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Abstract—In this paper a new low complexity method for constructing binary quasi-cyclic low-density parity-check
(QC-LDPC) codes is introduced. In the proposed method, each block-column of the parity check matrix H is made by
a circulant matrix in a way that the associated Tanner graph is free of cycle four. Each circulant matrix in H is made
by a generator column. The generator columns should be selected in a way that each associated circulant matrix and
every two distinct circulant matrices are free of cycle four. The generator columns are made by row distance sets. An
algorithm for generating distance sets and obtaining circulant matrices with columns of weight three is presented
separately. Simplicity of construction and having a good flexible family of quasi cyclic LDPC codes both in rate and
length are the main properties of the proposed method. The performance of the proposed codes is compared with that
of the random-like and Array LDPC codes over an AWGN channel. Simulation results show that from the performance
perspective, the constructed codes are competitive with random-like and Array LDPC codes.
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QC-LDPC codes are a family of capacity-
approaching and high performance error correcting
linear codes [1, 2]. Construction of these codes is
divided into two categories: random-like codes, such as
[1, 2] and structured codes, such as [3-12]. As
mentioned in many papers, the encoding complexity of
quasi-cyclic codes is extremely low [3-5]. In general,
QC-LDPC codes are constructed by two main methods:
superposition techniques [4, 9] and parity check
matrices derived by circulant matrices [6, 8].

The proposed method in this paper can produce QC-
LDPC codes with different lengths and rates. A parity
check matrix H has been constructed by concatenation
of circulant matrices as block-columns. Each circulant
matrix is constructed by a generator column with an
arbitrary considered weight. We must take an order on

circulant matrices be free of cycle four. Therefore the
associated Tanner graph of parity check matrix H will
have girth at least six. Constructed quasi-cyclic LDPC
codes in this paper can have arbitrary column weights,
lengths and rates. Therefore the main task in this paper
is to construct appropriate generator columns. We have
introduced a method of constructing particular sets,
known as row distance sets, which are used for
constructing generator columns. Furthermore, we
represent generator columns by generator polynomials
that demonstrate a simple exhibition of H. The
performance of the proposed codes on an AWGN
channel by sum-product algorithm (SPA) decoding is
examined and compared with that of the random-like
and Array LDPC codes as well-known QC-LDPC
codes [13]. Simulation results show that the constructed
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QC-LDPC codes outperform random-like and Array
LDPC codes. There exist some papers for the
construction of QC-LDPC codes based on difference
sets [12, 14, 15]. They are indeed very similar to our
work, but they are based on some algebraic and
combinatory methods with inherent restriction on using
and making various difference sets. Our method
approach to constructing QC-LDPC codes that are not
directly related to difference sets, but can be a
generalization of them on constructing a large family of
QC-LDPC codes.

This paper is organized as follows: The method of
constructing a quasi-cyclic parity check matrix by
generator columns and associated circulant matrices is
introduced in Section Il. The technique and algorithm
of constructing the appropriate generator columns by
row distance sets are given in Section IIl. A simple
representation of generator columns and parity check
matrix H by generator polynomials is introduced in
Section V. Simulation results are presented in Section
V. Section VI concludes the paper.

1. PARITY CHECK MATRIX CONSTRUCTION
BASED ON THE CIRCULANT MATRICES

Let the parity check matrix H of an LDPC code be
denoted by

H=[A1 A2 ... A, (1)

where each Ai, 1<1i < 0 is a circulant matrix with
arbitrary column weight. To avoid girth four, parity
check matrix H must have the following condition:

Condition 1

1. any sub-matrix A; be free of cycle four,

2. matrix [Ai, Ai/ for 1< i#j < @ is free of cycle four.

Definition 1 The row distance ¢ between two nonzero
components a and b in a fixed column of a circulant
matrix A is determined one greater than the number of
rows containing a and b and it is shown by ma‘= o.

Definition 2 A set of row distances of nonzero
elements in a fixed column of a circulant matrix is
called a row distance set.

Definition 3 The first column of a circulant matrix is
called a generator column.

Every circulant matrix A, /<i <@ in (1) made by a
fixed cyclically shifting the associated generator
column and every generator column is made from
associated row distance set. Hence, first of all, we focus
on constructing appropriate row distance sets.

Example 1 In Fig. 1 there are four row distances in a
column of weight three (including three nonzero

components a, b and c). So the row distances are:
1. The row distance between a and b is: map= 1,
2. The row distance between b and c is: myc= 2,
3. The row distance between a and ¢ is: mac= 3,

4. The row distance between ¢ down to the first
nonzero component a is Mea= 4.

So the row distance set is R={ Map= 1, Mpc= 2, Mac= 3,
me= 4}. The circulant matrix obtained by cyclically
shifting the associated generator column is shown in Fig.
2, note that a=b=c=1.

Remark 1 In a column between every two nonzero
components there is a row distance, so in a column of
weight w, there is a row distance set with the cardinality
of at most (%) + 1.

The circulant matrices A;, /< i < 6 in (1) will be
produced by different row distance sets such that the
Condition 1 is satisfied. Therefore we have the following
outcomes.

Proposition 1 An associated Tanner graph of a
circulant matrix produced by a column generator of
weight w and row distance set of cardinality (%) + 1 is
free of cycle four.

Proof: Obviously, when the cardinality of a row
distance set of a column generator of weight wis (%) +
1, then the row distances between nonzero components
of the generator column are different and under a fixed
cyclically shifting on the column generator, the Tanner
graph of the produced circulant matrix will have no
cycle of length four.1

7 ram )
Row distance (—----{
between a and b is: b

m,,=1 L _1s Rowdistance
_ between @ and cis:

Row distance <= 0 m. =3
between b and cis: e
m,.=2 c

0
Row distance = <4---
between c and a is: 0
m.=4

0

o 4

Fig 1: Four row distances between the three nonzero components
a,band cinacolumn.
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Fig 2: Cyclically shifting the generator column in Fig.1 to
produce a circulant matrix.

Theorem 1 If every two disjoint row distance sets,
corresponding to two distinct generator columns, have
no intersection and every associated circulant matrix
of them satisfies Proposition 1, then there is no cycle
of length four in Tanner graph made by the
concatenation of their circulant matrices.

Proof: Let A; and A be two distinct circulant matrices
pertaining to the generator columns G; and G2, which
satisfy Proposition 1. Without loss of generality, we
assume that the generator columns G; and G, have
weight three. Let nonzero components of generator
column G; and G; be {a, b, ¢} and {d, b, ¢},
respectively. So the row distance set of the generator
column G; and Gz are Ry={ m},, m}., m%., mZ,} and
Ro={ m2,,,, m,.,, m2,.,, m%,}, respectively. We
know that matrices A. and A, are made by a fixed
cyclically shifting of the generator columns G. and G..
So by Proposition 1, circulant matrices A: and A will
be free of cycle four (Condition 1 (i)). Since RiNR,=@
and circulant matrices A; and A; are constructed by a
fix cyclical shift to their generator columns G; and Ga,
respectively, then by concatenating matrices A; and A
the associated Tanner graph will be free of cycle four (
Condition 1 (ii)).Od

Corollary 1 concatenating any two disjoint circulant
matrices that satisfy Theorem 1, results in parity check
matrix with a Tanner graph free of cycle four.

1. CONSTRUCTION OF CIRCULANT MATRICES

In the following, to construct the parity check matrix
of the form given by (1), we have focused on the
appropriate row distance sets that satisfy Corollary 1.
Remark 2 Proposition 2 is intended to construct parity
check matrix with column weight three. However it can
be easily generalized for column weights greater than
three by enforcing more restrictions on the involved
distance sets.

Proposition 2 Let parity check matrix H in (1) satisfy
Proposition 1 and Theorem 1, and also circulant
matrices Ay, I <k <0, in (1), be hxh matrices with a
column weight three. Then there exist disjoint distance
sets Ry ={n;1, niz, Nz, ngyand Ry ={ny1, iz, nys,
N4} associated to circulant matrix A; and 4;, so that
the following restrictions hold:
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1< nij,np; <h1<j<4,i#d,

ny £y, 1<35,5 <4,5#7, (2)
ni1 + ni2 = ni3, (3)

ni1 + niz + nig = h, (4)

nij # nij,i #4,1<j <4, (5)
nij #nijr, 1< 5,5 <4,5#75, (6)
Ny + Nyrg = Nyrg, (7)

niry + Nirg + nyrg = h. (8)

Proof: The weight of the generator columns is three
and the associated circulant matrices in (1) are hxh. At
first, let R;={n;;, n;,, ni3, n;. } be a distance set
pertaining to sub-matrix A; in (1), where / <n;j<h,1
< j < 4. For Proposition 1 to be established, elements
of Ri must be satisfied in (2)-(4). It is evident that
another distance set R;,={n;,1, N2, Nisz, Nisa b, L # ',
which is associated to the sub-matrix 4;, in (1) (where
1<ny; <h1<j<4)mustbe disjoint from R; and
so according to Proposition 1 and Corollary 1 must be
satisfied in (5)-(8). Intuitively, the above-mentioned
constraints must be satisfied for every pair of disjoint
distance sets.[]

Example 2 For positive integer h = 15, there are two
disjoint distinct sets that satisfy Proposition 2. Ry = {1,
2,3,12}and R, = {4, 5, 9, 6} since for Ry

14243 #12,
1+2=3,

1+2+12=15,
and for R,
14243444524 64£9#£12,
44+5=09,

44+54+9=15.
Therefore,
RlﬂRzzg.
Based on Proposition 2, we can have the following
algorithm that generates all row distance sets for an
arbitrary positive integer h (size of circulant matrices in

).

Algorithm 1 Generating row distance sets

Input: h (size of circulant matrices Axin (1)) and w =3
(weight of a generator column).

Output: row distance sets Ri, / < i <t (z is the
maximum number of row distance sets).

Assume a, b and c are three nonzero components in a
generator column from top to bottom.

Start

-i=1,Ri=0;

-While ( RiNR1i=RiNRi2=..=RiNR = @)
do {
-i=i+1;

- assign a positive integer smaller than h to m’,, :
(row distance between two nonzero elements a and b.)
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-assign a positive integer smaller than h to m ., such
that m%, # m!.; (row distance between two nonzero
elements b and c.)
setmb, = mi, +mi, , 1 <mb <h;(row
distance between the two nonzero elements a and c.)
-ml, = h —mb, such that mj,. # mi, # m}, #
mi.and 1 < mi, < h; (row distance between the
two nonzero element ¢ down to the first element a.)
-set Ri:{mtizb' mlim ’ mfzc' méa};

)
-7=i;

End

The row distance sets, given by the above algorithm,
and their associated generator columns can produce
circulant matrices in a way that the Tanner graph of the
parity check matrix H in (1) be free of cycle 4.

Example 3 Let h = 21. According to Algorithm 1, there
are three row distance sets (t = 3) as follows:

Ry = {mgy , M. , Mg, Mgg} = {1,2,3,18},

Ry ={m?, , mi , m? , m?}=1{4,50912},

R3 = {mgb ’ mgc ’ mic ’ mga} = {6’7: 13’8}'
We can see the maximum number of row distance sets
obtained by applying Algorithm 1 and varying the value
of h in the first two columns of Table 1.
In Table 2, some binary QC-LDPC codes with different
lengths and rates for a fixed values of h and different
value of 8, where 1 <6 <z(= 40), are presented.

TABLE 1. PARAMETERS OF CONSTRUCTED BINARY QC-LDPC
CODES WITH COLUMN WEIGHT 3 AND MAXIMUM NUMBER OF

CIRCULANT MATRICES (8 = 1).

h (size of T (maximum
circulant number of n k T
matrices) | circulant matrices) (rate)
52 7 364 312 0.85
67 9 603 536 0.88
76 10 760 684 0.9
82 11 902 820 0.909
90 12 1080 990 0.916
97 13 1261 1146 0.923
120 16 1920 1800 0.937
127 17 2159 2032 0.941
150 20 3000 2850 0.95
172 23 3956 3784 0.956
202 27 5454 5252 0.962
292 40 11680 | 11388 0.975

IV.CONSTRUCTING CIRCULANT MATRICES VIA
POLYNOMIALS ON F;
Let a, b and c be three nonzero components in a
generator column from top to bottom (a, b, ¢ €F») and
Ri={ mi,, mi., mL., mi,} be the associated row
distance set. A generator polynomial over F; associated
with this row distance set can be defined as:

gi(@) = 1+ 7™ + e, 9

where degree (g;(x)) = mi,. Circulant matrix A; of
size hxh can be determined as follows:

Ai=(gi(z) zgi(z) zh1g,(z)),
where polynomials gi(x) are considered to be columns
of Ai.
Example 4: Let h = 15, according to Example 2, we
can construct the parity check matrix H =(A1 A) of
size 15 x 30 based on two row distance sets
Ri={m}, =1, m}, =2,ml. =3, ml, =12},
Ro={m?2, = 4, m?, =5,m%. =9, m?, = 6}.
According to (9), the associated generator polynomials
g1(x) and gz(x) are:
1 1

g1(x) = 14+ x™eb 4 p™Mac =1 4 2! 4 23,
where gi(x) generates circulant matrix A; and
g2(x) = 1+ 2™as 4 z™ae — 1 4 2 4 2°,

where g2(X) generates circulant matrix A,. The resultant
parity check matrix H is shown in Fig. 3.

We compare performance of some of our codes with
that random-like codes and Array LDPC codes in the
next section.
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Fig. 3 Parity checks matrix H and circulant matrices made
by generator columns in Example 4.

TABLE 2. PARAMETERS OF CONSTRUCTED BINARY QC-LDPC
CODES FOR H =292, 1 < 8 <t (= 40), COLUMN WEIGHT THREE,
ROW WEIGHT 36 AND DIERENT RATES IN MATRIX (1).

(o] »n [ & [ r |
584 2092 0.5
876 584 0.66
1168 876 0.75
1460 1168 0.8
1752 1460 0.83
2044 1752 0.85

b (== R B (S I S O O

40 | 11680 | 11388 | 0.975
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TABLE 3. PARAMETERS OF SOME CONSTRUCTED BINARY QC-
LDPC CODES WITH COLUMN WEIGHT THREE.

| h | T | row weight | n | k | r |
150 | 20 60 3000 | 2850 | 0.95
210 | 28 84 5880 | 5670 | 0.964
226 | 30 90 6780 | 6554 | 0.966
256 | 34 102 8704 | 8448 | 0.97
V. SIMULATION RESULTS

According to Table 3 and the discussions in Section Il
and Il1, we have constructed some (n, k, r) QC-LDPC
codes with a minimum distance at least four so that the
associated Tanner graph has no cycle of length four.
These codes, in the following examples, have been
compared with random-like LDPC codes, using the
software in [16], and Array LDPC codes under SPA
decoding on AWGN channels with maximum 50
iterations. Furthermore, by removing some circulant
matrices in (1), one can obtain dierent codes with
desired lengths and rates.
Example 5 Let h = 256. The associated parity check
matrix given by Table 3 is:
H= (A1 Ay Az -+ Asg,),

where each circulant matrix A, 7 <i < 34, is of size
256x%256 and constructed by the proposed method in
Section I11. The null space of matrix H gives a (8704,
8448, 0.97) binary QC-LDPC code. The BER
performance of this code over an AWGN channel is
shown in Fig. 4 and this code is compared with
random-like code and Array LDPC code of near length
and rate. Ata BER of 10°%, the constructed (8704, 8448,
0.97) QC-LDPC code achieves approximately 0.2 dB
gain over the random-like code and 0.2 dB gain over
the Array LDPC code. In addition, the constructed
code has better waterfall curve compared to Array
LDPC code.
Example 6: Let h = 226. The associated parity check
matrix given by Table 3 is:

H= (A1 Ay Az - Ag),
where each circulant matrix A;, 7 <i <30, is of size 226
x 226. The null space of matrix H gives a (6780, 6554,
0.966) binary QC-LDPC code. The BER performance
of this code over an AWGN channel is shown in Fig. 4
and this code is compared with random-like code and
Array LDPC code of the near length and rate. Ata BER
of 10, the constructed (6780, 6554, 0.966) QC-LDPC
code achieves approximately 0.08 dB gain over the
random-like code and 0.4 dB gain over Array LDPC
codes.
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Fig. 4 Error performance of (8704, 8448, 0.970) QC-LDPC
code and (6780, 6554, 0.966) QC-LDPC code in Examples 5
and 6.
Example 7 Let h = 210. The associated parity check
matrix given by Table 3 is:

H= (A1 Ay Az --- As),
where each circulant matrix 4i, 1 <i <28, is of size
210x210. The null space of matrix H gives a (5880,
5670, 0.964) binary QC-LDPC code. The BER
performance of this code over an AWGN channel is
shown in Fig. 5 and this code is compared with
random-like code and
Array LDPC code of the same length and rate. At a
BER of 10, the constructed (5880, 5670, 0,964) QC-
LDPC code achieves approximately 0.1 dB gain over
the random-like code and Array LDPC code and it has
better waterfall curve than them at BER of 10°°.
Example 8 Let h = 150. The associated parity check
matrix by Table 3 is:

H=(A Ay Az --- Ax),
where each circulant matrix A;, 1 <i < 20, is of size
150x%150. The null space of matrix H gives a (3000,
2850, 0.950) binary QC-LDPC code. The BER
performance of this code over an AWGN channel is
shown in Fig. 5 and this code is compared with
random-like code and Array LDPC code of the near
length and rate. At a BER of 10°®, the constructed
(3000, 2850, 0.950) QC-LDPC code achieves
approximately 0.15 dB gain over the random- like code
and 0.2 dB Gain over the Array LDPC code.
The figures confirm that from the performance
perspective, the constructed codes compete with and
even outperform the random-like codes and Array
LDPC codes.
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Fig. 5 Error performance of (5880, 5670, 0.964) QC-
LDPC code and (3000, 2850, 0.95) QC-LDPC code in
Examples 7 and 8.

VI. CONCLUSION

This paper considers a new and different QC-LDPC
codes construction method by row distance sets with
girth of at least six. Unlike the previous QC-LDPC
code construction methods which were based on
combinatorial designs and nite geometries, our method
can produce a family of QC-LDPC codes with variable
lengths and rates easily. Multi-rate QC-LDPC codes
can be used in practical applications, particulary
suitable particularly in wireless communications.
Moreover by the introduced technique, we can simply
construct a family of high rate QC-LDPC codes. The
parity check matrices of these codes can be constructed
by generator polynomials over F,. We saw that the
proposed codes perform comparably to the well-
known Array LDPC codes, and have better waterfall
curve than them. The results also confirm that from the
performance perspective, the random-like LDPC codes
at short to moderate code lengths are not better than the
constructed codes by our method over AWGN
channels. Moreover the proposed codes are quasi-
cyclic and hence, their encoding can be implemented
with linear shift-registers in linear time. Constructing
LDPC codes with girth larger than eight can be
achieved by putting more restrictions on the proposed
technique and is the subject of a new research.
Therefore, constructing QC-LDPC codes with girths
larger than six can be considered as a novel work by
the proposed technique in this paper.

REFERENCES
[1] 1. R.G.Gallager, “Low-density parity-check codes,”” IRE
Trans. Inf. Theory, vol. 18, pp.21-28, November 1962.

[2] D.J.C.Mackay and R.M.Neal, “Good codes based on very
sparse matrices,” in Proc. 5" IMA Conf. Cryptography and
Coding., vol. 1025, 1995, pp. 100-111.

[3] M.Esmaeili, M.H.Tadayon, and T.A.Gulliver, “Low-
complexity girth-8 high-rate moderate length qc ldpc codes,”
AEU-International Journal of Electronics and Communi-
cations, vol. 64, pp. 360-365, 2010.

[4] M.Esmaeili and M.H.Tadayon, “A novel approach to
generating long ldpc codes using two congurations,” IET
Commun., vol. 2, no. 4, pp. 587-597, 2008.

[5] “A lattice-based systematic recursive construction of quasi-
cyclic ldpc codes,”IEEE Transactions on Commun., vol. 57,
no. 10, Oct. 2009.

[6] M.P.C.Fossorier, “Quasi-cyclic low-density parity-check
codes from circulant permutation matrices,” IEEE Trans. Inf.
Theory, vol. 50, no. 8, pp. 1788-1793, 2004.

[7] B.Vasic and O.Milenkovic, “Combinatorial constructions of
low-density parity-check codes for iterative decoding,” IEEE
Trans. Inf. Theory, vol. 50, no. 6, pp. 1156-1176, 2004.

[8] R.M.Tanner, D.Sridhara, A.Sridhara, T.E.Fuja, and
D.J.Costello, “Ldpc block and convolutional codes based on
circulant matrices,” IEEE Trans. Inf. Theory, vol. 50, no. 12,
pp. 2966-2984, 2004.

[9] J.Xu, L.Chan, L.Lin, and S.Lin, “Construction of low density
parity-check codes by superposition,” IEEE Transaction on
Commun., vol. 50, no. 2, pp. 243-251, 2005.

[10] O.Milenkovic, I.B.Djordjevic, and B.Vasic, “Block-circulant
low-density parity-check codes for optical communication
systems,” IEEE Journal of Selected Topics in Quantum
Electronics, vol. 10, no. 2, pp. 294-299, 2004.

[11] Y.Kou, S.Lin, and M.P.C.Fossorier, “Low-density parity-
check codes based on nite geometries: a rediscovery and new
results,” IEEE Trans. Inf. Theory, vol. 47, no. 7, pp. 2711-
2736, 2001.

[12] S. J. Johnson and S. R. Weller, “A family of irregular Idpc
codes with low encoding complexity,” IEEE Communications
Letters, vol. 7, no. 2, pp. 79-89, 2003.

[13] J.L.Fan, “Array codes as low-density parity-check codes,” in
Proc. Int. Symp. Turbo Codes, Sep. 2000, pp. 543-546.

[14] T. Xia and B. Xia, “Quasi-cyclic codes from extended di

erence families,” in IEEE  conference  Wireless
Communications and Networking, vol. 2, 2005, pp. 1036-
1040.

[15] M. Fujisawa and S. Sakata, “A class of quasi-cyclic regular
Idpc codes from cyclic difference families with girth 8,” in
International Symposium on Information Theory,2005, pp.
2290-2294.

[16] http://www.cs.utoronto.ca/radford/ldpc.software.html,2012.

. Mohammad Hesam  Tadayon
‘.\ received his B.Sc. degree in
) mathematics from the University of
Mazandaran, Babolsar, Iran, in 1995,
his M.Sc. degree in mathematics from
the University of Tarbiat Modarres,
Tehran, Iran, in 1997, and his Ph.D. degree in applied
mathematics (coding and cryptography) from the
University of Tarbiat Moallem of Tehran (Kharazmi),
Tehran, Iran, in 2008. He is now an Assistant Professor
at the Iran Telecommunications Research Center. His
research interests include error control coding &
information theory and security.

Mohammad Mohammadi

received his B.Sc. degree in

= =) applied mathematics from Payame
i3 Noor University in 2007 and his

S~

M.Sc. degree in Communication
‘ /- engineering from Malek Ashtar

University of Technology in 2010.
His research interests include error control coding and

cryptography.

Intermational Journal of Information & Communication Technology Research


http://journal.itrc.ac.ir/article-1-64-en.html
http://www.tcpdf.org

