity is shown to be not enough to improve the network
performance. Researches on the DC network measurements have shown that congestion occurs even when the average
utilization of links is low, which means that some of the links are over-utilizedwhile others are underutilizedand have
a considerable available bandwidth. Therefore, traffic engineering (TE) is necessary for proper distribution of the
network load as well as exploiting the path diversity thatis provided by new topologies. Current Equal Cost Multi Path
(ECMP) based approaches are not efficientin lots of cases because numerous big flows may collide on the same path.
The centralized solutions depend on the ability to predict the traffic pattern, which is not effective for unpredictable
traffic patterns of data centers. In this paper, SDTE, an online software defined TE approach is proposed for cloud data
centers. The proposed system does not depend on the ability to predict traffic pattern or the size of flows. SDTEexploits
the PEFT routing algorithm to assign weights to links. SDTE is implemented within the OpenFlow framework. The
evaluation shows that SDTE performs close to the optimal routing (average deviation is about 7%).

Key words: Software Defined Networking, Data Center Routing, Multipath Routing, Traffic Engineering, Cloud
Computing, OpenFlow.

. INTRODUCTION cloud computing services grows. Consequently, it
becomes critical for DC planners to address both
currentand future needs of cloud data centers [10]. The
DC network architecture typically consists of routing
and switching elements, that looks like a tree in which
hosts are in the lowest layer, however, expensive non-
commodity switches are in the higher layer(s). The
difference in the cost of the commodity and non-
commodity switches inclines the planners toward

Cloud computing [17] is one of the fast growing
segments of IT industry in which services are highly
available from anywhere/anytime. A data center (DC)
is the underlying infrastructure that is used by Cloud.
DCs are now an important part of the Internet that host
a wide variety of applications and cloud-based
services. With the expansion of Cloud, demands for
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using lots of small commodity switches for building
large-scale communication networks instead of using a
few numbers of expensive ones. Therefore, several
architectures with the aim of horizontally (rather than
vertically) expansion of DCs have been proposed.
These methods exploit a large number of inexpensive
commodity switches to increase the aggregate
bandwidth among the communicating hosts. These
architectures are called multi-rooted tree as they
provide a large number of parallel paths between
servers. Lots of these kinds of topologies (e.g., Fat-tree
shown in Figure 1) are based on clos topology [11].

It should be mentioned that even with a high
available bandwidth, the utilization of the network is
affected by the flow scheduling. Therefore, in order to
exploit the capacity of path diversity provided by
multi-rooted topologies, traffic must be engineered on
all possible paths. Studies on the traffic patterns and
measurements of DCs show that the current DC
networks are under-utilized [18], [19] and [20].
Therefore, operators should optimize their network
infrastructure before expanding their topologies or
upgrading to new fabrics [10]. In the light of this fact,
the reduction of congestion and load balancing on all
reachable paths can improve the overall network
performance along with maximization of the aggregate
network utilization.

While many TE approaches have been suggested for
the Internet, TE for DCs is still at the initial state. Two
state-of-the-art solutions are the Equal-Cost-Multi-
Path (ECMP) [8] and Valiant Load Balancing (VLB)
[12] approaches. ECMP and VLB are notaware of link
load. ECMP is a network congestion condition
agnostic approach that splits the load across the
available paths evenly. When a packet arrives, it is
forwarded on the path that corresponds to a hash of
selected fields of the packet's header: therefore, all the
packets of a flow take the same path. Two or more big
flows (flows that carry out large amount of data) can
collide on their hash and be routed through one path
which can lead to persistent congestion on some links
while other links remain under-utilized [8].

However, several solutions including both
centralized (e.g., Hedera [5], MicroTE [7], and Mahout
[6]) and distributed solutions (e.g., MPTCP [24]) are
provided that are load-aware. In the centralized
solutions, the routing decisions are made by a global
controller, while in the distributed solutions, the
routing decisions are made by end-hosts or switches.
MicroTE [7] is a system that adapts to the traffic
variations through leveraging the partial predictability
of the traffic matrix (TM). MicroTE relies on the traffic
predictability and when a large portion of the traffic is
predictable, it has a high efficiency; otherwise, it
seamlessly shifts to using ECMP. First, it routes the
predictable traffic optimally and then uses the
weighted ECMP to route the unpredictable traffic [7].
Based on the studies [18, 19, and 20], DCs have a burst
traffic pattern which is not predictable and leads weak
performance of the TM prediction-based TE
approaches like MicroTE.

Hedera [5] detects large flows at the edge switches
and estimates the large flows demand. Hedera uses the
placement algorithms to compute the proper paths for

them. At the end, these paths are installed on the
switches [5]. Hedera uses ECMP to schedule the small
flows (shortlived flows) and a centralized controller to
schedule the large flows that exceed 10% of the host-
NIC bandwidth. The problem is that in Hedera only
flows exceeding 10% of the NIC bandwidth are
considered as large flows. This cannot be an
appropriate definition for the large flows because there
are flows with a long lifetime transmitting at rates
below 10% of the NIC bandwidth while such flows are
never scheduled by Hedera. In Mahout [6], a shim
layer on each end-host monitors the host flows in order
to detect elephant flows (big flows). When the shim
layer detects an elephant flow, it marks the subsequent
packets of that flow using an in-band signaling
mechanism. Then, switches tell Mahout Controller that
there is an elephant flow through sending these packets
to the Controller. Mahout Controller places the
elephant flow on the least congested path. Mahout
modifies the end-hosts and it is too complex to be
implemented.

The mentioned approaches schedule the flows using
ECMP by default, however, when traffic is predictable
or elephant flows are detected, a series of simple and
non-optimal algorithms are used. These approaches
require modifications on switches and end-hosts.
Multipath TCP [25, 31] is an end-host solution that
splits a flow into sub-flows and balances the load
across the sub-flows. Each sub-flow is similar to a
regular TCP connection. The problem of end-host
solutions is that they have to react to the congestion on
the paths and rebalance the load due to the lack of a
global view of the network.

Software Defined Networking (e.g. via OpenFlow
[16]) as a new concept creates a new networking
paradigm in which programming the network data path
becomes possible. OpenFlow switch is based on an
Ethernet switch with an internal flow table and a
channel to an external controller which makes the
routing decisions. Each flow table in the switch
contains aset of flow entries and when a packet arrives,
these entries are matched with the packet header's
information. If a matching is made, the instructions
associated with the specific flow entry will be
executed, otherwise the packet will be forwarded to the
controller through the OpenFlow channel. The
controller can add, update, and delete the flow entries
on the switches flow table using OpenFlow protocol
[13].

Many proposals use software defined networking
idea to improve traffic engineering. The Fibbing [1]
controller injects fake nodes to create a fake topology
in order to deceive the routers. Weighted Cost Multi-
path (WCMP) [2] is a solution for weighted traffic
hashing; it distributes traffic among all available paths
in proportion to the available link capacity. WCMP
assigns weights to each egress port in a multipath
topology. These weights are proportional to the
capacity of the path(s) associated with egress port.
Today's OpenFlow 1.x standard has limitations. The
impact of these limitations on our work is described in
the implementation section. To overcome the
limitations of OpenFlow 1.x standard, the future
generation of OpenFlow should allow the controller to
tell the switch how to operate, rather than be
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constrained by a fixed switch design. The future
switches should support flexible mechanisms for
parsing packets and matching header fields [4].

This research presents SDTE, a software defined
dynamic flow scheduling system which aims to
balance the load and minimize the maximum link
utilization (MLU) through exploiting the path
diversity. SDTE exploits the path diversity through
using the PEFT! routing algorithm for assigning non-
uniform weights to the links [9]. PEFT splits the traffic
along all the paths, however, it penalizes longer paths
(ie., paths with higher sums of link weights). The
PEFT protocol has been proposed for wide-area ISP
networks where the traffic matrix is predictable in
contrast with DC traffic pattern. Thus, in this paper,
PEFT was modified in order to be used in SDTE;
however, the modified version has the same
computational overhead as the original version. In our
modified version the weights are computed and used
by a central controller. In contrast to the existing TE
approaches: (1) STD does not rely on the ability to
predict the size of the flow, nor does it worry about the
size of the new arriving flows, be it mice (short lived
flows) or elephant. (2) It uses a global view of the
traffic rather than a local view and knows exactly how
much of the traffic must be routed from which path. (3)
This systemdoes not need to modify the end-hosts or
switches.
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Fig. 1. Fat tree topology

In this paper, we propose an adaptive load-sensitive
software defined TE approach that does notrely on the
ability to predict traffic pattern. Our proposed system
combines the power of software defined networking
and optimality of PEFT. Additionally, we provide a
practical implementation of PEFT (in java) for software
defined data center networks. The rest of this paper is
organized as follows. In section 2 the proposed system
architecture is presented with its components and their
interactions. Section 3 explains the systemimplemen-
tation and emulation results, and finally, section 4 con-
cludes the paper.

Il.  SDTE ARCHITECTUR

In this section, the proposed architecture which is
called SDTE is presented. The proposed system uses
online traffic matrix (TM) calculation and assigning
the non-uniform weights to links in 50s intervals. In
each interval, TM will be calculated by considering all
current active flows among all hosts; then,the new TM
is compared with the previous time interval TM. If the
difference between each entry of these two matrices is
more than 20%, the weights are recalculated;

' Penalizing exponential flow-splitting
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otherwise, SDTE continues its work with the same
weights. It means that by entrances of each flow there
is no need for weight recalculation. Assigning the link
weights is done through using PEFT which is an
optimal routing algorithm that splits the traffic over
multiple paths with an exponential penalty on longer
paths that is explained in the next subsection briefly.

Figure 2 presents the components of ourarchitecture
and how they interact. SDTE consists of five
components which can be classified into two groups:
the executive group (EG) and the computing group
(CG). The EG consists of the routing component and
the path calculation component. The CG consists of the
optimization component, rerouting component, and
JIPOPT component. CG will compute the weights
while EG use these weights for flow routing. Among
the computing components, only the optimization
component runs periodically. Two other computing
components would also be called for weight
recalculation, if needed. When a packet arrives, the
routing component extracts special packet header's
fields (such as source and destination MAC, IP
addresses, and the network layer protocol); then sends
them to the path calculation component to request a
suitable path. The path calculation component replays
the suitable path using this information along with the
available weights. After all, the routing component
installs the path on the switches. As it will be shown,
the proposed architecture is quite effective in practice.

A. Overview of PEFT Routing Algorithm

PEFT is a TE mechanism that was introduced for
ISP networks. Key properties of PEFT are summarized
in this section. According to [9] and [10], consider a
network as a directed graph G = (V, E), where V is the
setofnodes (where N =|V]), Eis thesetoflinks (where
E = |B), and link (u, v) has the capacity c,,. The
offered traffic is represented by a traffic matrix D(s, t)
for source-destination pairs indexed by (s, t). TE
usually considers a link-cost function ¢ ({f,,, cuo})
thatis an increasing function of £, ,,. Since we consider
the link utilization function, f,, ,/ c,,,,, thenthe PEFT's
TE objective is to minimize max,, , cx® (fy 1 Cup)-
Optimal TE requires solving the following flow
conservation and link capacity constraint given by [9],
whose corresponding notation is given in Table 1.

min ({f;, »» cuv}) 6
s. t. 2 fi, - Z fly=D(s,0), Vs #t
v:(s,V)EE u:(S,u)€EE

fuw = Dl < Cun ¥(w,0)

tev

vars. ff ,, fu» = 0.

To offload the traffic from the congested paths to
less congested but slightly longer ones, PEFT allows
exponential traffic splitting over unequal-cost paths as
shown in equation (2) where p, , is the set of the paths
from u to t and x., is the fraction of forwarding a
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packet to the i-th path, ie., p. . .

. e ~Pit
L —
Xut = Z].e_P'Z;.t (2)
PEFT splits the traffic along all the available paths,
but penalizes the longer paths exponentially [10].

Table 1. Key Notations

Notation Meaning
D (s, t) Traffic demand from source s to
destination t
Cup Capacity of link (u, v)
fuw Flow on link (u, v)
fuw Flow on link (u, v) destined to node t

B. Challengesof Using PEFT Routing Algorithmon
the SDTE Architecture

PEFT is originally designed for the ISP networks.
PEFT calculates the weights on an offline manner due
to the predictable traffic pattern of ISP networks. In
ISP networks, at first, the network operators obtain the
TM from their network overlong intervals and then the
derived TM is used with link capacities as inputs ofthe
link weight calculation module that exists in another

independent machine. At this point, resulting links
weight will be installed on switches. In contrast to the
traffic pattern of the ISP networks, the measurement
studies have reported that the traffic in a DC is highly
dynamic and unpredictable. The lack of shortterm TM
predictability is due to the use of random resource
allocation for improving the performance of DC
applications, because the distributed file system
spreads the data chunks randomly across servers for
load distribution and redundancy [10].

Thus, PEFT should be used in an online manner in
DC networks instead of the offline manner. Previously
[10] has modified PEFT for DC networks, but its
applicability for software defined DC networks is not
clear and has notbeen studied yet. In this research, the
original offline PEFT was modified to be used in an
online software defined TE system that is different
from the original PEFT in the operational context (but
it is notdifferent in the computational context). In our
implementation, the optimization component obtains
the TM periodically, and when the difference between
the new and old TMs is greater than 20%, the weights
are recalculated in an online manner. For calculating
the link weights at first, the JIPOPT componentsolves
the optimization problem (1) and then the optimization
component calculates the new weights following the
functions given in [9].

New
packet

Routing

/ Optimization component N

Calculate newTM
periodically
Reply the Request a :
path suitable
using path
available Yes: send
weights ( 'TM
¢ JIPOPT = If (the difference
component |[< between oldTM &
< ) newTM > 15%)
Return necessary capacity
Calculate
»  new weights
New weights send \ ; /
Path \L | +
Calculation

component

Rerouting component

Check of compatibility of
new weights & existing

flow entries

Fig. 2. SDTE architecture

C. SDTE components

1. Routing component

The routing component is a simple but important
component that acts similar to the input component of
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the proposed system. When a packet that belongs to a
new flow arrives, this component asks for the suitable
path from the path calculation component. At this
point, the routing component extracts special packet
header's fields such as MAC address of source and
destination, IP address of source and destination, and
the network layer protocol; then it sends them to the
path calculation component. The purpose of selecting
these fields is to specify a unique flow. When the path
calculation component replies, the routing component
installs the flow table entries on all switches of the
specified path. Installation of flow table entries is done
by OpenFlow protocol standard messages. This
component interacts with the path calculation
component and requests and installs suitable paths for
new flows.

2. Path calculation component

The path calculation component has a database of
network topology information and uses it for path
calculation of new flows. This information is provided
by basic services of Beacon controller [14] which is an
OpenFlow controller used for our emulation. The
optimization component assigns a weight to each link
of the topology due to the network load and conditions
of the network congestion. The path calculation
component calculates requested path based on link
weights and the header information (e.g. the
destination address) and sends the path to the routing
component. The optimization component periodically
calculates the weights for the path calculation
component. In fact, the weights and consequently the
paths modifies upon the changes that happen in the
TM.

3. JIPOPT component

At first, this component solves the optimization
problem that was mentioned in subsection A to provide
the optimal distribution of the traffic (the necessary
capacity?). Then, these necessary capacities will be
sent to the optimization component. Solving the
optimization problem can be done through modeling it
through using AMPL (A Modeling Language for
Mathematical Programming) [26] and subsequently
employing an appropriate solver such as CPLEX [27]
and the IPOPT solver [28]. However, this is unsuitable
for our architecture, because the optimization
component needs to run in an online manner. As a
result, the java interface of the IPOPT's C++ library
(JIPOPT) was included in our implementation.
Furthermore JNI [15] was utilized to run JIPOPT.

4. Rerouting component

In each time interval, the optimization component
characterize the link weights. This links weight will be
used for the rest of interval. In the next time interval, if
the network traffic pattern changes, the weights will be
recalculated. Meanwhile, it is possible that there are
some routed flows based on the previous weights
which still continue in the new interval. According to

T he necessary capacity isa minimal set of link capacities to realize
the optimal TE [9].

Volume 8- Number 1- Winter 2016 IJICTR‘E_

the OpenFlow protocol, since the flow entries of these
flows are installed on the switches flow table, they are
not routed again. The controller can act in two ways:
1.The controller is aware of the flows on each link and
their rate soit checks if the present path of flows is in
accordance with the new weights or not. As the total
link weights over all reachable paths to each
destination on every switch is equal to one, therefore,
if a link load is more than optimal load then another
one has an under-optimal load. The controller reroutes
the flows via updating the flow table entries. 2. The
controller can delete all flow table entries from the
source edge layer switches after weight recalculation.
Both approaches increase the controller processing
overhead. In the final implementation, the second
approach is used because our emulation results reveal
that in addition to the controller processing overhead,
the first approach increases the reaction time of the
controller when faced with a different traffic pattem
compared to the previous interval traffic pattern.

5. Optimization component

The main component of the SDTE architecture is the
optimization componentthatruns atevery 50s interval.
This component requires two pieces of global
information aboutthe network: the flow-level TM and
the network topology. The first one is provided by
requesting the flows statistics periodically from
switches and the second one is provided by the path
calculation component as discussed earlier. The
functions of the optimization component are presented
as follows: (1) Calculating the new (current) TM and
its difference with the old one. (2) Sending the TM to
the JIPOPT component, receiving the necessary
capacities and calculating the new link weights if it is
required. (3) Sending the new weights to the path
calculation component and calling the rerouting
component if needed. The pseudo code of this
componentis given in algorithml. In eachinterval, the
optimization component starts with calculating the
new TM. For this purpose, this component must be
able to perform the following tasks: (1) sending flow
statistics request messages to switches (2) Receiving
the flow statistics reply messages from switches and
processing them. The information about the individual
flows is requested by OFPST_FLOW stats request
messages [13]. The body of replied messages includes
information about the flows such as the packet count,
byte count, total flow duration, and etc.

The optimization component calculates the flow-level
TM through using transmitted byte count and flow
duration time. After TM calculation, if the difference
between the new and old TMs? is greater than 20%, the
JIPOPT component and the
optimizeOverLinkWeights() function will be called.
The optimization component sends the TM to the
JIPOPT component and then the JIPOPT component
returns the necessary capacities values. These values
are utilized by optimizeOverLinkWeights function for
link weights calculation. The pseudo code of

3 A comparison is made for each individual entry within the matrix.
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optimizeOverLinkWeights function is presented in [9].
Due to space constraints, the extra explanations are
avoided here. After these steps, the newweights is sent
to the path calculation component and the rerouting
component will be called. In addition to the mentioned
threshold (20%), a low threshold value will be
considered. The value of this threshold is 15%.
Suppose the difference between anew entry and an old
entry is close to 20% (but not 20%). In this case the
weights will not be recalculated. But if this scenario
repeats for severaltimes, the weights must change. The
low threshold will checks for this scenario.

I IMPLEMENTATION AND EVALUATION

In this section, the performance of SDTE is evalu-
ated with respect to improve flow rate, link utilization,
and load balancing. SDTE was proposed for software
defined networks therefore, a controller and a network
emulator are required for its implementation. There are
several SDN controllers such as Beacon [14], Nox [3],
Pox [22], Floodlight [23] and OpenDayLight [24]. For
our emulation, Beacon (a Java_based OpenFlow con-
troller) and OpenVswitch (a software OpenFlow
switch) running in Mininet [29] were used. Currently,
the Beacon controller like most other controllers sup-
ports OpenFlow specification version 1.0. Mininet is a
network emulator that runs on a single Linux kernel,
which is used for building a Fat tree topology that was
described in section I. We evaluated SDTE for a Fat-
tree k=4 topology that contains 16 hosts, 20 switches,
and 64 links. All links are 1Gb/s. In the following part,
the results of the proposed system are discussed and
compared with the results of random routing of flows.
In the future work we will use Maxinet [30]. Maxinet
extends Mininet to spans an emulated network over
several physical machines, making it possible to emu-
late large data centernetworks. It also introduces a traf-
fic generator for data center traffic.

The optimization component algorithm

a timer is scheduled to run every 50 seconds
flow statistics are obtained

previous trafficM atrix is stored in oldTrafficM atrix
structure

/lcalculation of newT rafficM atrix
foreach switch do

send ofp_stats_request oftype OFPST_FLOW //
flow statistics request messages

receive reply to OFPST_FLOW request
[Iflow statistics response messages

retrieval flow src & dst

insert flow in newTrafficMatrix Entry

store flow statistics & senderSwitch
end foreach

current trafficM atrix is stored in newTrafficM atrix struc-
ture

compare difference between oldTrafficM atrix &
newTrafficMatrix //entry by entry

if difference > 15% then
call JIPOPT component
call optimizeOverLinkWeights( )
call rerouting component

endif

Continue

Algorithm 1: The optimization component algorithm
A. Traffic generation

One challenge of the proposed system performance
evaluation is how to simulate and generate the cloud
DC traffic pattern. At first the DC traffic patterns are
investigated briefly and then the traffic generator is
explained. Research articles [18, 19, and 20] have
studied the traffic characterization in data center
networks. Based on these studies, in cloud DCs, the
majority of the traffic originated by servers (about
80%) stays within the rack. However, for other DCs
such as university and private enterprise data centers,
most of the traffic (40-90%) leaves the source rack for
other destination racks. In the studied data centers,
80% of the flows are smaller than 10KB in size and
most of the bytes are in the top 10% of large flows
whose length varies from 100MB to about 1GB [10].
Also, the lifetime of 80% of the flows is less than 11
seconds. Ourtraffic generator uses the aforementioned
characteristics and sends 20% of the traffic to external
destinations or other racks while 80% of the traffic
stays within the rack. The size of 20% of flows is
between 500Mb and 1Gb which are considered big
flows and the size of 80% of flows is between 10Kb
and 1IMb which are considered small flows. In order to
pressure the network, the destination of big flows is set
outside of the rack and the destination of the small
flows inside the rack. The lifetime of flows is 5ms.

The OpenFlow specification version that Beacon
controller supports (version 1.0), limits our simulation.
As mentioned before, version 1.0 does not support flow
splitting. To compensate for this limitation, our traffic
generator generates flows with uniform sizes. In fact,
SDTE needs to split flows and without this ability, its
performance would be dependenton flow sizes; there-
fore if the size of flows is uniform, SDTE performs
close to the optimal; otherwise, it will distance from
the optimal. Aswill be explained in the next parts, for
the next version of SDTE, the flow splitting ability is
added to the controller.

B. Control messages

SDTE uses four types of control messages that are
exchanged between the controller and switches. These
messages are: OFPST_FLOW messages for requesting
information about flow OFPST_PORT messages for
requesting information such as port's number of
transmitted bytes, OFPT_FLOW_MODE messages
with OFPFC_ADD command for installing new flow
entries on switches flow table, and OFPT_FLOW
_MODE messages with OFPFC_DELETE command
for deleting flow entries from switches flow table. The
first two messages are exchanged every time the
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optimization componentruns and the next two messag-
es are exchanged when installing a path for a new flow
or deleting a flow entry from switches flow table. The
Optimization component time interval is 50 seconds;
however, smaller time intervals could provide a more
accurate view of flows but increases the amount of
control messages transmitted over the network and
processed by the controller. Yet, in the next part the
evaluation results show that SDTE performance is
close to the optimal.

C. Flow Rate

In this section, we focus on the performance of
SDTE with respect to the flow rate. First the path
stretch is discussed. [10] defines the path stretch as the
ratio of the length of actual path to the length of the
shortest path. In our emulation which uses fat tree
topology with many redundant paths, path stretch is
equal to 1. This means all paths that are used for
routing are shortest pathsand no detour path is needed.
In the following part, we used "designated rate" to refer
to the bandwidth that has been designed to send the
flows and "actual rate" for referring to the real
bandwidth that one flow can achieve. The actual rate
depends on the route that a flow takes. If this route is
congested because of the load imbalance, the actual
rate of flows will be reduced. If the network traffic is
distributed properly, the actual rate of flows will be
increased.

CDF

0 10 20 30 40 50 60 70 80 9 100

Percentage of Actual Flow Rate to Designed Flow Rate

Fig.3. Comparison of actual rate of flows for SDTE and
Random

For example, if the designated rate of a flow is
500MB and its actual rate is 400MB, this flow has
gained 80% of its designated rate. Figure 3 shows the
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actual rate of flows relative to the designated rate of
flows. Because the results of the emulation show that
the actual rate of small flows was at least equal to their
designated rate, this figure only examines the big
flows. More flows can obtain a higher rate with SDTE.
The number of flows with the lowest rate (about 30-
40%) are equal in both SDTE and Random. SDTE
provides an actual rate of 60-70% for 25% of flows
while this value is around 2% for Random. Random
cannot distribute the network load over all possible
paths because when a new flow arrives, it routes the
flow from one of the available paths without
considering the network current traffic. Therefore, it is
possible that two or more big flows are routed from the
same path while other paths are underutilized. In
Contrast to Random, SDTE does not act randomly,
rather it uses unequal cost paths for the flow routing
and because of this, the network load is distributed over
all available paths; as a result, more flows can achieve
a higher rate. The difference between SDTE and
Random performance is particularly evident through
investigating the link utilization. In the next part, this
parameter will be analyzed.

D. Link Utilization

Figure 4a compares the link utilization of Optimal,
SDTE, and Random over Fat tree topology. The
Optimal values are the values that have been resulted
from solving the optimization problem (1) by JIPOPT
component. [9] Has proven that these values are
optimal. Figure 4b compares the link utilization of
Optimal and Random. In this figure, it is clear thatthe
behavior of Random is different from Optimal.
Random cannot properly distribute the load on links
because it randomly selects one of the possible paths
without any knowledge of current links load.
Therefore, it cannot prevent the congestion oversome
of the links while others are idle or underutilized. It is
noteworthy that in the presence of more flows and
heavier traffic, Random shows a worse performance,
and also in the case of more redundant paths, it hides
his bad performance better. The existence of larger and
smaller values compared to Optimal in figure 4b shows
that there are several big flows on some of the links
while the others are idle and the network load is not
properly distributed i.e. the network load is not
balanced. Figure 4c compares SDTE and Random.
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B

For a better explanation, in Figure 5 there is a flow
from the source host A to the destination host B with
two different paths. As mentioned before, Random
routes the flow from one of the possible paths without
considering current load on that path or links
congestion. Contrary to Random, SDTE routes the
flows according to the network congestion conditions
and the weights that it holds; therefore, flows are
distributed on outgoing interfaces according to the
optimal weights. This is the reason of the fundamental
mismatch between SDTE and Random performance.
Figure 4d compares link utilization of SDTE and the
Optimal. The performance of SDTE is closer to the
Optimal compared to Random. The question is that
despite the fact of using optimal weights, why SDTE

¢ e ®
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still deviates from the Optimal? As previously
discussed, one reason is that the utilized controller does
not support flow splitting and the other reason refers
back to reactive and sparse TM calculation because of
saving resources. On average, SDTE only slightly
sacrifices the optimality by 7.3%, yet it provides a
significant improvement over Random about 9.9%.

The maximum and minimum link utilization values
of Optimal, SDTE, and Random over Fat tree topology
are presented in Table 2. It can be seen that Random
exhibits a wider spread in link utilization over SDTE
and Optimal which implies that traffic on the links
across the network is unbalanced. While the maximum
link utilization of SDTE is 4% more than Optimal, this
value is 17% for Random. For a closer look, the link
utilization of core

Table 2. The maximum and minimum link utilization

values of Optimal, SDTE, and Random

Maximum Link Minimum Link

Utilization Utilization
Optimal 39% 16%
SDTE 43% 15%
Random 6% 2%

layer links is demonstrated in Figure 6. The worse
performance of Random compared to SDTE is evident.
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SDTE schedules and splits the traffic over paths to
leverage the path diversity and as a result, the network
traffic is balanced better, while Random shows a
different behavior due to the randomness in flow
scheduling. SDTE provides more links with average
link utilization while Random has some links with link
utilization close to zero and some with high link
utilization.

CDF

————— Random
SDTE

30 40 50 60 70 80 90 100
Link Utilization(Core Layer)

Fig. 6. Comparison of core layer link utilization for Random
versus SDTE

E. Systemstability

Systems that are used for TE should be able to
preserve their stability for different traffic patterns. It
should be noted that stability is highly important for
online TE systems. Each time the network traffic
pattern changes, SDTE recalculates the weights. SDTE
output is an appropriate path for flows based on these
weights. If the recalculation of weights is done
repeatedly, the system loses its stability and causes
route oscillation. The proposed systemcan prevent this
instability through assigning a suitable time interval
(this time interval is 50s in our emulation) for the
optimization component to recalculate weights when
facing different traffic patterns. However, this interval
causes SDTE to deviate from Optimal, yetis effective
and providing a performance near to Optimal.

F. System overhead

systemoverhead can be studied from two aspects, 1)
time complexity of optimization component and 2) the
number of input flows to routing component.
optimization component uses optimize over link
weights function. This function requires Floyd-
Warshal algorithm to compute the all-pairs shortest
paths that has time complexity O(N3). Also, this
function requires topology sorting. For each
destination, topology sorting needs O(N+E) time, and
summarizing the incomping flow and splitting across
the outgoing links requires O(N+E). Thus, the total
time complexity to calculate the traffic distribution is
O(N*+ NN + E)) = 0(N3) [9].

In current version of SDTE, switches inform routing
component with each new flow. Then routing
component specify route to the new flow. It increases
overhead of the controller beacuse the median arrival
rate of all flows is 10° flows per second in DCNs [19].
In future, we will use group table [21] to decrease
overhead of the controller. With group table, some
decisions are made locally by switches. Therefore, no
need to send all new flows to the controller.

Volume 8- Number 1- Winter 2016 IJICTRE-

Il. CONCLUSION AND FUTURE WORK

In this paper, we proposed SDTE (an online load
sensitive software defined traffic engineering system)
to improve link utilization, load balancing and perfor-
mance over cloud data center networks. SDTE distrib-
utes network traffics among all available paths.SDTE
uses PEFT which assigns aweight for each link/desti-
nation to achieve optimal traffic distribution. We mod-
ified PEFT to make it compatible with both DC traffic
pattern fluctuations and OpenFlow framework. The
evaluation shows that the proposed system results are
close to the optimal solution. Therefore, it can distrib-
ute the load on all available paths,this leads to reduc-
tion of maximum link utilization. Moreover, the eval-
uation confirmed that SDTE improves the rate of
flows. Due to limitations of current implemented ver-
sion of OpenFlow (version1.0) the proposed system
does not support flow splitting. Future works would be
dedicated to extend SDTE to support flow splitting and
group table (a new feature in OpenFlow versionl.1 and
later versions through which packets are processed
based on a switch-computed selection algorithm).
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