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Abstract—A novel pre-training method is proposed to improve deep-neural-networks (DNN) and long-short-term-
memory (LSTM) performance, and reduce the local minimum problem for speech enhancement. We propose
initializing the last layer weights of DNN and LSTM by Non-Negative-Matrix-Factorization (NMF) basis transposed
values instead of random weights. Due to its ability to extract speech features even in presence of non-stationary noises,
NMF is faster and more successful than previous pre-training methods for network convergence. Using NMF basis
matrix in the first layer along with another pre-training method is also proposed. To achieve better results, we further
propose training individual models for each noise type based on a noise classification strategy. The evaluation of the
proposed method on TIMIT data shows that it outperforms the baselines significantly in terms of perceptual-evaluation-
of-speech-quality (PESQ) and other objective measures. Our method outperforms the baselines in terms of PESQ up to
0.17, with an improvement percentage of 3.4%.
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l. INTRODUCTION

Speech signal enhancement is a widely used
practical block in many applications such as speech
recognition (ASR), and mobile speech communication
[1]. The main purpose of speech enhancement is to
remove static or non-static noise from the noisy signal.
Speech enhancement techniques may be categorized
into three divisions of statistical methods, machine
learning-based procedures (and more specifically deep
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learning ones), and association of statistical and sparse
models with machine learning as the brand-new
approach [2, 3, 4, 5]. Spectral subtraction methods are
among the classic ones in the category of statistical
procedures. There is a possibility of music noise in
spectral subtraction methods [1]. Statistical methods
are implemented based on specific statistical
assumptions [4]. Wiener filter [6], minimum mean
square error (MMSE) [7, 8], and Non-Negative Matrix
Factorization (NMF) are some of the statistical
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techniques used in this field [9]. Deep learning is one
of the methods that has recently been considered for
noise removal [10]. Due to the high performance of
neural networks in eliminating various noises, this
method has been one of the successful methods in
improving speech signal [11].

In [12], SNR-based progressive learning method
was proposed for DNN. This method achieved good
results in speech quality while the number of required
parameters for network training was also decreased. In
[13], to find a comprehensive model against different
types of noise, noise classification has been used in
neural network training. In [14], LSTM was used as a
mask for speech noise suppression. This structure can
extract temporal information about speech and noise.
A combination of LSTM and CNN layers was used for
speech enhancement in [15]. With this structure,
contextual information on speech signals was
extracted. In [16], a method for speech enhancement
was proposed with simple recurrent units (SRU). In
this method, an SRU network with some layers was
used to estimate clean speech signal.

In [17], NMF basis matrix was estimated using a
ratio mask in the DNN structure. Clean speech was
then estimated using NMF and the basis matrix. In a
different approach, two autoencoders were employed
to extract clean speech and noise NMF parameters in
[5]. After that, the outputs of the encoder parts were
used as input features in a DNN structure to estimate
clean speech signals. In summary, DNNs have been
suggested in many ways to improve speech signal
[18],[19],[20]. Despite the good performance of neural
networks in  many areas, including speech
improvement, local minimum is the main problem in
the learning stage. Increasing the number of network
layers leads to the increase of nonlinearity in feature
extraction. However, the probability of facing a local
minimum issue will increase as the number of layers
and network parameters increases. Using pre-training
methods is one of the useful techniques to overcome
the local minimum problem [21]. One pre-training
method is the use of restricted Boltzman machines
(RBM) [22]. In this method, the weights of the DNN
layers are trained using RBM and the resultant values
are used as the initial weights of the DNN. Supervised
and unsupervised pre-trainings for deep belief
networks (DBN) have been evaluated in [23]. In this
approach, bidirectional pre-training was proposed to
calculate the initial values of DNN weights for image
classification. The results show an improvement in the
accuracy and speed of learning in the proposed
method. In [24], greedy layer-wised pretraining and
fine tuning was used. In this method, autoencoder (AE)
networks and deep denoising autoencoder (DDAE)
have been used for pre-training and fine tuning in
speech enhancement, respectively. Also, noisy and
clean speech signals have been used as input and
output of AEs. Hence, we refer to this method as a
supervised pre-training (SUP) structure.

NMF is one of the useful linear methods in
improving the speech noisy signal and extracting the
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relationships between speech signal and noise in an
appropriate way [9]. Therefore, instead of finding the
initial values of the network weights using traditional
pre-training, NMF can be used as a useful method in
extracting speech signal information. In this paper, we
propose a novel method based on NMF for both DNN
and LSTM pre-training in speech enhancement to
overcome such training problems of deep networks as
the local minima. The proposal of employing the NMF
basis matrices as the initial weights in deep networks
in this paper is due to the fact that NMF is known to be
an appropriate sparse model for extracting speech
features [25]. In fact, NMF is trained by clean speech
signals to decompose clean speech into two matrices of
basis and coefficients [9]. Thus, the basis matrix works
as an appropriate data-driven filter capable of finding
proper speech features in the coefficients matrix. In our
proposed method, we obtain the initial weights of the
last layer of the network using the transpose values of
NMF basis matrix. Because NMF is trained by clean
speech, it is able to adjust the weights appropriately
while mapping the features of the last layer to the target
output (enhanced speech). We also propose the use of
basis matrix of the suggested NMF pretraining in both
the first and last layers of the network. Insertion of the
proposed NMF pre-training approach in the supervised
AE pre-training structure has also been introduced. The
results show that this method is superior to previous
AE supervised pre-training. In order to improve the
speech enhancement network quality in noisy
environments, we use a noise classification method
with individual networks used for each noise type. Fig.
1 shows a simple block diagram of the proposed
approach. We find the basis matrix of the NMF
algorithm from clean speech signal X, and use the basis
matrix for the pre-train block in Fig. 1. A DNN is
trained with input noisy speech signal Y for noise
classification. According to Fig. 1, we acquire the
enhanced signal either from path 1 or 2. In path 1, we
use individual models for matched noises (those seen
in the training phase). For the mismatched noise types
that have not been seen in the training step, we suggest
using a general model trained with all noises to
improve the generalization of our approach in different
noisy environments. Please note that the noise
classification parts in Fig. 1 are optional. The basic
proposed block of our system which is the NMF pre-
training approach is painted in green to signify its
importance. Also, we have used the system structure of
Fig. 1 only for the proposed model and this structure
has not been used in other reference methods. Other
reference methods use a general model that is trained
with all noises without any NMF pre-training which is
the main novelty of the current paper.

To the best of authors’ knowledge, no pretraining
has been used for LSTM structures for speech
enhancement so far. However, according to the results
obtained in our proposed approach, it is beneficial for
LSTM networks as well.

Therefore, the main contributions of this paper are as
follows:
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e Proposing a novel method based on NMF for
both DNN and LSTM pre-training in speech
enhancement: we propose NMF pre-training
in three approaches of initializing the weights
of the last layer, both the first and last layer of
the network based on NMF basis matrix. We
also suggest inserting the proposed NMF pre-
training approach in the supervised AE pre-
training structure. Specifically, since NMF is
trained by clean speech, it could adjust the
weights appropriately while mapping the
features of the last layer to the target output
(enhanced speech).

e  Suggesting a noise classification method with
individual networks used for each noise type:
we use individual models pre-trained by the
proposed NMF approach for matched noises
that have been seen in the training phase. For
the mismatched noise types that have not been
seen in the training step, we suggest using a
general model which has also been pre-
trained by NMF and tuned with all noises to
improve the generalization of our approach in
different noisy environments.

This paper is organized as follows. Section Il
explains the NMF structure. Section 111 defines the AE
pre-training. In section 1V, the proposed approach is
presented. The experimental setting is mentioned in
Section V. Discussion and Conclusion are presented in
Sections VI and VI, respectively.

Il.  NMF DESCRIPTION

The NMF algorithm linearly decomposes X as a
non-negative matrix into W and H matrices. W is called
the basis matrix, while H refers to coefficients. In (1),

X eRif)XN is an input matrix, WeR;\gXK and

H e RZKOXN are the two non-negative factors. Dot in

(1) means the product of W and H. M, N, and K
determine the sizes of the matrices. The relationship
between these parameters is shown in (2) [18]:

X ~W.H )
K <min(M,N) )
N is equal to the number of frames in X. W and H
matrices are updated frequently, until the objective
function D(X |WH) is minimized and the best

approximation is obtained from the input matrix. Since
the NMF basis and coefficients matrices are found by
a training strategy on the input matrix, it is among data-
driven statistical approaches. The distance between X
and W.H could be minimized with Frobenius, itakura-
saito, or kullback-leibler method [18].

I1l.  AEPRE-TRAINING

In pre-training with AE networks (Fig. 2), the deep
network is first decomposed into a number of networks
with single hidden layers. If we denote the input and
output of the network as Y and X, respectively, first a
single-layer network is learned
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Figure 1. The simple block diagram of the proposed approach
based on NMF pre-training using the noise classification strategy. X
and Y refer to clean and noisy speech, respectively. Path 1 is for
matched noises, while we suggest path 2 for mismatched ones.
“modeli” refers to the individual models trained with noise type i for
matched noises. The general model is trained with all noises to
improve the results in mismatched conditions. The noise
classification parts are optional and the basic blocks of our system
are painted in green to signify their importance.

With input Y and target X. In the next step, the
hidden layer of the trained network is considered as the
input of the next network, and so on, until all single-
layer networks are trained. Using the weight matrices
calculated by the AE networks as shown in Fig. 2, the
initial values of the DNN weights will be obtained [24].
In the fine-tuning phase, the DNN will be trained using
the calculated weight matrices, and the values of the
network weights in the DNN will be adjusted [24].

IV. PROPOSED PRE-TRAINING

NMF is useful in decomposing clean speech signal
into two matrices of basis W, and coefficients H. In
fact, W works as a data-driven filter which helps find
proper speech features such as formants and harmonics
reflected in H [25]. Therefore, the output of a one-layer
neural network could represent these suitable features
when the input is clean speech, and W has a sparse
distribution that improves the generality of the network
for different speech signals and noises. Hence, the
proposed structure includes the use of NMF in DNN
and LSTM pre-training. Also, in [26], it is shown that
with fix random weight values in all layers, except the
last layer which is computed analytically, we can
achieve acceptable results with lower computing
complexity. This research shows the importance of
utilizing analytical values in the last layer and random
values for other layers. Therefore, we propose a
pretraining method for the last layer of the network.
For further evaluation, we examine the proposed
initialization for the first layer as well.
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Initially, we extract the basis matrix of the NMF
from the clean speech signal X as the target of the
DNN, using (1). In the next step, we use the transpose
of basis matrix as the initial weights of the last layer of
the DNN. The dimensions of the basis matrix in NMF
are set equal to the number of nodes in the last layer
times the number of nodes in the hidden layer before it
in this case when X is the target layer instead of the
input as in (1). Thus, we should transpose its values to
be used as the initial weights in the network. The
proposed method is illustrated in Fig. 3. Once again, Y
and X are equivalent to noisy and clean speech signals,

respectively, and W, denotes the basis matrix

calculated by NMF in the nth layer. We call this
method as PNMF1.

It is also possible to use the proposed NMF weight
initialization in the supervised pre-training scenario
(SUP) [24]. We use noisy and clean speech signals as
input and output target values in pre-training. Fig. 4
depicts the use of the proposed NMF pretraining in
supervised pre-training structure (PNMF1_SUP). The
proposed method in Fig. 4 is similar to the supervised
pre-training method, except that instead of the initial
weights of the last layer of the neural network, the
NMF basis matrix is used. In this structure, the initial
layers of the neural network are displayed in light blue,
and a dark blue layer represents the layers at greater
depths. As seen, all the weights of the network, except
the weights of the last layer, have been calculated by
supervised pre-training method. In other words, we
initialize the weights of the last layer by the NMF
algorithm. After calculating the initial values of the
network weights, the weights of all network layers are
readjusted to reach an acceptable value of the network
error using fine-tuning method.

We also propose using the NMF basis matrix (W)
as the initial values of the first network layer for
improving the pretraining method. Here, according to
(1), we assume having clean speech X as the input, and
W represents the weight matrix mapping X into
coefficients H. In this structure, we also suggest using
the transpose of the NMF basis matrix as the initial
weights of the last layer of the DNN network. We call
this method as PNMF2. A diagram of the PNMF2
approach is shown in Fig. 5.

H1

y —

Figure 2. The pre-training method with AE networks [24]
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w1 W2D

NMF Algorithm J

X=WH (1)

Figure 3. The proposed pre-training method (PNMF1) using NMF
in the DNN structure. Wh is initialized with transpose of NMF basis
matrix (W).

Y H1 X

Figure 4. Inserting the proposed NMF pre-training approach in the
supervised pre-training structure (PNMF1_SUP).

Figure 5. The proposed PNMF2 pre-training method using NMF in
the DNN structure. Wn is initialized with transpose of the NMF basis
matrix (WT) and W1 is initialized with W matrix.

In addition, similar to our proposed DNN
pretraining method for PNMF1, we suggest using the
transpose of basis matrix in the NMF method as the
initial weights for the last layer of the LSTM network
which we suggest tobe a linear layer. Due to the
linearity of the last layer, we expect that LSTM be
trained more efficiently with the proposed strategy.
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In Fig. 6, Ws, Wi, W,, and W, are the weights of the
forgetting gate, input gate, output gate, and new
candidate one, respectively, in the LSTM network [14].
o is the sigmoid activation function and tanh is the
hyperbolic activation function. In this proposed pre-
training method called PNMF2, we use the NMF
algorithm basis matrix to initialize the Wi, Ws, W,, and
W, matrices in training the LSTM network. According
to the obtained experimental results shown later, this
proposed pre-training approach works better than
using random values as expected. One layer of the
LSTM method is shown in Fig. 6. According to Fig. 6,
W matrix of the NMF algorithm is used as initial
weights for Wi, Wy, W, Wo. Also, WT matrix is used as
initial weights of the last layer.

We also propose employing the SUP pre-training
method, similar to what used for the case of DNNSs, in
the LSTM network and evaluate the earned results of
speech enhancement with our proposed approach.

In the proposed speech enhancement structure, we
use different networks for different matched noise
types. Thus, we initially use a noise classification
procedure based on a DNN to determine the nearest
noise type in each noisy mixture. The clean signal will
be extracted with the specified network according to
Fig. 1. The use of a DNN contributes to the accuracy
of classification. If the noise classification accuracy is
higher than a specified threshold, we mark it as a
matched noise and thus, use one of the networks
trained with a matched noise, namely either of model1,
model2, model3, and model4 in Fig. 1. If noise
classification accuracy is lower than the threshold, it is
categorized as a mismatched noise type. Hence, we use
a general network trained with all matched noises
(general model in Fig. 1). This suggested strategy not
only leads to better results for the matched noise types,
but also improves the generalization of the network in
mismatched conditions.

V. EXPERIMENTS AND EVALUATIONS

A. Experimental Setting

The data set used in this paper is the TIMIT corpus
[27]. It contains 6300 sentences, of which 1334
sentences are considered as test data. Also, the total
number of speakers is equal to 630 from which 168
speakers are used in the test set [27]. In this paper, we
randomly select 700 sentences from TIMIT to train any
individual network related to each noise type. The
number of test sentences is equal to 120 for each type
of noise. The data used for the test have been selected
from the TIMIT test dataset and have no overlap with
the training data. Also, we use the IEEE sentence
database for our mismatched speech signals [28].

To evaluate the proposed system, Babble, Factoryl
and F-16 noises from NATO RSG-10 dataset [29] and
Car noise from AURORA-2 database [30] have been
used to train the DNN and LSTM. Also, we use the
Restaurant noise from AURORA-2 database, Pink
noise from NATO RSG-10 dataset [28], and Piano
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noise from [31] for the mismatched noises. We
generate noisy signals by adding clean speech signals
with noise signals according to ITU-T P.56 standard
[32] in SNRs of -5, 0, 5, 10, 15, and 20 dB.

The approach in [16] is one of the new methods we
compare our results with. In [16], the signals are
resampled to 8 kHz. Similarly, as we would like to use
the proposed method for the telephony band and for
fair comparison with [16], we have down-sampled the
signals to 8 kHz. The features extracted from the
speech signals are the magnitude of fast Fourier
transform (FFT) with a frame length of 32 ms with 16
ms frame shift. Thus, the length of the feature vector
used is equal to 129 (the first half of FFT).

hy

Ci

g

Yt

!W
NMF Algorithm (1)

Figure 6. The proposed pre-training method (PNMF2) using NMF
in the LSTM structure. Wf, Wc,Wi, Wo are initialized with the NMF
basis matrix (W), while Wn (the last layer’s weights not shown in
the figure) is initialized with WT.

The enhancement is carried out in the time-
frequency domain after the application of the short
time Fourier transform (STFT). The inputs and
outputs, for both DNN and LSTM, are noisy and clean
speech features, respectively. We combine the noisy
phase of the input signal with the enhanced features at
the network output to reconstruct the enhanced speech
signal.

Since the context of the speech signal is very
important in speech enhancement, we suggest using
both  DNN and LSTM networks with context.
Therefore, the DNN and LSTM models have 5 frames
in the input and output of the networks with 550 nodes
in hidden layers. The context features for the input and
output of the network consist of the central, two past,
and two future frames, so that the input and output
sizes of the network are equal to 129*5 nodes. Also,
the central frames of the network output are considered
as the enhanced frames. The DNN trained for speech
enhancement is a network with three hidden layers.
The activation functions used in this network are
Leaky-ReLU in all layers, except in the last layer
which has a linear function. ReLU activation function
has better results than sigmoidal and hyperbolic
activation functions without using any unsupervised
pre-training [33] and Leaky-ReLU maintains all
feature information in a certain range in addition to
having nonlinear properties and low computational
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time of ReLU [34]. The LSTM model for speech
enhancement has two hidden layers. These values have
been found experimentally. In hidden layers, the
LSTM layers are used, and the last layer is the linear
layer. We use Adam for algorithm optimization. The
batch size used in the DNN and LSTM is set to 1024.
The negative slope in leaky-relu layers is 0.01. In
DNN, the learning rate is set to le-4. In LSTM, the
learning rate is set to 1e-3. Also, the period of learning
rate decay is set to 30 for epochs greater than 5 and the
multiplicative factor of learning rate decay is set to 0.5.

For fair comparison between methods, other
initializations are the same for all networks and
methods, and the initialization procedure is set as the
default one in the Pytorch package.

We use the NMF models with rank of 550 (equal to
the number of hidden layer nodes), and iteration of 100
for convergence. The initial values for NMF algorithm
are randomly set. We use coordinate descent solver
(cd) for this algorithm and the distance between X and
W.H is minimized with Frobenius method. The noise
classifier network is a 5-layer DNN. The first three
layers have the Leaky-Relu activation function, the
fourth layer has the linear function, and the last layer is
Softmax. The hidden layers of this network have 800
neurons. The data set for training the noise classifier
network is the first 10 frames of each noisy utterance
assuming silence at the beginning. The specified
threshold in the classification method to categorize the
noise type as either matched or mismatched one is set
to 95 percent experimentally.

TABLE I. THE PARAMETER SETTINGS FOR THE PROPOSED
APPROACH
Parameter | Value
frame length 32ms
frame shift 16ms
sampling frequency 8 kHz
network input and output size 129*5 = 645
hidden layers sizes 550
algorithm optimaization adam
batch size 1024
negative slope in
leaky-relu layers 0.01
learning rate for DNN 1.00E-04
learning rate for LSTM 1.00E-03
learning rate decay for epochs
greater than 5 in LSTM 30
multiplicative factor of
learning rate decay In LSTM 0.5
NMF matrice size 550*645
NMF iteration 100
solver for the NMF coordinate descent (cd)
NM F minimization method Frobenius

In Table 1, all parameter settings for the proposed
methods are shown. All these parameters were based
on the best PESQ scores in the training time as well as
previous related papers.

Volume 15- Number 3 — 2023 (53 -65)

All methods are trained using an NVIDIA GeForce
GTX 1080 GPU system. The training times of DNN,
LSTM, PNMF1 for DNN, and PNMF1 for LSTM
networks are equal to 5287, 6265, 5849, and 7129
seconds, respectively, including the NMF training time
for our proposed methods. The NMF training time for
all proposed methods is 508 seconds

B. Obijective Speech Quality Measures of matched
noises

To evaluate the proposed methods, the widely used
objective evaluations of PESQ [35], COVL [36], and
fwsegSNR [37] have been used. The range of PESQ is
from -0.5 to 4.5 and the range of COVL is from 1 to 5.
COVL is a linear combination of the perceptual
evaluation of speech quality, log-likelihood ratio
(LLR), and weighted slope spectral (WSS) measures.
In fwsegSNR, higher values refer to better results.

In this paper, we have proposed and tested four new
methods for pretraining neural networks. These four
methods are summarized as follows.

- PNMF1: The weights of the last layer of the
network are initialized with the transpose of the
NMF basis matrix.

- PNMF2: The weights of the first and last layers of
the network are initialized with the NMF basis
matrix and its transpose, respectively.

- PNMF1_SUP: The incorporation of the PNMF1
method within the SUP framework.

- PNMF2_SUP: The incorporation of the PNMF2
method within the SUP framework.

The results of the proposed methods are compared
with those of the SRU [16], SUP [24], DNN [11], and
LSTM [14] networks as the baseline methods. The
difference between the proposed and baseline methods
is in the approach taken to initialize the matrix weights
in the networks described in the paper. Please note that
some of the baselines such as DNN, LSTM, and SRU
do not have any pre-training. Also, we have a noise
classification block for the proposed methods. Table 2
briefly describe these differences.

The average results of PESQ and COVL over 120
test signals for car and F-16 noises in different SNRs
are shown in Table 3 for DNN. Table 4 illustrates the
average results over noisy signals contaminated with
all four noises of Babble, Factoryl, F-16 and Car
noises for DNN in various SNRs. Table 5 shows the
average results of PESQ and COVL over 120 test
signals for Car and F-16 noises for LSTM in different
SNRs. We have also shown the average results over
noisy signals contaminated with all four noises of
Babble, Factoryl, F-16 and Car noises for LSTM in
different SNRs in Table 6. We have achieved similar
improvements for Babble and Factoryl noises for both
DNN and LSTM networks too, but the results have not
been reported in this paper to save space. To solidify
the obtained results, the experiments of the proposed
methods are repeated for five different initialization
values of the weights.

For further comparison of the models, we have
used the frequency-weighted segmental SNR
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(fwsegSNR) as the evaluation method. The average
results of fwsegSNR over Babble, Factoryl, F-16 and
Car noises for LSTM in various SNRs are shown in
Table 7.

The network learning curve for Babble noise for
some baselines and the best proposed method is shown
in Fig. 7. In Fig. 7, the amount of network error during
the learning process is plotted in terms of the number
of epochs. DNN and SUP methods are used as
baselines. PNMF1 has the best results and is the best-
proposed method.

For more evaluation, we compare the best proposed
method with SRU model [16] as the most recent
baseline. The SRU network was trained with Babble,
F-16, Factoryl, and Car noises (Fig. 8).

In Fig. 9, the spectrograms of the noisy, clean,
PNMF1 output, and SUP output are shown. Fig. 10
depicts the NMF basis values, a matrix with random
weight, the last layer matrix weight of the trained
LSTM model, and the last layer matrix weight of the
trained PNMF1 model for LSTM.

For evaluating the effect of noise classification in
the proposed method, in Fig. 11, the PESQ results of
the best-proposed method (PNMF1) while using the
suggested noise classification strategy, and without
noise classification, as well as the SRU model are
shown. The experiments emphasize that a similar trend
is followed for PESQ results in Fig. 11 with that of the
fwsegSNR, and the proposed method has the best
results with and without noise classification. We
showed the results of fwsegSNR in Table 7.

C. Objective Speech Quality Measures of
mismatched noise and mismatched database

In Table 8, the results of Restaurant noise as a
mismatched noise in LSTM are shown. As seen, the
PNMF1 method has the best result of all methods.

In Table 9, the average results of Pink and Piano
noises as two periodic and mismatched noise signals in
LSTM are shown. The results illustrate the best
performance for the proposed methods. Fig. 12
illustrates the average PESQ results of the mismatched

vicTrR (3D

speech signal (IEEE sentence database) over F-16
noise for SRU, LSTM, and PNMF1 methods.

Table 10 illustrates the average results over noisy
signals contaminated with all 7 matched and
mismatched noises (Babble, Factoryl, F-16, Car,
Restaurant, Pink, Piano) for LSTM in various SNRs.

To evaluate the statistical improvement of the
results caused by the proposed method, we use the
Friedman test with the Holm’s post hoc test [38],[39].
To find the significance of the results, the modified
statistical value (F) of the Friedman test with (J-1) and
(1-1)*(3-1) degrees of freedom and the critical F value
(F) are calculated. J is defined as the number of
methods, and | is defined as the number of conditions.
In this experiment, J is equal to 7 and | is equal to 48
(6 different SNRs for 7 noise types and one
mismatched speech condition). The null hypothesis is
rejected if the Fs value is larger than the F value, and
we can compare the results with the Holm’s post hoc
test. In this test, if the p-value is smaller than the Holm
values, the null hypothesis is rejected, and that model
has significant results. In this test, the F; value is equal
to 55.59 and the F value is equal to 2.130. Thus, the F¢
value is larger than the F value and we use the Holm’s
post hoc test to find the significant methods. The
results of Holm’s post hoc test are illustrated in Table
11. As seen, the proposed methods have larger Holm's
values than p-values. Thus, our proposed methods pass
the significance test.

— DNN_loss
— PNMF1_loss
SUP_loss

0.0045

0.0040

0.0035
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loss functicn

0.0025

0.0020
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iteration
Figure 7. The amount of network error in the learning process for
some baselines and the best proposed method.

TABLE II. DIFFERENT BASELINE AND PROPOSED METHODS.
method type explanation
DNN [11] Reference method A deep-neural-network is used for speech enhancement. No pre-training is
used.
LSTM [14] Reference method | A long-short-term-memory network is used for speech enhancement. No pre-
training is used.
SUP [24] Reference method Greedy layer-wised pretraining and fine tuning was used. This method has a
supervised pre-training (SUP) structure.
SRU [16] Reference method A method for speech enhancement with simple recurrent units (SRU). No
pre-training is used.
PNMF1 Proposed method The weights of the last layer of the network are initialized with the transpose
of the NMF basis matrix.
PNMF2 Proposed method The weights of the first and last layers of the network are initialized with the
NMF basis matrix and its transpose, respectively.
PNMF1_SUP Proposed method The incorporation of the PNMF1 method within the SUP framework.
PNMF2_SUP Proposed method The incorporation of the PNMF2 method within the SUP framework.
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TABLE III. AVERAGE RESULTS OF SPEECH QUALITY MEASUREMENTS IN DNN FOR CAR AND F-16 NOISES IN DIFFERENT SNRS.
PESQ - Car noise COVL - Car noise
SNR -5 0 5 10 15 20 SNR -5 0 5 10 15 20

DNN [11] 193 228 257 278 296 3.15 DNN [11] 234 279 316 342 363 384
SUP [24] 195 234 264 282 298 314 SUP [24] 238 285 322 344 363 381
SRU [16] 189 225 259 281 3.00 3.16 SRU [16] 224 269 312 341 3.63 3.83
PNMF1 208 243 272 295 312 328 PNMF1 247 292 329 356 376 3.95
PNMF2 205 237 264 285 299 314 PNMF2 244 286 322 347 365 381
PNMF1_SUP 204 238 267 290 3.07 327 PNMF1 SUP 245 290 327 355 375 397
PNMF2 SUP 201 234 264 284 300 315 PNMF2 SUP 238 283 321 346 3.65 3.82
PESQ - F-16 noise COVL - F-16 noise
SNR -5 0 5 10 15 20 SNR -5 0 5 10 15 20
DNN [11] 188 229 255 278 298 314 DNN [11] 230 280 3.12 340 3.65 3.82
SUP [24] 183 233 260 282 298 3.13 SUP [24] 226 284 317 343 3.63 3.79
SRU [16] 193 228 255 279 3.00 3.16 SRU [16] 227 272 3.06 3.37 3.63 3.82
PNMF1 195 242 271 295 313 327 PNMF1 238 295 331 359 380 395
PNMF2 197 238 264 287 3.02 3.15 PNMF2 236 288 321 349 367 3.82
PNMF1 SUP 195 238 268 295 314 329 PNMF1 SUP 236 291 327 358 381 397
PNMF2 SUP 197 237 264 288 305 317 PNMF2 SUP 233 285 319 349 3.69 3.84

TABLE IV. AVERAGE RESULTS OF SPEECH QUALITY MEASUREMENTS IN DNN OVER CAR, F-16, FACTORY1 AND BABBLE NOISES IN
DIFFERENT SNRs.

PESQ COVL
SNR -5 0 5 10 15 20 SNR -5 0 5 10 15 20
DNN [11] 1.77 218 250 272 295 3.12 DNN [11] 217 2.68 3.07 335 362 3381
SUP [24] 1.75 222 253 276 296 3.12 SUP [24] 216 272 310 3.37 3.61 3.78
SRU [16] 1.83 220 251 275 298 313 SRU [16] 214 262 3.02 333 361 3.79
PNMF1 1.84 229 262 287 3.07 322 PNMF1 223 279 3.20 349 3.72 389
PNMEF2 1.87 227 256 278 295 3.07 PNMEF2 222 273 3.11 338 359 373
PNMF1 SUP 1.82 227 259 283 306 322 PNMF1 SUP 220 276 316 346 3.72 390
PNMF2 SUP 1.86 225 254 277 296 309 PNMF2 SUP 220 270 3.08 337 360 3.75
TABLE V. AVERAGE RESULTS OF SPEECH QUALITY MEASUREMENTS IN LSTM FOR CAR AND F-16 NOISES IN DIFFERENT SNRS.
PESQ - Car noise COVL - Car noise
SNR -5 0 5 10 15 20 SNR -5 0 5 10 15 20
LSTM [14] 198 232 261 281 298 3.13 LSTM [14] 238 282 318 343 362 3.79
SUP 199 232 261 280 297 312 SUP 240 282 319 343 362 379

SRU [16] 189 225 259 281 3.00 3.16 SRU [16] 224 269 312 341 3.63 3.83
PNMF1 210 243 272 295 311 3.27 PNMF1 251 295 331 357 3.76 3.93
PNMF2 200 231 257 276 290 3.02 PNMF2 235 277 311 335 352 3.66
PNMF1_SUP 210 243 272 294 3.09 323 PNMF1 SUP 250 294 330 357 374 3.90
PNMF2_SUP 200 232 259 279 293 3.08 PNMF2 SUP 235 278 314 339 356 3.72
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PESQ - F-16 noise COVL - F-16 noise
SNR -5 0 5 10 15 20 SNR -5 0 5 10 15 20
LSTM [14] 1.95 237 260 283 3.00 3.13 LSTM[14] 236 288 316 343 3.64 3.79
SUP 196 236 259 282 299 312 SUP 2.38 287 316 343 3.63 3.79

SRU [16] 193 228 255 279 3.00 3.16 SRU [16] 227 272 306 337 3.63 3.82
PNMF1 206 247 274 298 315 3.29 PNMF1 247 299 331 360 3.80 3.95
PNMF2 200 235 259 279 294 3.06 PNMF2 235 282 3.13 337 357 3.70
PNMF1_SUP 206 246 273 297 314 327 PNMF1 SUP 247 298 331 358 379 394
PNMF2_SUP 203 240 264 286 3.02 311 PNMF2 SUP 238 286 3.17 344 3.63 3.75
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TABLE VI. AVERAGE RESULTS OF SPEECH QUALITY MEASUREMENTS IN LSTM OVER CAR, F-16, FACTORY1 AND BABBLE NOISES IN
DIFFERENT SNRs.

PESQ COVL

SNR S50 5 10 15 20 SNR 505 10 15 20
LSTM [14] 1.83 225 253 277 297 3.1 LSIM[l4] 221 273 3.09 337 3.60 3.77
SUP 1.86 224 254 276 296 3.10 SUP 224 273 3.09 337 360 3.76

SRU [16] 1.83 220 251 275 298 313 SRU [16] 2.14 262 3.02 333 361 379
PNMF1 1.94 234 2.64 288 3.08 3.22 PNMF1 231 283 321 349 373 3.88
PNMEF2 1.89 224 251 272 290 3.02 PNMEF2 221 268 3.03 330 351 3.65
PNMF1 SUP 193 233 2.64 288 3.07 321 PNMF1 SUP 230 282 320 349 372 3.87
PNMF2 SUP 1.91 228 255 276 295 3.07 PNMF2 SUP 223 271 3.07 334 356 3.70

TABLE VII.  AVERAGE RESULTS OF FWSEGSNR 350
MEASUREMENTS IN LSTM OVER CAR, F-16, FACTORY1 AND 330 #PNMF 1-DNN
BABBLE NOISES IN DIFFERENT SNRS. #PNMF1-LSTM ’E
3.10 2% %
fwsegSNR 2 T - B
segs i A
270 20 0 7
SNR 5 0 5 10 15 20 g vie 50 5 7
[ / A {j
LSTM[14] 63 81 97 112 125 135 * 230 o é,% 7 g%
7%
sup 63 81 97 112 126 135 210 % % g% ég ?%
% % A
SRU[16] 60 77 95 113 130 141 % % 7 N7 gﬁ
PNMF1 65 84 101 117 130 139 o M 7R %N 20 %N G
-5 0 5 10 15 20

g

PNMF2 6.1 78 94 109 121 129

B e e i Figure 8. Average PESQ results over Babble, Factoryl, F-16 and

PNMF2 SUP 6.1 79 95 11.0 122 130 Car noises for the best proposed methods and SRU.
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Fig. 11. Average PESQ results over Babble, Factoryl, F-16 and Car Fig. 12. Average PESQ results over F-16 noise for SRU, LSTM,

noises for SRU method and the proposed PNMF1 method with and and the proposed PNMF1 method for unseen speech signals (IEEE
without noise classification. sentence dataset).

TABLE VIII.  AVERAGE RESULTS OF SPEECH QUALITY

MEASUREMENTS OVER RESTAURANT NOISE IN LSTM. TABLE X. AVERAGE RESULTS OF SPEECH QUALITY

MEASUREMENTS IN LSTM OVER ALL 7 MATCHED AND
MISMATCHED NOISES IN DIFFERENT SNRS.

PESQ - Restaurant noise

SNR 5 0 5 10 15 20 PESo
LSTM [14] 168 2.02 232 262 2.88 3.7

SUP[ ! 169 2.00 230 2.62 288 3.06 TR =0 210 Db 0
LSTM[14] 179 218 247 272 293 3.09
SRU[16] 168 1.99 229 2.60 2.87 3.06 SUP 179 217 248 272 293 309
PNMF1 170 203 236 2.70 297 315 SRU [16] 176 213 245 271 294 311
PNMF2 164 203 232 263 290 308 PNMF1 185 223 257 283 304 3.9
PNMF2 SUP 173 202 232 2.62 2.87 3.04 PNMF1 SUP 1.85 224 257 283 3.03 3.9
COVL - Restaurant noise PNMF2 SUP 184 221 249 272 292 3.06

SNR 5 0 5 10 15 20 COVL
LSTM [14] 1.90 236 2.80 3.18 349 371 SNR 5 0 5 10 15 20
SUP 192 235 278 318 349 371 LSTM[14] 211 261 299 331 356 3.75
SRU[16] 191 233 277 317 350 3.72 SuP 212 262 299 332 356 3.74
PNMF1 191 237 284 327 358 3.79 SRU [16] 202 252 293 328 356 377

PNMF2 187 236 280 320 351 3.73
PNMF1_SUP 192 237 284 326 356 3.79

PNMF2_SUP 194 236 279 317 347 367

PNMF1 216 269 3.09 342 367 3.84
PNMF2 208 258 296 326 349 3.65
PNMF1_SUP 215 2.68 3.09 342 3.67 3.84
PNMF2_SUP 212 266 298 3.28 352 3.69

TABLE IX. AVERAGE RESULTS OF THE SPEECH QUALITY
MEASUREMENTS OVER PINK AND PIANO NOISES IN LSTM.
TABLE XI. THE FRIEDMAN TEST RESULTS WITH HOLM’S POST
PESQ HOC TEST
SNR -5 0 b} 10 15 20
LSTM [14] 177 213 244 270 290 3.09 PESQ
SUP 1.73 214 245 271 291 3.08 model p-value Holm
SRU [16] 1.67 207 241 269 289 3.10 PNMF1 0.0000 0.0083

[ Downloaded from journal.itrc.ac.ir on 2025-11-21 ]

PNMF2 1.76 2.14 245 2.68 2384 3.00
PNMF1 SUP 175 2.16 253 2.81 3.01 3.18
PNMF2 SUP 178 215 246 270 289 3.05

PNMF2_SUP  0.0015  0.0125
LSTM [14] 0.1850  0.0166

SUP 0.5700  0.0250
COVL SRU[16] 0.6366  0.0500
SNR -5 0 5 10 15 20
PNME?2 - -
LSTM [14] 202 252 290 326 352 373
SUP 198 254 292 328 353 374

SRU [16] 1.84 241 285 324 351 375
PNMF1 197 2.58 3.00 337 3.60 3380
PNMEF2 1.99 251 2091 323 344 362
PNMF1 SUP 199 257 3.02 3.39 3.63 3.83
PNMF2 SUP 199 250 290 324 348 3.68
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VI. DISCUSSION

According to the results reported in the tables, it is
observed that all proposed methods outperform the
baselines. Specifically, PNMF1 method in which we
propose using the transpose of NMF basis matrix in the
last layer has generally the best performance in both
PESQ, COVL, and fwsegSNR criteria of all other
methods. As Tables 4, 6, and 7 show, the improvement
of PNMF1 over other methods is significant especially
in LSTM network. In the NMF method, the
components of the clean speech signal are decomposed
into two matrices of the basis and coefficients. By
adjusting the weights of the last layer of the network to
the transpose of the basis matrix of NMF, the last
hidden layer of the network will estimate the values of
speech features obtained from speech FFT magnitude.
In fact, this is the main advantage of using NMF for
decomposing clean speech signal into two matrices of
W and H. W works as an appropriate data-driven filter
which is able to find proper speech features when
applied on clean speech signal X. Estimation of speech
features leads to the extraction of useful information
from clean signals, and thus better noise reduction of
the noisy speech. Hence, in the fine-tuning phase for
the DNN and LSTM networks, the local minimum
problem is also reduced. As the NMF algorithm
extracts the basis matrix from clean features and is
independent from noisy features, the proposed method
has a higher generalization over different noises
according to the results of Tables 8, 9, 10, and also has
a higher generalization for different utterances
according to the results of mismatched database of Fig.
12. Thus, the proposed method is not dependent on a
specific dataset. The results obtained in Table 10 also
proves the claim that our proposed methods especially
PNMF1 outperform other baselines and have a higher
generalization over different noises for speech
enhancement. Due to the linear nature of NMF method,
proposing to use it for initializing the weights of the
last layer, which is a linear layer, is more effective in
improving the performance of the DNN and LSTM.
Moreover, we have found the NMF basis matrix from
clean speech signal, and not noisy one. Therefore, it
works more efficiently when the input NMF matrix is
very close to clean, i.e. the enhanced speech at the
output layer. Hence, PNMF1 method leads to the best
results in both DNN and LSTM networks according to
all tables. This is due to the fact that it can map the
features of the last hidden layer to the target output
more appropriately, and would also solve the local
minima problem. For the same reason, PNMF2 has
weaker results compared to PNMF1. Since the
calculation of the NMF basis matrix is on the clean
input signal, it leads to lower results when the real
input of the networks is the noisy speech in the first
layer for PNMF2 structure. Also, in [26], the
importance of the last layer values is described. Using
appropriate initializing for this layer, the network will
be trained more efficiently and random initialization
for other weights will lead to more generalization for
the neural network.
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As illustrated in Fig. 8, the PNMF1 for the LSTM
network outperforms the PNMF1 for DNN. This is in
line with the time dependence capabilities of LSTM
networks. Also, the SRU network (as the most recent
baseline) has weaker results than our proposed
methods. In addition, as indicated in Fig. 9 by the red
ovals, PNMF1 as our best proposed method, better
extracts the speech signal details in comparison with
SUP (which also has a pre-training strategy) in the
obtained speech spectrograms. We owe this
performance to the NMF properties in extracting clean
speech features.

Fig. 7 shows the process of reducing network error
by increasing the number of iterations. As seen, the
PNMF1 method has less error during the learning
process and converges more quickly. Less error and
faster network convergence in the PNMF1 method
could be attributed to the selection of appropriate initial
weights and the reduction of the local minimum
problem.

Fig. 10 illustrates that the matrix weights of the
NMF basis values, the last layer of LSTM, and the last
layer of PNMF1 have the same structure. Also, the
LSTM and PNMF1 matrix weights are mostly the
same, but PNMF1 has more sparse structure than the
LSTM model. This sparse structure of the PNMF1
method will have more generalization over different
noises and speech signals. Also, this sparse structure
will remove the background noise signal more
efficiently. It is clear that this matrix weight of the
PNMF1 method has a structure like a filter bank, which
helps with the denoising of the noisy speech signal.

Moreover, the proposed noise classification
strategy is useful in improving the results according to
Fig. 11. The individual models trained for each noise
type are more compatible with the properties of each
specific noise and could lead to better results especially
for matched noises. For mismatched noises, a general
model trained with all models has been proposed to
achieve better results. Not surprisingly, increasing the
number of training noise types and using a much larger
noise dataset could lead to higher results.

We also evaluate the statistical significance of the
proposed methods. The statistical Friedman test in
Table 11 shows that the proposed PNMF1 method is
significantly better than the baselines.

VII. CONCLUSION

In this paper, we proposed a novel method for
improving the pre-training of DNNs and LSTMs in
speech enhancement. Since NMF is known to be an
appropriate sparse model for extracting speech
features, we suggested using NMF basis matrices as
the initial weights in deep networks to make use of the
advantages of both NMF and deep learning methods.
In addition, NMF pre-training could address the local-
minima problem of deep learning algorithms. In this
paper, we proposed using the transpose of NMF basis
matrix as the initial weights of the last layer of DNN
and LSTM. The use of the proposed NMF pre-training
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method in supervised pre-training, and the NMF basis
matrix as the initial values of the first layer were also
suggested. Practical observations indicated that pre-
training of the last layer with the NMF method leads to
better network performance and better results. This
happens due to the fact that the NMF model linearly
maps clean speech features to two matrices with a data-
driven approach. Thus, it is able to extract appropriate
clean speech features in different cases leading to an
improved network output. Therefore, using this
method to find the initial weights in the last layer of the
network, which has the enhanced speech features as the
output, was more compatible with the NMF structure,
and could reconstruct clean speech features better.
Moreover, we suggested a noise classification strategy
in this paper by training individual models for each
noise type. Using these specific models led to more
improvement in the enhancement procedure due to
their compatibility with noise. Furthermore, to extend
the generalization of the suggested approach to unseen
noises, we introduced a general model trained with all
noises in mismatched conditions. The experiments
showed that the proposed method could improve the
PESQ and COVL of the enhanced speech signal
significantly compared to previous baselines.
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