IJICTR

International Journal of Information &

Communication Technology Research e L =

Software Re-Modularization Method Based on
Many-Objective Function

Fatemeh Morsali
Data Mining Lab
Department of Computer
Engineering
Faculty of Engineering
Alzahra University
Tehran, Iran

Zahra Karimi Zandian
Data Mining Lab
Department of Computer
Engineering
Faculty of Engineering
Alzahra University
Tehran, Iran

Mohammad Reza Keyvanpour*
Department of Computer Engineering
Faculty of Engineering
Alzahra University
Tehran, Iran
Keyvanpour@alzahra.ac.ir

Received: 2 December 2022 — Revised: 7 February 2023 - Accepted: 15 March 2023

Abstract—Software evolution and continuous changes make maintenance difficult, reducing the quality of software
structure and architecture. To cope with this challenge, re-modularization is used to promote the modular structure of
software system by the re-grouping of software elements. In this paper, the proposed method recognizes various
dependencies in terms of an objective function unlike what has been stated in some other methods. In this method, a
search-based many-objective fitness function is proposed to formulate re-modularization as an optimization problem.
The results of the proposed method have been compared to the effects of four other methods based on MQ and NED.
The results show the proposed method improved re-modularization remarkably compared to others in terms of both
MQ and NED criteria especially for smaller software. Therefore, the proposed method can be effective in redefining
real-world applications.

Keywords: Software, Re-modularization, Many-objective function, Elements dependencies, Clustering, Search-based
algorithm.

Article type: Research Article

© The Author(s).
Publisher: ICT Research Institute

[Downloaded from journal.itrc.ac.ir on 2025-11-21]

[DOI: 10.61186/itrc.16.1.28]

. INTRODUCTION

A good modular design of a large and complex
software system is a desirable feature. Although most
software systems are designed and developed
modularly at first, modularity is degraded over time.
This degradation makes future evolution hard. Software
maintenance is a crucial process to cope with
continuously changing software and ensure that
software is preserved in its life cycle [1][2]. One of the
important activities to better understand a software

* Corresponding Author

International Journal of Information & Communication Technology Research

system for maintenance and development is
modularization [3]. The purpose of modularization is to
partition system elements in clusters, subsystems or
modules automatically [4][3] so that in the obtained
system the external connection (i.e., the relationship
between the components of two separate clusters) is
minimum, while the internal connection (i.e., the
connection between the cluster components) is
maximized. The modular structure helps to develop the
software by replacing the necessary elements into the
modules without significantly impacting the complete
system [5].

https://orcid.org/0000-0003-2115-9099
https://orcid.org/0000-0003-1928-2442
http://dx.doi.org/10.61186/itrc.16.1.28
http://journal.itrc.ac.ir/article-1-531-en.html

Volume 16- Number 1 — 2024 (28 -41)

N » |

__An obtained Modularization_

Source Code Syntactic Analyzer Tools

Source Code - | HDepend Chava Acacia Bauhaus

[Downloaded from journal.itrc.ac.ir on 2025-11-21]

[DOI: 10.61186/itrc.16.1.28]

4

Artifact Dependency Graph

/" Nz “\‘) . : Ns A
[Na K N # Ns |
= N - — -
A { N7

Figure 1. The general schema of software modularization process [7]

Software clustering is a modularization technique
that modularizes different artifacts into the module with
more similar artifacts than other modules [6]. Figure 1
shows the general schema of software modularization
process.

As shown in this figure, modularization involves
three steps: source code analysis using analyzer tools
and dependency graph creation, software
modularization based on the graph using
modularization algorithms, and labeling and displaying
the obtained modules [8].

During software evolution and continuous changes,
its structure is often modified, moving it away from the
original design and reducing its quality [9]. Therefore,
re-modularization is a necessary procedure as a re-
grouping process of software elements at the modular
level to improve the modular structure of software
system [10].

In this regard, different methods have been
proposed in the field of software re-modularization.
However, the main challenge in this field is the lack of
methods aimed at recognizing various types of
dependencies. Investigating one type of dependencies
makes the method useful in an limited aspects of re-
modularization. Therefore, in this paper, we propose a
new method considering various types of structural
dependencies. In addition, there is a need to model
objective functions in terms of various dimensions of
the structural relationships that can guide the
optimization process towards an acceptable
modularization solution for developers. Therefore, in
this paper a new search-based method is proposed for
re-modularization. In this method, a search-based
many-objective fitness function is proposed to
formulate re-modularization as an optimization
problem where a modified harmony search algorithm is
used to solve it. To evaluate the proposed method, three
open source software systems are used: Junit, Java
Servlet API, and DOM 4J. The results based on two
popular criteria, MQ and NED show the efficiency of
the proposed method in re-modularization in real-world
software. The rest of the paper is organized as follows.
In Section Il, the problem is defined. In Section III,
related works are discussed. In Section 1V, the proposed
method is introduced. Experiments and evaluation
results are presented in Section V, followed by the
concluding remarks in Section V1.

International Journal of Information & Communication Technology Research

o

N O N ()
LS Ny Ns< W)

. 4Nz} moguiet S N medea

}

Visualization Tools

Modularization Algeorithm

dotty Tom Saywer

Il. PROBLEM DEFINITION

If software maintainers do not have any insight into
the system design, they may change the source code
undesirably. This influences the software structure
quality negatively [11]. On the other hand, it is difficult
to understand the complexity of relationships between
various source code components in a software system.
One way to cope with structural complexity is to cluster
the relevant processes and data in the same modules or
classes automatically [4]. In search-based clustering,
system modularization is considered as a search-based
optimization problem, in which case it needs to
introduce an objective function [12].

Due to software evolution and continuous changes,
its structure is often modified, moving it away from the
original design and reducing its quality [9]. Therefore,
re-modularization is a necessary procedure as a re-
grouping process of software elements at the modular
level to improve the modular structure of the software
system [10]. Therefore, modularization and re-
modularization are based on clustering.

The lack of research aimed at recognizing various
types of structural dependencies to introduce an
objective function is the main challenge of re-
modularization.

Definition (many-objective problem). Many
objective optimization problems are mathematically
defined as follows:

F(M*) = min(F,(M), F,(M), ..., Fyp(M)) (1)

Where, m is the number of objective functions, F;
is an objective function, and M is a non-dominated re-
modularization solution.

I1l. RELATED WORKS

Modularization and re-modularization are based on
clustering which provides easier navigation and
tracking among software parts [13]. Clustering also
leads to increased comprehensiveness between
software elements and software quality. Numerous
studies have been conducted on search-based module
clustering.

http://dx.doi.org/10.61186/itrc.16.1.28
http://journal.itrc.ac.ir/article-1-531-en.html

Volume 16- Number 1 — 2024 (28 -41)

E) ictr

Search-based
S

oftware Module

[Downloaded from journal.itrc.ac.ir on 2025-11-21]

[DOI: 10.61186/itrc.16.1.28]

‘ Clustering

Mono-objective
Optimization

Multi-objective
optimization

Many-objective
Optimization

Single-factor Multi-factor Single-view Multi-view Single-view Multi-view
Module module Software Module| | Software Module Software Module = | Software Module
Clustering Clustering Clustering Clustering Clustering Clustering
Factor per Factor per Li
Partition Inear Maximizin
Eormulation C|U5|tef Combination of Cluster s
Formulation Single-objectives
Equal-size
Factor per Edge Cluster
Formulation Multi-objective
Extended
Maximizing
Cluster

Extended Equal-
Size Cluster

Figure 2. Classification of search-based software module clustering techniques

Reviewing the proposed methods in search-based
software module clustering techniques, as mentioned in
[13] and Figure 2, shows that these methods can be
categorized into three groups: Mono-objective
optimization, Multi-objective optimization, and Many-
objective optimization. Mono-objective optimization
can be addressed by Single-factor module clustering or
Multi-factor module clustering [14]. In Mono-objective
optimization, the aim is to find a solution for objective

Multi-objective optimization-based methods can be
divided into Single-view software module clustering
and Multi-view software module clustering approaches.
The purpose of this type of optimization is to find
several non-dominant solutions for objective functions
[16]. To formulate and optimize clustering solutions for
a given cluster design vector (c), the final and optimal
solution (c*) can be calculated according to the equation
below [15].

function. The advantage of this approach is its low fle) =

processing time. However, the quality of solutions is min(f;(¢), f2(¢), ..., fu(©)™) M >1

lower than that of other approaches because of gjc)=0 j=1,..,P

considering one aspect of the software system [13] he(c) = 0 k=1,..,0 3)
For a given cluster design vector (c), the optimal k< <cl i=1,..,N

solution (c*) is calculated according to the following
equation [15].

f(c) = min/max f(c)| c € Y 2

Where v is the set of all feasible clustering
solutions.

Where M is the number of objective functions, f is
the ith objective function, P, Q, ¢}, and ¢! represent
the number of inequality design constraints, the number
of equality design constraints, the lower bound of the
decision variable x;, and the upper bound of the
decision variable x;.

International Journal of Information & Communication Technology Research

http://dx.doi.org/10.61186/itrc.16.1.28
http://journal.itrc.ac.ir/article-1-531-en.html

[Downloaded from journal.itrc.ac.ir on 2025-11-21]

[DOI: 10.61186/itrc.16.1.28]

Volume 16- Number 1 — 2024 (28 -41)

Many-objective optimization approaches are
classified into Single-view software module clustering
and Multi-view software module clustering. The
following equation shows how f(c*) is calculated in
many-objective optimization approaches.

flc) =
min(f; (c), f(¢), .. fu(©)") M >3
gj(c)=0 j=1,..,P @
he(c) = 0 k=1,..,0
ck<cg=<c i=1,..,N

In many-objective optimization, the aim is to
optimize more than three design criteria as objective
functions at the same time [17] while the multi-
objective optimization methods find two or three
criteria as objective functions, simultaneously.

The advantages of these approaches include
producing more accurate solutions in comparison with
the mono-objective optimization approach and
improving the estimate of test cycles. In contrast,
processing time in these approaches is longer than that
in the first approach [13].

e Mono-objective Optimization: Scanniello et
al. [18] have presented a phased clustering
approach based on the combination of
structural and lexical dimensions. Structural
information is used to decompose the system
into horizontal layers and lexical similarity is
employed to group each layer. Patel et al. [19]
have proposed a clustering method based on
static and dynamic analysis to identify the
elements in each cluster. In this paper, the
researchers used a two-phase clustering
technique to combine software features with
structural information to refine these clusters.

e Multi-objective Optimization: Saeidi et al.
[12] proposed a search-based method for
software multi-view clustering. This method
makes clusters by incorporating knowledge
from different viewpoints of the system, such
as the source code and structural dependencies
within the system. In this research, two
techniques were used to combine various
views: a linear combination of objective
functions and a multi-objective formulation.
Praditwong et al. [16] proposed two multi-
objective formulations called ECA and MCA
to investigate several different objectives
including cohesion and coupling for software
module clustering. In this paper, a two-archive
Pareto optimal genetic algorithm was used to
solve the formulations. Barros [20] proposed a
multi-objective search-based clustering for
software modularization. In this method, ECA
formulation [16] was used and simplified. In
[21], the software module clustering problem
was solved by a new modularization quality
measure based on similarity. Huang et al.
presented this measure to automatically
navigate optimization algorithms to find a

International Journal of Information & Communication Technology Research

vicTR G

suitable partition of software systems by
considering both global modules and edge
directions. The optimization algorithms used in
paper were hill-climbing algorithm, genetic
algorithm, and multi-agent evolutionary
algorithm. In [22], the researchers focused on
space and time constraints of existing
modularization and clustering algorithms. To
solve these problems, Teymourian et al.
proposed a new and fast technique performing
operations on the dependency matrix and
extracting other matrices based on a set of
features. This algorithm is appropriate for both
small and large-sized applications. Khalilipour
et al. [23] proposed a new algorithm for object-
oriented code re-modularization. In this paper,
different types of invocations between classes
and objects such as synchronous, one-way, or
asynchronous were considered in the
clustering. The researchers claimed the
proposed method could decrease waiting times
for service invocations by parallel services
running and response times by transferring
these services to new clusters. Prajapati [24]
proposed a search-based modularization
method to improve the software package
structure from various perspectives. The
researcher used different strategies to introduce
harmony search algorithm and objective
functions based on the nature of the software
package.

e Many-objective Optimization: In [25],
Bavota et al. proposed an automated clustering
method that considered hidden information in
the source code and structural dependencies to
improve cohesion between the classes into a
package. Naseem et al. [26] proposed a
cooperative clustering technique for software
modularization. This method used some
similarity criteria during the hierarchical
clustering process for both binary and non-
binary features. Pourasghar e al. [6] proposed
a new modularization technique called GMA
based on the graph. One of the criteria used in
this paper to compute similarity between
software elements was the depth of
relationships. Using this criterion led the
algorithm to use graph-theoretic information.
Bavota et al. [27] proposed a new technique for
automatic re-modularization of packages using
both structural and semantic measures to
decompose a package into smaller and more
cohesive ones.

As mentioned before, unlike previous methods in
this paper, various types of structural dependencies are
considered to propose a more accurate re-
modularization method. Therefore, by investigating
these three approaches and their advantages and
shortcomings, this paper proposes a many-objective
optimization based algorithm. In this method, 4
objective functions are proposed to optimize for re-
modularization.

http://dx.doi.org/10.61186/itrc.16.1.28
http://journal.itrc.ac.ir/article-1-531-en.html

) JicTR

[Downloaded from journal.itrc.ac.ir on 2025-11-21]

[DOI: 10.61186/itrc.16.1.28]

Obiject-oriented
software system

Structural information
extraction

Sl

Weighing the relationships
between classes

CWR

A 4

Calculating coupling strength

Volume 16- Number 1 — 2024 (28 -41)

Re-modularized
object-oriented
software system

Applying Harmony algorithm

T MOFP

Many-objective formulation

T

between classes

Figure 3. General structure of RMMOF method

IV. RMMOF: THE PROPOSED RE-MODULARIZATION
METHOD BASED ON MANY-OBJECTIVE FUNCTION

The purpose of RMMOF method is to receive
object-oriented software system and re-modularize it to
improve the modular structure of the software system
and maintain its quality. As mentioned before, to
achieve this aim, various types of dependencies are
used in the form of a search-based many-objective
fitness function. The general structure of the proposed
method is shown in Figure 3. As shown in this figure,
RMMOF method includes 5 steps. In the first step, the
structural information of the software system source
code is extracted from the object-oriented software
system. In the second step, using extracted structural
information from the first step, each type of
relationships between the classes is weighted, as
different types of relationships are effective in the
proposed method. In the third step, a structural coupling
metric is calculated that shows the structural coupling
strength between software system classes. The
measured values between the classes are saved in an
nxn matrix where n implies the number of classes [28].
In the fourth step, re-modularization metrics are
formulated by 4 objective functions: (1) to maximize
total intra coupling of the modules index, (2) to
minimize the total coupling inter modules index, (3) to
maximize the isolated packages index, and (4) to
maximize the packages size index. In this step, the
software re-modularization problem is formulated as an
optimization one based on many-objective search. In
the last step, this problem is solved by Harmony
algorithm-based method called MHS and the re-
modularized object-oriented software system is the
output of the proposed method.

CCCs

A. Structural information extraction

As shown in Figure 3, in this phase, the object-
oriented software system is the input and the output is
structural information (SI). In the software re-
modularization process, source code entities are
grouped and clustered into the set of modules based on
their connecting properties. Modularity principles have
a relationship with source code entities connections
[28]. The software entities can connect with each other
with zero or more types of relationships. Some
researchers have considered one of them to re-
modularize software systems, but when just one type of
structural relationships is considered, re-modularization
is often limited to especial aspects. Therefore, to
propose a more accurate re-modularization method,
improve the modular structure of software system and
maintain its quality, there is a need to use various types
of structural relationships in the software re-
modularization approach. One of the characteristics of
the proposed method in this paper (RMMOF) is to use
a combination of different examples of various types of
structural relationships with their relative strengths. In
the RMMOF method, to re-modularize an object-
oriented software system, structural connectivity inter
packages must be minimized and intra cohesion of the
packages must be maximized.

In this paper, we use 8 types of structural
relationships as in [28], which are applied and
considered in some software architecture modeling
tools [29][30], to achieve a structural coupling metric in
the third step. Therefore, in this step, these eight
relationships are extracted as structural information.

e Extends (EX): an extend relationship implies
that a specialized class extends another general
class.

International Journal of Information & Communication Technology Research

http://dx.doi.org/10.61186/itrc.16.1.28
http://journal.itrc.ac.ir/article-1-531-en.html

[Downloaded from journal.itrc.ac.ir on 2025-11-21]

[DOI: 10.61186/itrc.16.1.28]

Volume 16- Number 1 — 2024 (28 -41)

e Has parameter (HP): in this type of
relationship, a class has a method with a
parameter that is of another class type.

e Reference (RE): this relationship implies that a
class makes an instance from another class and
makes reference to the attributes of the second
class using this instance.

e Calls (CA): in this relationship, a class makes
an instance from another class and invokes the
methods of that class using this instance.

e Implement (IM): this relationship implies that
one of the classes realizes or implements one or
more functions of another class.

e Is- of- Type (IT): if a class is the type of an
instance attribute of another class, this
relationship exists between two classes.

e Return (RT): this relationship exists between
two classes if a class has a method that returns
an object of another one.

e Throws (TH): when a method in a class throws
an exception object to an exception handler
method, and the handler method exists in
another class.

B. Weighting the relationship between classes

As shown in Figure 3, Sl is the input of this phase
and the classes with weighted relationships between
them (CWR) are the output. Most coupling metrics
have been introduced based on one especial type of
relationships, while the presence of more than one type
of relationship can help to present a more accurate
metric for re-modularization. On the other hand, some
metrics that utilize multiple types of relationships do
not consider the difference in their relative importance
and effectivities [25][31][16][17][10][28].

As mentioned before, according to the proposed
method, the objective functions are modeled and
formulated based on different dimensions of structural
relationships. This formulation can guide the
optimization process to achieve an acceptable re-
modularization solution. Therefore, to introduce a
coupling metric, the relative weights are specified for
each type of relationships. To reach this goal, an
approach proposed in some studies like
[28][32][33][34] is used in this paper.

In this approach, weighting depends on the numbers
of inter-module and intra-module samples for each type
of relationships. Equation 5 shows the weighting
method for each of the relationships in one software
system.

i

WT

_ 1 Nriy = 0 A Ngoyr =0

B Ngin .
Round(0.5 + 10 x —————) otherwise

RIN + NROUT

)

International Journal of Information & Communication Technology Research

vicTR ENN

Where w, is the weight of the r th type of
relationship, i is a specific software system, N,y isthe
number of inter-module samples for a specific type of
relationships (r), and Ngoyr iS the number of intra-
module samples for a specific type of relationships.

As it is possible that there are more than one
software system (n) with good quality, they need to be
averaged, as shown in Equation 6.

wy = S, wi/n (6)
Figure 4 shows an example of 3 modules and five

classes with different relationships (cohesion or
connection).

Figure 4. An example of 3 modules and five classes with different
relationships [28]

C. Calculating coupling strength between classes

As indicated in Figure 3, the input of this phase is
CWR and the outputs are the classes with the coupling
strength calculated between them (CCCS). The strength
of coupling between classes refers to the
interdependence between them that affects software
system testability and maintenance. Therefore, the
strength of coupling influences software quality
directly [10]. As mentioned in the previous section,
different types of relationships have different weights.
Consequently, in this paper we use the weighted term
frequency inverse document frequency coupling
scheme (WTFIDF) to calculate the structural coupling
strength (SCS) between classes. In this method, we
utilize calculated weights mentioned in the previous
section for 8 types of structural relationships extracted
in section 4.1. The results show that WTFIDF has better
performance than other methods as the re-modulation
solutions produced by this method are more reliable and
cover more aspects than other schemes [28].

Equation 7 shows how to calculate the strength of
coupling between two classes based on WTFIDF.

YreR Wanr(Ci,C}-) |C|

SCS C;,Ci) = X log— +
WTFIDF(i 1) Zﬂl SreRWrxnr(Cit;) g ne,
lCFreRWrxnr(Cj'Ci) x logﬂ (7)
Yi=1 ZreRWrXny(Cr.ci) nc;

Where ¢; and c; are two classes, C is the set of all
classes, |C| is the number of all classes in C, R is the set
of relationship types (r), n, is the number of classes

http://dx.doi.org/10.61186/itrc.16.1.28
http://journal.itrc.ac.ir/article-1-531-en.html

D ictr

[Downloaded from journal.itrc.ac.ir on 2025-11-21]

[DOI: 10.61186/itrc.16.1.28]

related to c;, w,. is the weight of relationship type r, and
n,(c;, ¢;) is the number of samples of relationship type
7 from ¢; to ¢; [28].

D. Many-objective formulation

In this phase, the input is CCCS and the output is
the many-objective formulated re-modularization
problem (MOFP). To navigate the search-based re-
modularization algorithm for better re-modularization,
it needs to be formulated. As mentioned before, in this
paper, four objectives are investigated to obtain a re-
modularization method. Therefore, in this part, Pareto
optimization is used to study multiple objectives. This
method determines if a solution is better than another
one or not. In the Pareto optimization method, each set
of objectives lead to a different many-objective formula
for the problem [16]. Equation 1 shows how to
determine re-modularization solution (M").

It is important to have more than one non-
dominated re-modularization solution. Therefore, to
determine the best solution, the following equation
needs to be established between the better solution (M)
and another one (M) [16]. Pareto optimization search
finds a set of non-dominated re-modularization
solutions in this set.

F(M,) > F(My) < Vi.F,(M,)
> F,(M,) A 3i.F,(M,)
> F;(M;) 8)

In this paper, as mentioned before, the structural
aspects of software systems are considered. The
purpose of the proposed method is to re-modularize
object-oriented classes into the package automatically.
The main feature of this re-modularization is software
connection reduction and software cohesion increase.
To achieve this goal, we use four objective functions:
TotallntraCoupling as in [10], TotallnterCoupling,
IsolatedPackagelndex and MaxMinDifferent. These
functions are explained in Equations 9-13, respectively.

TotallntraCoupling
n

= Z IntraPackageCoupling (P;) 9
k=1
Where,
IntraPackageCoupling (P;)
_ ZV Cj EP ZV Cj EPy CiFCj SCS(Ci' Cj)
zid 2, ses(ea)

(10)

Where k is the number of packages.

TotallnterCoupling
(TotalintraCoupling)

LC=|1 lec=|1 SCS(Ci' Cj)

(11D

IsolatedPackagelndex
=1
(isolatedPackageNumber)
allPackageNumber

(12)

Volume 16- Number 1 — 2024 (28 -41)

MaxMinDif ferent
0 maxPackage = minPackage = 1
=11 (maxPackagesize — minPackagesize

) Otherwise as
maxPackage

To evaluate a re-modularization solution,
multiplicative aggregate fitness function is used based
on the four-quality metrics:

Fitness = TotallntraCoupling
X TotallnterCoupling
X IsolatedPackagelndex
X MaxMinDifferent (14)

E. Applying Harmony Search Algorithm

As shown in Figure 3, MOFP is the input in this
phase and the output is re-modularized object-oriented
software system. Harmony search (HS) algorithm is a
population-based meta heuristic method [35]. This
algorithm uses random search where the decision
variables do not need to be initialized [10]. Figure 5
shows the flowchart of HS algorithm.

HS algorithm is used in different fields. Some
instances are presented in Figure 6. In this paper, this
algorithm is applied for software re-modularization.HS
algorithm involves 6 steps [37]: (1) encoding the
optimization problem and initializing the algorithm
parameters, (2) initializing the harmony memory, (3)
improvising a new harmony, (4) updating the harmony
memory, (5) recording the best solution in HM, and (6)
investigating the termination criterion. In this paper, a
modified HS algorithm called MHS that supports
unusual discrete optimization problem is used based on
HSBRA [10] as a re-modularization method. This is
because the main algorithm is usually suitable for
continuous optimization problems while the re-
modularization problem is an unusual discrete
optimization problem [10].

To apply the HS algorithm, in the first step of this
algorithm (initializing the algorithm parameters),
HMCR and PAR are introduced as the following
Equations:

HMCR(gn) = w (15)
n+1
PAR(gn) = % X e_ln((gm)Xgn> (16)

Where gn and NI are generation number and
maximum number of improvisations, respectively.

In improvising a new harmony step, to select the
value of the decision variable from the values stored in
the harmonic memory, the main idea in this paper is to
use the best solutions in the harmony memory and
improve them. Therefore, instead of randomly selecting
the decision variables from the harmony memory, the
vector with maximum fitness is first extracted from
solutions vectors in the harmony memory. Then,
dimension j is presented as dimension j in the new
solution. This operation is applied to all decision
variables of the new decision solution with probability
HMCR.

International Journal of Information & Communication Technology Research

http://dx.doi.org/10.61186/itrc.16.1.28
http://journal.itrc.ac.ir/article-1-531-en.html

[Downloaded from journal.itrc.ac.ir on 2025-11-21]

[DOI: 10.61186/itrc.16.1.28]

Volume 16- Number 1 — 2024 (28 -41)

| Initialize problems and factors |

v

l Initialize harmony memory arbitrarily I

\ Evaluate fitness function value for HM harmonies |

No [

‘ |

Memory consideration

|

v

[a'x=axi(fori=1,2,.,HMS) |

3 c Pitch adjustment

‘ Arbitrary selection |

| a'x = axl + Rand x (axh - ax]) ‘

Y
<

‘ Yes

a'x=a'xtarxlb ‘

Add a’x and remove
wh from HM

Figure 5. Flowchart of HS algorithm [36]

Return best harmony

—aa»

[Applications of HS]

A 4 A4 A 4

A 4 A 4 A4

[Data mining] [Medical] [Health care][Scheduling][

Astronomy] [Agriculture]

v v

v v

Power
engineering

Manufacturing
and designing

Water resource
management

Image
processing

Communication
system

Figure 6. Applications of HS algorithm in different fields [36]

In the proposed method, in addition to the vectors in
the harmony memory, the best vectors in the harmony
memory can increase the performance of re-
modularization.

To create a new value for the decision variable j,
the basis of the work is to reduce the number of
individual packages (the packages with one class) or

packages with less than five classes. This increases
evaluation criteria NED and MQ. According to the
proposed method, after extracting the vector with
maximum fitness, the number of individual packages or
packages with less than five classes in the vector is
calculated. If there are different individual packages (or
with less than five classes), the maximum coupling
strength between class j and the classes in individual

International Journal of Information & Communication Technology Research

http://dx.doi.org/10.61186/itrc.16.1.28
http://journal.itrc.ac.ir/article-1-531-en.html

ED ictr

[Downloaded from journal.itrc.ac.ir on 2025-11-21]

[DOI: 10.61186/itrc.16.1.28]

packages (or with less than five classes) is computed. If
this number is zero, the proposed system chooses one
of the values of the decision variable in the set of
{1,2,...,p} (p is the number of packages with 10%
classes of all classes in the software systems) as the
value of the decision variable j in the new solution.
Otherwise, class j in the new solution is placed in an
individual package with which it has maximum
connection. This operation is applied to all decision
variables of the new solution with the probability of 1-
HMCR.

Using this method reduces the number of individual
packages and the connections between the packages,
but increases cohesion. Consequently, MQ is increased,
the number of individual packages is reduced, the
number of classes in the package is increased, and NED
is improved.

To replace the decision variable (c¢j**") with its

neighbor, according to the MHS method, the first class
with maximum SCS compared to ¢;**" is extracted and
replaced with ¢;***". If there is no class that is connected
with ¢/**", the value of decision variable is set to one of
the values in {1,2,...n}(n is total number of classes)
randomly. These operations are applied to ¢;**" with
the probability PAR and ¢;**"is not changed with the
probability 1-PAR. The computational procedure of the
proposed MHS is summarized in Figure 7 in the form
of a pseudo code.

Volume 16- Number 1 — 2024 (28 -41)

V. EXPERIMENTS

This section includes four main subsections. In the
first part, the data set used in this paper for testing the
proposed system is explained. In the second part, the
evaluation criteria are introduced. In the third part, the
parameters in the algorithms used and their values are
expressed. In the last part, the results of the proposed
system testing are provided. In this part, the results
obtained are analyzed and compared with the results of
other methods based on the evaluation criteria.

A. Dataset

In this research, a software set is used as dataset.
The features of these software systems are expressed in
Table 2. The software systems are java language source
codes and open sources. These software systems have
been widely used by some researchers to evaluate their
proposed methods like [10][28][17][20][38]. As shown
in Table 1, the super classes and packages number in
each software is different from others and are in wide
ranges. These features were extracted by STAN tool.
The general schemes of the software systems used are
shown in Figures 8-10.

TABLE I. THE CHARACTERISTICS OF THE SOFTWARE
SYSTEMS USED
Software . =l Packages
Version classes
System number
number
Junit 3.8.1 47 6
Java Servlet
API 2.3 63 4
DOM 4] 152 170 16

Algorithm: MHS Algorithm

Stepl: Set Parameters: HMS, HMCR, PAR
Step2: Initialize Harmony Memory (HM)

If (i <= HMS/2) then
For (j =1 ton) do /Inis the total number of classes

End for
Else

End for
End if
f(c") = Evaluate(c')
End for

Step3: Improvisation harmony c™¢¥
For (j =1 to n) do /Inis the total number of classes

7

End if
Else
;"¢ = GetSolution(BestFitness)
Endif
End for

Step4: Update the Harmony memory

Step5: Record the best solution in HM
Step6: If (satisfy stopping criteria) then
end the procedure and return best solution in HM
else
return step3

For (i =1 to HMS) do //HMS is the size of harmony memory
¢/ « Randint(UB' — LB")/*select random integer value between UB' = n and LB' = 0%/

For (j =1 ton) do I/ nis the total number of classes
¢/ < Randint(UB' — LB") [*select random integer value between UB' = (n * 10)/100 and LB' = 0*/

If (1, < HMCR) then /lry is a uniform random number in the range of [0,1]
"W = c;Pestritness BestFitness € (1, ..., HMS)

If (1, < PAR) then /Ir, is a uniform random number in the range of [0,1]
" = GetNeighbour(BestFitness,) llc/**" is replaced by its neighbor

f(c"") = Evaluate(c"") //Perform fitness computation

If (f(c™™) > f (c"orst)) then update the HM as cWoTst = c™ew

Figure 7. The computational procedure of the proposed MHS

International Journal of Information & Communication Technology Research

http://dx.doi.org/10.61186/itrc.16.1.28
http://journal.itrc.ac.ir/article-1-531-en.html

[Downloaded from journal.itrc.ac.ir on 2025-11-21]

[DOI: 10.61186/itrc.16.1.28]

Volume 16- Number 1 — 2024 (28 -41)

=% Junit-3.8.1

Figure 8. The general scheme of Junit software

v »
B.serﬂet.http /1 6

4
¥ ¥

#.serviet

Figure 9. The general scheme of Java Servlet API software

fawtui ftextui & .swingui
\ ; S el (Y
: { \ AN R
14\ [9 ,:‘.35 / 2
A\, 4 N ¢ \
J v K W
27\ . runner 12 £06$.mﬁms
X {
N, \‘ i
¥ 2 ioa7
3% "\ f' S
NNV
1 framework

1= domdj-1.5.2
Hidomdj jaxh £ .domdj persistence.nativ £ .domdj .datatype
/"(! \'\\\«. il P TN
71 N Rew, N —
/A . i g S
/ 1 } N T —
7 i \I ~~~~~~~ .
fdomdj.dom - ##.domdj util H.domdj.hean
s, g) s -
9 / ’
72 12 e 159
= '
T T
1 E.dfm4j .rule.pattern £ .domdj .xpatlﬂ
// ,// ./‘/" :
— .,' /’ /,4'
L 182 s W K
e . fh.domdj.persitence i domdj.rule e 1 .domdj.swing
o TR \, e s

Figure 10. The general scheme of DOM 4J software

International Journal of Information & Communication Technology Research

http://dx.doi.org/10.61186/itrc.16.1.28
http://journal.itrc.ac.ir/article-1-531-en.html

D ictr

[Downloaded from journal.itrc.ac.ir on 2025-11-21]

[DOI: 10.61186/itrc.16.1.28]

B. Evaluation Criteria

In the field of re-modularization, there are standard
criteria to test different methods. Therefore, to
investigate the performance of the proposed method
and evaluate it, in addition to the multiplicative
aggregate fitness function obtained from four objective
functions, two evaluation criteria MQ [4] and NED [39]
are used in the present paper.

Modularization quality (MQ) tradeoffs between
inter-connectivity and intra-connectivity [4]. To
calculate MQ, Cluster Factor (CF) needs to be obtained
for each cluster (i). Equation 17 shows how CF is
calculated.

0 ui=0
2U:
CF, = e Otherwise (17)
2p; + Xj-1 (&0 + &)
i#j

Where i and j are two different clusters and k is the
clusters number, u; is the intra-cluster coupling
strength of i cluster (it means intra edges of cluster i),
g jand g;; are coupling strengths for the relation that
originates in cluster i and terminates in cluster j, and
coupling strength for the relation that originates in
cluster j and terminates in cluster i, respectively.

MQ is obtained from the sum of CF; for all clusters
in the software (Equation 18).

MQ = Suml_,CF, (18)

More MQ shows better re-modularization.

Software re-modularization must not create very
small or large modules, as they are not normal and lead
to increased connections between packages and
reduced package cohesion. Therefore, Non-Extreme
Distribution (NED) criteria measure the extremity of
module distribution. NED is introduced in Equation 19.

k
i=1,M; not extremelMil
n

NED =

M; is not extreme if 5 < |M;| < 1.5 X |Mpqay|

(19)

Where |M;]| is the size of module i, k is the modules
number, n is the number of all classes in the system,
| M| 1S the size of the largest module in the current
organization of software modules.

C. Parameters Settings

To evaluate our method, we have compared it with
three popular methods, HSBRA [10], GA and HC. But
before comparison, it needs to justify the parameters of
each algorithm. To set them, we have followed previous
research like [10][16][40][41][42]. Table 2 shows the
parameters and their values used in this paper. In
addition, we choose the number of fitness evaluations
(Nee) for fair comparison amongst meta-heuristic
algorithms. For all the three considered algorithms, we
set Np; = 20000 as stopping criteria. To achieve this
purpose, HMS is set to 50 and the number of

Volume 16- Number 1 — 2024 (28 -41)

improvisations is set to 400. In RMMOF, HMS is set
to 20 and the number of improvisations is set to 1000
for HSBRA. For the GA algorithm, population size and
the number of generations are set to 20 and 1000,
respectively. Finally, in the HC algorithm, the number
of iterations is set to 20000.

TABLE Il PARAMETERS VALUES OF DIFFERENT ALGORITHMS
TABLE IlI. TABLE IV. TABLE V. TABLE VI.
LGORITHM ARAMETER YMBOL ALUE

Harmony
Memory Size A -
Harmony HMCRwin 0.7
Memory
Consideration HMCRax 0.99
RMMOF Rate
Pitch PARmin 0.01
Adjustment
Rate PAR nax 0.99
ML= o NI 400
Improvisation
Harmony
Memory Size A 2y
Harmony HMCRin 0.7
Memory
Consideration HMCRax 0.99
HSBRA Rate
Pitch PARmin 0.01
Adjustment
Rate PAR nax 0.99
ML= o NI 1000
Improvisation
Crossover
Probability P 0.80
Mutation
Probability P 0.15
. Population
Size i -
Number_ of NG 1000
Generation
HC DU NI 20000
Iteration

D. Experiments Results

To evaluate the proposed method, two tests have
been designed and run. In Test 1, the effect of different
meta-heuristic algorithms on re-modularization in
RMMOF method is investigated based on MQ and
NED. In this test, in addition to comparing various
meta-heuristic algorithms, MHS algorithm is run on 3
different datasets. In Test 2, the proposed method
RMMOF is compared with the methods proposed in
[10] based on Fitness, MQ and NED.

1) Test 1: the effect of different meta-heuristic
algorithms in RMMOF on re-modularization based on
Fitness, MQ and NED

In this part, the effects of the proposed meta-
heuristic algorithm MHS, GA and HC on re-
modularization are investigated. The purpose of this test
is to investigate the performance of re-modularization
using different meta-heuristic algorithms based on the
criteria introduced in the previous subsection. Figures
11-13 show the result of this test in different systems.
To examine the proposed method in different systems
and find the application in which this method has the
highest efficiency, the experimental results of the MHS

International Journal of Information & Communication Technology Research

http://dx.doi.org/10.61186/itrc.16.1.28
http://journal.itrc.ac.ir/article-1-531-en.html

[Downloaded from journal.itrc.ac.ir on 2025-11-21]

[DOI: 10.61186/itrc.16.1.28]

Volume 16- Number 1 — 2024 (28 -41)

are also reported based on different software systems,
as shown in Figure 14.

15

0.5
MQ NED Fitness

MHS mGA =mHC

Figure 11. The result of Test1 on Junit system

0.6
0.5
0.4
0.3
0.2
0.1

MQ NED Fitness

MHS mGA =HC

Figure 12. The result of Test1 on Java Servlet API system

1
0.8
0.6
0.4
0.2
0

MQ NED Fitness

MHS mGA =HC
Figure 13. The result of Testl on DOM 4J system

15
1
0.5
0

MQ NED Fitness

Junit ®Java Servlet API DOM 4)

Figure 14. The result of Testl on MHS

Discussion

As shown in Figure 11, the proposed method MHS
has better performance than others based on MQ, NED
and Fitness on Junit system. This means that using
Harmony search-based algorithm with the proposed
changes enhances the efficiency of re-modularization

International Journal of Information & Communication Technology Research

vicTR R

and decreases extreme modules. Therefore, in this
algorithm, the fitness obtained from the four proposed
objective functions is also remarkably higher. In
contrast, using GA and HC reduces the NED to a great
extent. This means that the size of the modules created
is very heterogeneous and different from each other. As
for the other criteria, the results obtained from using
these two algorithms are approximately similar. By
investigating the formulations of the three criteria and
their values for each algorithm, we observed that if both
MQ and NED are high, Fitness criteria are enhanced.
However, if the algorithm has less efficiency based on
MQ and NED, Fitness is reduced.

As shown in Figure 12, the value of MQ in the
proposed method is higher compared to others, while
the values of NED and Fitness in the three algorithms
on Java Servlet APl system are approximately similar.
In addition, these results show that the proposed method
has a much poorer performance on the Java Servlet API
system than Junit. However, the performances of GA
and HC on Java Servlet API system and Junit are almost
the same.

According to Figures 11 and 12, it seems that HC
and GA are not able to distribute the classes with a
homogenous size based on Junit and Java Servlet API
which are small applications in terms of size.

As shown in Figure 13, the performance of the
proposed method based on the three criteria is better
compared to others on DOM 4] system. The
performance of GA and HC is approximately similar. It
is clear that the proposed method has been able to re-
modularize the system (MQ) better than reducing the
size of modules (NED).

By considering all three figures, it can be concluded
that the proposed method has a better performance on
all three datasets than others and MHS algorithm is
more suitable on the first dataset (Junit system) among
these three datasets. The results are shown in Figure 14.

As explained before, to compare the results of Test
1 in MHS based on different systems, the results in
Figure 14 show that the proposed algorithm has the best
performance on Junit based on all the proposed criteria.
This indicates that the proposed method is suitable for
the small applications. The reason for obtaining a
higher MQ and NED on DOM 4J compared to Java
Servlet API, despite the smaller size of Java Servlet
API, is the type of dependencies in Java Servlet API
software.

2) Test 2: the comparison between the proposed
re-modularization method RMMOF and the methods
proposed in [10] based on MQ and NED

To evaluate the proposed method, we should
compare it with other similar methods. Therefore, in
this part, the proposed method (RMMOF) is compared
with the 4 methods proposed in [10]. In [10], four
Harmony search-based re-modularizations have been
proposed based on linear and exponential changes in
Harmony Memory Consideration Rate (HMCR) and
Pitch Adjusting Rate (PAR). Figures 15 and 16 show
the results of these comparisons based on MQ and
NED.

http://dx.doi.org/10.61186/itrc.16.1.28
http://journal.itrc.ac.ir/article-1-531-en.html

-
o
—
e
1o
a
S
1SN
c
S}
=
o
=
=
©
c
S
>
o
S
S
e
=
L=
=
3
o

[DOI: 10.61186/itrc.16.1.28]

IJICTR

1.8
16
14
1.2

0.8
0.6
0.4
0.2

Junit Java Servlet API DOM 4]
RMMOF = HSBRA4 m HSBRA3 ©" HSBRA2 = HSBRA1

Figure 15. The result of Test2 based on MQ

100
95
90

85
Junit Java Servlet API DOM 4]

RMMOF = HSBRA4 m HSBRA3 " HSBRA2 = HSBRA1

Figure 16. The result of Test2 based on NED

Discussion

As shown in Figure 15, the proposed method has the
best MQ on Junit, Java Servlet APl and DOM 4J
systems, while RMMOF has the best result on DOM 4J
among the three data sets. As shown in this figure, the
improvement of the proposed method in comparison to
other methods is more obvious on Junit system. Among
the proposed methods in [10], HSBRA3 has the best
MQ on all the three systems. In HSBRA3, HMCR is
changed linearly and PAR is changed exponentially
during the improvisation. The important difference
between RMMOF and HSBRA is the use of modified
harmony algorithm (MHS) and using the proposed
fitness function with four different and effective
objective functions. These improvements seem to lead
to better results in terms of MQ. What is clear in this
figure is that the improvement rate of the proposed
method on small applications is more evident as
compared to the methods proposed in [10].

As indicated in Figure 16, the results of applying
RMMOF on re-modularization are better compared to
others. Applying the proposed improvements also has
positive impacts on NED. In this test, HSBRA3 has
better performance compared to the other methods
proposed in [10].

It seems using various structural relationships and
suitable relative weights for them helps to maximize the
total intra coupling of the modules and minimize the
total coupling inter modules. In addition, using MHS
algorithm as a meta-heuristic algorithm and new fitness
function is effective to obtain the best MQ and NED.

Volume 16- Number 1 — 2024 (28 -41)

VI. CONCLUSION

Although most software systems are designed and
developed modularly at first, modularity is degraded
over time. Re-modularization is used to improve the
modular structure of software system. In this paper, the
proposed method recognizes various dependencies in
terms of an objective function. In this method, a search-
based many-objective fitness function is proposed to
formulate re-modularization as an optimization
problem. To solve these objective functions, a helpful
harmony-based algorithm called MHS has been used.
The experiments and comparison results have shown
the efficiency of the proposed method in re-
modularization compared to other methods.

VIl. REFERENCES

[1] V. Lenarduzzi, A. Sillitti, and D. Taibi, “Analyzing forty years
of software maintenance models,” in 2017 IEEE/ACM 39th
International Conference on Software Engineering Companion
(ICSE-C), 2017, pp. 146-148.

[2] M. Gupta, A. Serebrenik, and P. Jalote, “Improving software
maintenance using process mining and predictive analytics,” in
2017 IEEE International Conference on Software Maintenance
and Evolution (ICSME), 2017, pp. 681-686.

[3] A.H.F. Tabrizi and H. Izadkhah, “Software modularization by
combining genetic and hierarchical algorithms,” in 2019 5th
Conference on Knowledge Based Engineering and Innovation
(KBEI), 2019, pp. 454-459.

[4] S. Mancoridis, B. S. Mitchell, C. Rorres, Y. Chen, and E. R.
Gansner, “Using automatic clustering to produce high-level
system organizations of source code,” in Proceedings. 6th
International Workshop on Program Comprehension.
IWPC’98 (Cat. No. 98TB100242), 1998, pp. 45-52.

[5] L. Mu, V. Sugumaran, and F. Wang, “A hybrid genetic
algorithm for software architecture re-modularization,” Inf.
Syst. Front., vol. 22, no. 5, pp. 1133-1161, 2020.

[6] [6] B.Pourasghar, H.Izadkhah, A.Isazadeh, and S. Lotfi, “A
graph-based clustering algorithm for software systems
modularization,” Inf. Softw. Technol., vol. 133, p. 106469,
2021.

[7] M. Kargar, A. Isazadeh, and H. Izadkhah, “Improving the
modularization quality of heterogeneous multi-programming
software systems by unifying structural and semantic
concepts,” J. Supercomput., vol. 76, no. 1, pp. 87-121, 2020,
doi: 10.1007/s11227-019-02995-3.

[8] A. lIsazadeh, H. lzadkhah, and I. Elgedawy, Source code
modularization: theory and techniques. springer, 2017.

[9] G. Bavota, A. De Lucia, A. Marcus, and R. Oliveto, “Software
re-modularization based on structural and semantic metrics,”
in 2010 17th Working Conference on Reverse Engineering,
2010, pp. 195-204.

[10] J. K. Chhabra and others, “Harmony search based
remodularization for object-oriented software systems,”
Comput. Lang. Syst. \& Struct., vol. 47, pp. 153-169, 2017.

[11] B. S. Mitchell and S. Mancoridis, “On the automatic
modularization of software systems using the bunch tool,”
IEEE Trans. Softw. Eng., vol. 32, no. 3, pp. 193-208, 2006.

[12] A. M. Saeidi, J. Hage, R. Khadka, and S. Jansen, “A search-
based approach to multi-view clustering of software systems,”
in 2015 IEEE 22nd International Conference on Software
Analysis, Evolution, and Reengineering (SANER), 2015, pp.
429-438.

[13] F. Morsali and M. R. Keyvanpour, “Search-based software
module clustering techniques: A review article,” in 2017 IEEE
4th International Conference on Knowledge-Based
Engineering and Innovation (KBEI), 2017, pp. 977-983.

[14] J. Hwa, S. Yoo, Y.-S. Seo, and D.-H. Bae, “Search-based
approaches for software module clustering based on multiple

relationship factors,” Int. J. Softw. Eng. Knowl. Eng., vol. 27,
no. 07, pp. 1033-1062, 2017.

International Journal of Information & Communication Technology Research

http://dx.doi.org/10.61186/itrc.16.1.28
http://journal.itrc.ac.ir/article-1-531-en.html

[Downloaded from journal.itrc.ac.ir on 2025-11-21]

[DOI: 10.61186/itrc.16.1.28]

Volume 16- Number 1 — 2024 (28 -41)

[15] J. K. Chhabra and others, “Many-objective artificial bee colony
algorithm for large-scale software module clustering problem,”
Soft Comput., vol. 22, no. 19, pp. 6341-6361, 2018.

[16] K. Praditwong, M. Harman, and X. Yao, “Software module
clustering as a multi-objective search problem,” IEEE Trans.
Softw. Eng., vol. 37, no. 2, pp. 264-282, 2010.

[17] W.Mkaouer et al., “Many-objective software remodularization
using NSGA-IIL,” ACM Trans. Softw. Eng. Methodol., vol. 24,
no. 3, pp. 1-45, 2015.

[18] G. Scanniello, A. D’Amico, C. D’Amico, and T. D’ Amico,
“Using the kleinberg algorithm and vector space model for
software system clustering,” in 2010 IEEE 18th International
Conference on Program Comprehension, 2010, pp. 180-189.

[19] C. Patel, A. Hamou-Lhadj, and J. Rilling, “Software clustering
using dynamic analysis and static dependencies,” in 2009 13th
European Conference on Software Maintenance and
Reengineering, 2009, pp. 27-36.

[20] M. de O. Barros, “An analysis of the effects of composite
objectives in multiobjective software module clustering,” in
Proceedings of the 14th annual conference on Genetic and
evolutionary computation, 2012, pp. 1205-1212.

[21] J. Huang and J. Liu, “A similarity-based modularization quality
measure for software module clustering problems,” Inf. Sci.
(Ny)., vol. 342, pp. 96-110, 2016.

[22] N. Teymourian, H. Izadkhah, and A. Isazadeh, “A fast
clustering algorithm for modularization of large-scale software
systems,” IEEE Trans. Softw. Eng., 2020.

[23] A. Khalilipour and M. Challenger, “Automatic Re-
modularization of Clustered Codes Considering Invocation
Types,” in 2021 7th International Conference on Web Research
(ICWR), 2021, pp. 109-113.

[24] A. Prajapati, “Software Package Restructuring with Improved
Search-based Optimization and Objective Functions,” Arab. J.
Sci. Eng., pp. 1-21, 2021.

[25] G. Bavota, M. Gethers, R. Oliveto, D. Poshyvanyk, and A. de
Lucia, “Improving software modularization via automated
analysis of latent topics and dependencies,” ACM Trans.
Softw. Eng. Methodol., vol. 23, no. 1, pp. 1-33, 2014.

[26] R. Naseem, O. Magbool, and S. Muhammad, “Cooperative
clustering for software modularization,” J. Syst. Softw., vol.
86, no. 8, pp. 2045-2062, 2013.

[27] G. Bavota, A. De Lucia, A. Marcus, and R. Oliveto, “Using
structural and semantic measures to improve software
modularization,” Empir. Softw. Eng., vol. 18, no. 5, pp. 901-
932, 2013.

[28] J. K. Chhabra and others, “Improving modular structure of
software system using structural and lexical dependency,” Inf.
Softw. Technol., vol. 82, pp. 96-120, 2017.

[29] “http://www.stan4j.com/.”
[30] “http://www.structure101.com/.”.

[31] H. Abdeen, S. Ducasse, and H. Sahraoui, “Modularization
metrics: Assessing package organization in legacy large object-
oriented software,” in 2011 18th Working Conference on
Reverse Engineering, 2011, pp. 394-398.

[32] F. B. e Abreu, G. Pereira, and P. Sousa, “A coupling-guided
cluster analysis approach to reengineer the modularity of
object-oriented systems,” in Proceedings of the fourth
european conference on software maintenance and
reengineering, 2000, pp. 13-22.

[33] F. B. e Abreu and M. Goulao, “Coupling and cohesion as
modularization drivers: Are we being over-persuaded?,” in
Proceedings Fifth European Conference on Software
Maintenance and Reengineering, 2001, pp. 47-57.

[34] C. Y. Chong and S. P. Lee, “Analyzing maintainability and
reliability of object-oriented software using weighted complex
network,” J. Syst. Softw., vol. 110, pp. 28-53, 2015.

[35] X. Wang, X.-Z. Gao, and K. Zenger, “The overview of
harmony search,” in An introduction to harmony search
optimization method, Springer, 2015, pp. 5-11.

[36] M. Dubey, V. Kumar, M. Kaur, and T.-P. Dao, “A systematic
review on harmony search algorithm: theory, literature, and
applications,” Math. Probl. Eng., vol. 2021, 2021.

International Journal of Information & Communication Technology Research

vicTR (G

[37] M. Mahdavi, M. Fesanghary, and E. Damangir, “An improved
harmony search algorithm for solving optimization problems,”
Appl. Math. Comput., vol. 188, no. 2, pp. 1567-1579, 2007.

[38] U. Erdemir and F. Buzluca, “A learning-based module
extraction method for object-oriented systems,” J. Syst. Softw.,
vol. 97, pp. 156-177, 2014.

[39] J. Wu, A. E. Hassan, and R. C. Holt, “Comparison of clustering
algorithms in the context of software evolution,” in 21st IEEE
International Conference on Software Maintenance
(ICSM’05), 2005, pp. 525-535.

[40] V. Kumar, J. K. Chhabra, and D. Kumar, “Parameter adaptive
harmony search algorithm for unimodal and multimodal
optimization problems,” J. Comput. Sci., vol. 5, no. 2, pp. 144—
155, 2014.

[41] J. Brest, S. Greiner, B. Boskovic, M. Mernik, and V. Zumer,
“Self-adapting control parameters in differential evolution: A
comparative study on numerical benchmark problems,” IEEE
Trans. Evol. Comput., vol. 10, no. 6, pp. 646-657, 2006.

[42] A. Farrugia, “Vertex-partitioning into fixed additive induced-
hereditary properties is NP-hard,” arXiv Prepr. math/0306158,
2003.

Mohammad Reza Keyvanpour is a
Professor at Alzahra University,
Tehran, Iran. He received his B.Sc.
degree in Software Engineering from
Iran University of Science &
Technology, Tehran, Iran. He received
his M.Sc. and Ph.D. degrees in
Software Engineering from Tarbiat Modares
University, Tehran, Iran. His research interests include
Software Engineering and Data Mining.

Zahra Karimi Zandian received her
B.Sc. degree in Software Engineering
from Islamic Azad University, South
Tehran Branch, Tehran, Iran. She also
received her M.Sc. degree in Software
Engineering from Alzahra University,
Tehran, lran. Her research interests include Data
Mining, Machine Learning, Software Engineering,
Fraud Detection and Social Network Analysis.

Email: z.karimizandian@yahoo.com

Fatemeh Morsali received her M.Sc. in
Software Engineering from Alzahra
University, Tehran, Iran. Her research
interests include Software Engineering,
Machine Learning and Data Mining.

http://dx.doi.org/10.61186/itrc.16.1.28
http://journal.itrc.ac.ir/article-1-531-en.html
http://www.tcpdf.org

