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Abstract—Cancer-causing genes are genes in which mutations cause the onset and spread of cancer. These genes are
called driver genes or cancer-causal genes. Several computational methods have been proposed so far to find them. Most
of these methods are based on the genome sequencing of cancer tissues. They look for key mutations in genome data to
predict cancer genes. This study proposes a new approach called centrality maximization intersection, cMaxDriver, as
a network-based tool for predicting cancer-causing genes in the human transcriptional regulatory network. In this
approach, we used degree, closeness, and betweenness centralities, without using genome data. We first constructed
three cancer transcriptional regulatory networks using gene expression data and regulatory interactions as
benchmarks. We then calculated the three mentioned centralities for the genes in the network and considered the nodes
with the highest values in each of the centralities as important genes in the network. Finally, we identified the nodes
with the highest value between at least two centralities as cancer causal genes. We compared the results with eighteen
previous computational and network-based methods. The results show that the proposed approach has improved the
efficiency and F-measure, significantly. In addition, the cMaxDriver approach has identified unique cancer driver
genes, which other methods cannot identify.

Keywords: Cancer-causing genes; Transcriptional regulatory network; Maximization; Centrality; Intersection.

Article type: Research Article

© The Author(s).
Publisher: ICT Research Institute

* Corresponding Author

International Journal of Information & Communication Technology Research


mailto:b.teimourpour@modares.ac.ir
https://www.google.com/search?client=firefox-b-d&sxsrf=ALeKk01XQZaw-ruJM_zxBWHtQvdwD-4HKA:1622192403092&q=closeness+centrality&spell=1&sa=X&ved=2ahUKEwi1zsXPgezwAhW0h_0HHeP5AE4QkeECKAB6BAgBEDI
http://dx.doi.org/10.52547/itrc.14.1.57
http://journal.itrc.ac.ir/article-1-518-en.html

IJICTR

[ Downloaded from journal.itrc.ac.ir on 2025-11-21 ]

[ DOI: 10.52547/itrc.14.1.57 ]

. INTRODUCTION

A. The Importance of Cancer-Causing Genes
Discovery

Many studies have been done on cancer-causing
genes detection. These genes are known as cancer
driver genes (CDGs). CDGs are genes in which
mutations cause cancer. The basic idea behind these
methods, known as computational and statistical
methods, is that repeated mutations in specific genes
cause cancer. Not all mutations in a gene lead to cancer.
As a result, in these methods, the detection and
differentiation of cancer-causing mutations from
normal mutations are essential for the identification of
cancer genes. Existing methods for detecting CDGs
rely heavily on genomic and transcriptomic data.
Existing methods can be divided into three categories:
computational-based, subnetwork-based and network-
based. Computational methods using mutation data and
transcriptomic data try to calculate the mutation
frequency rate in genes. COMDP [1], ActiveDriver [2],
e-Driver [3], Simon [4], Oncodrive-Fm [5],
OncodriverCLUST [6], Dendrix [7], iPAC [8] and
MutSigCV [9] are among the computational methods.
For example, Simon [4] calculates the effect of mutant
function on proteins to find cancer-causing genes.
OncodriveFM [5] and OncodriveCLUST [6] are
approaches that categorize cancer-causing genes by
evaluating the effect of cancer genome types on
proteins. Dendrix [7], CoMDP [1] use mutation profiles
to identify cancer signaling pathways. MutsigCV
[9] uses exome sequences to detect heterogeneity in the
cancer dataset and then identifies cancer-causing genes
based on the frequency of mutations in different cancer.
iPAC [8] also uses a combination of gene expression
data and mutation data to identify cancer-causing
genes. The ActiveDriver [2]uses information
about changed post-transcription sites of proteins in
mutant cancer genomes to identify cancer-causing
genes. The e-Driver [3] method also tries to find the rate
of biased mutations in the functional regions of a
protein. Another group of methods for identifying
cancer genes is known as sub-network methods. These
methods are similar to network methods based on
mutation data, but have also used part of the network
structure. For example NetBox [10], DawnRank [11],
MSEA [12], MeMo [13] and DriverNet [14] are among
the sub-network methods. For example, DawnRank
attempts to find cancer-causing genes using mutation
and transcription data along with molecular interaction
network information. Similarly, the NetBox [10]
method finds cancer-causing genes from both protein-
protein interactions and signaling pathways by finding
cancer communities. The third category is network-
based methods, which do not use mutation data and
only use network structure analysis to identify driver
genes. For example, iMaxDriver-N and iMaxDriver-W
[15] are two network-based approaches that attempt to
identify cancer-causing genes by influence maximizing
approach. The characteristics of the methods compared
to the proposed method in this study are shown in Table
1.

These methods have some limitations and
shortcomings as follows:
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o Most of these methods have a high rate of false
positives in the results, which results in a decrease
in precision and the F-measure.

e In addition, these methods rely heavily on
mutation data. This data is naturally accompanied
by noise and error. In addition, they may not
always be available in the desired quality.

e Most of the genes identified by each of these
methods overlap with the set of cancer-causing
genes in other methods and are abundantly
detected as unique cancer-causing genes.

e Some of these methods, such as the iMaxDriver
approaches, are very time-consuming.

According to the limitations of existing methods, in
this study, we proposed cMaxDriver as a new network-
based approach to predicting cancer-causing genes.
This approach identifies cancer-causing genes by
analyzing the structure of the transcriptional regulatory
network, without using mutation data. cMaxDriver uses
an independent source of information. Transcriptional
regulatory network (TRN) is one of the basic networks
for controlling cellular processes. Transcription factors
(TF) are key components of the cell and affect other
genes, regulating their expression. In the other words, a
transcriptional regulatory network shows how each
transcription factor regulates the expression of other
transcription factors and genes. Many diseases,
including cancer, are caused by abnormalities in the
function of transcription factors. This shows the
importance of analyzing the structure of these networks
in biomedical research.

In this study, a network-based approach called
cMaxDriver was proposed to find cancer-causing genes.
This approach uses degree, closeness, and betweenness
centralities in the human transcriptional regulatory
network. The results showed that cMaxDriver is able to
improve the prediction precision of previous methods.
In addition, cMaxDriver detects genes that other
previous methods could not detect. Therefore, it can be
used as a complementary method to other existing
computational tools. The results show the proposed
method performs better than many existing
computational and network-based approaches.

B. Theoretical Foundations

Network centrality is a concept that is widely used
in social network analysis to find the position and
importance of each node in terms of communication
with other nodes [16, 17]. Using centralities, noisy data
from the network are reduced. In addition, the most
important parts of the network are represented using
them. There are different types of centralities, each with
various definitions. Here, the three centralities of
degree, closeness, and betweenness are used, which are
defined below.

o Degree centrality: obtained by using the number
of adjacent edges of a node through formula (1)
[18].

e Closeness centrality: In connected networks,
using the inverse calculation, the shortest path
distance of each node from other nodes is obtained
in the form of the formula (2) [18].
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o Betweenness centrality: In connected networks,
this centrality for each node is calculated by using
the number of the shortest paths that pass through
that node, as formula (3) [18].

D=y aupo &

=i

Cc(pr) = <z d(Pi:Pk)) (2)

icn Gl
p represents the node of the network.

a(p;, pi) is the value of the entry (i,j) of the adjacency
matrix a. In other words the a(p;, p,)=1 if there is a
directed edge from p; to p, are in the network and
a(p;, pi)=0 otherwise.

d(p;, pi) is the shortest path distance from p; to p, in
the network.

o, is the total number of shortest paths from node s to

In this section, the cMaxDriver pipeline is

described. It consists of three different steps:

1) Network construction
2) Cancer gene search algorithm based on the

proposed model

3) Evaluation of results based on the existing gold

standard

Al node t.
Colpy) = Z 05t (Pr) 3) o5 (pr) is the number of paths that pass through the p;
B\Pr) = -
Ost node.
SEpR*EL
Where:
TABLE I. THE DETAILS OF COMPUTATIONAL AND NETWORK-BASED METHODS USED FOR COMPARISON.
Method name Mutation Expression Network Methodology
data data structure
MeMo v - v correlation analysis and statistical tests
v - v sequence mutations and DNA copy number
NetBox analysis
OncodriveCLUST v - - clustering using mutations assessment
MDPFinder v 4 - Mutual exclusivity of gene modules
OncodriveFM v - - The effect of mutation on genes
DriverML v 4 - machine learning approach
DawnRank v 4 v The effect of downstream expression in
molecular interaction networks
MeMo v - v gene correlation and statistical tests
Simon v - - impact of mutations on proteins
Dendrix v - - Classification of mutations by coverage and
exclusivity
v - - identifies protein phosphorylation signaling
ActiveDriver sites
e-Driver v - - Protein mutation rates by binomial test
MutsigCV v 4 - Calculation of mutations frequency
v v - Statistical methods
iPAC
DriverNet v - v Effect of mutations on miRNA network
v - v combination of data associated with the
MSEA disease development
iMaxDriver-N - v v Influence maximization approach
iMaxDriver-W - v v Influence maximization approach
A. The Study Network
A gene is a specific region of a DNAZ molecule
1. METHODOLOGY g P g

of a specified length. Genes are found in every cell
and carry the information needed to produce proteins,
and by expressing these genes, different proteins are
produced. Control of these processes plays a key role
in determining the proteins present in the cell and
their amounts [19]. That is a process that involves
transcription on an RNA® molecule to translation into
mRNA*, which eventually leads to the production of
new proteins. This process has a great effect on the
rate of protein production. A transcriptional
regulatory network is a type of biological network
that comprises transcription factors and different

2 Deoxyribonucleic Acid
3 Ribonucleic Acid
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genes and their interactions. The analysis of these
networks is useful for examining the flow of
information in a biological system and identifying
different paths [20]. There are two types of modules
in this network, gene module, and transcription factor
module. In the first type, several genes are all
regulated by one transcription factor, and in the
second type, there are several transcription factors
that all regulate common genes (see Fig. 1).

@
& ~

Fig. 1. Types of modules in the gene regulatory network
[21].

B. Network Construction

Gene expression and regulatory interactions are
needed to construct the study cancer networks. We
used the RegNetwork® database [22], which is freely
available®, to obtain regulatory interactions. In this
database, a list of gene regulatory interactions has
been collected from various methods and multiple
databases. It should be noted
that RegNetwork, besides transcriptional
interactions, also has regulatory interactions
of microRNAs that have been omitted in this study.
The retrieved dataset included 150,202 regulatory
interactions between gene-TFs and TF-TFs. We also
downloaded gene expression of three cancers: Breast
(GSE15852), Colon (GSE32323), and Lung
(GSE3268) from the GEO’ database. In this database,
gene expression data related to cancerous tissue and
its adjacent normal tissue were reported for 10
patients. After initial processing, first, we deleted
rows with missing gene names. Some rows had more
than one gene name, which was separated. Finally,
we computed the average expression values of rows
that have the same gene name. Eventually, a file was
obtained in which each row belonged to a unique
gene and its expression values. Then we constructed
separately, the regulatory network for breast, colon,
and lung cancer using its gene expression data and
regulatory interactions. In this way, for each network,
the final list of gene expression values was mapped
with the list of regulatory interactions. Thus, if a
regulatory interaction of both origin and destination
contained gene expression values, it was retained in
the network and otherwise removed.

C. Network Features

The primary regulatory network for three types of
cancer was constructed using the approach described
in Section 2-2. These networks were disconnected
and to analyze them in most cases, it is necessary to
be connected. Therefore, we first converted the

> Regulatory Network Repository
6 http://www.regnetworkweb.org/
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networks to connected networks and then performed
the necessary analyzes. To do this, we used the
largest weakly connected component. For example,
in the lung cancer network, we had 11016 nodes,
87388 edges, 2 weakly connected components, and
9997 strongly connected components that the
resulting network of lung cancer was constructed
using the largest weakly connected component and
the number of nodes and edges was 11015 and 87387,
respectively. Information about the other two
networks is also shown in Table 1. Also, the resulting
networks are of directional and connected types. For
example, the general view of the lung cancer
network is illustrated using the force-directed
algorithm in Fig. 2.

To identify and study the network more
accurately, we calculated and examined the structural
features of the networks. As shown in Fig. 3, the
distribution and structure of the networks are more
similar to a Scale-Free network.

According to the distribution of the network, it is
expected that when a new node is added to the
network, it will be connected to nodes with the
highest connection and degree. Therefore, these
features are investigated using more accurate
indicators in the proposed algorithm described in the
next section.

Fig. 2. From left to right: The primary disconnected lung
cancer network using the force-directed algorithm, the
disconnected component distinguished by its yellow
color. Communities from the same network with the
Louvain algorithm to better understand the schema and
communications, this network has 349 communities, the
largest consisting of 814 nodes and distinguished from
the rest of the communities in yellow.

TABLE II. STRUCTURE INFORMATION OF THE RESULTING
NETWORKS

Number of

Network Nodes, Strongly/ Criterion

type Edges Weakly
connected

components

Intended Random
network network

Average shortest 0.298 3.362
Breast 10882, 9870, distance
cancer | 86380 2 Average clustering 0222 1.459 % 10°%
coefficient
Average shortest 0.240 3.562
Colon 15664, 14517, distance
cancer | 117897 2 Average clustering 0214 9.610 % 104

coefficient
Average shortest 0297 3.367
Lung 11015, 9997, distance
cancer | 87387 2 Average clustering 0.223 1.440 % 1078
coefficient

7 Gene Expression Omnibus
(https://www.ncbi.nlm.nih.gov/geo/)
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Degree Distribution for Lung Cancer Network
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Fig. 3. From left to right: Degree distribution plot and distribution of network degrees in Log-Log scale (by ignoring the first and last

nodes, a linear function is observed).

I1l. cMAXDRIVER: CENTRALITY MAXIMIZATION
INTERSECTION PROPOSED APPROACH

As mentioned earlier, cancer occurs because of
abnormalities in some genes and their spread to other
genes in the cell regulatory network. Thus, more
important genes in network structure are more likely
to be classified as driver genes. We proposed a new
approach called centrality maximization intersection
to predict cancer-causing genes. This algorithm tries
to find a subset of nodes that are shared between at
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least two centralities. These sets of nodes are
communities of genes that satisfy at least the
following two conditions and indicate that they are
more important in the network. This means that if a
mutation occurs in them, it will affect a larger number
of genes. Therefore, we considered these nodes as
cancer-causing genes (drivers).

These conditions were defined as follows:

e They are more closely related to other genes.
(Because of the greater degree centrality)
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e They are shorter in distance from other genes
and cost less to travel. (Because of the greater
closeness centrality)

e  They are on the path to more genes, so they
affect a lot of genes. (Because of the greater
betweenness centrality)

The proposed cMaxDriver algorithm based on
the defined conditions comprises seven steps:

e Step 1- Calculation of degree, closeness, and
betweenness centralities for all network genes.

e Step 2- Calculate the average of all three
centralities.

e Step 3- Define the threshold value for each
centrality according to the average value of each.

e Step 4- Find genes that have a value greater
than the threshold, separately at each centrality.

e Step 5- Find and separate the data from step 4
that are common to at least two centralities.

Volume 14- Number 1 — 2022 (57 -68)

e Step 6- Calculate the union of intersection
data obtained in step 5.

e Step 7- Delete duplicate data.

The threshold values required in step 3 of the
proposed algorithm for each centrality are obtained
as described in Section 3-1.

The selected threshold values and other networks
information are shown in Table 3. In the lung cancer
network, for example, the MY C gene is known as an
important node using the cMaxDriver algorithm,
because its value in the two centralities has a value
greater than the threshold associated with the relevant
centrality. This is important, meaning that if a
mutation (meaning a cancer-causing mutation)
occurs in it, it will have a major impact on other
things. Therefore, this gene is considered a driver
gene in lung cancer.

TABLE III. INFORMATION ABOUT NETWORK CENTRALITIES.
Network Type Criterion Degree Closeness Betweenness
centrality centrality centrality
Minimum value 9.190 X 108 0 0
Average value 0.001 0.030 1.890 X 10
Breast cancer Maximum value 0.283 0.540 0.009
The node corresponding to the MAX MYC MYC
maximum value
Threshold 1.019 X 10° 2547 X 10" 8.903 X 10
Minimum value 6.384 X 10°® 0 0
Average value 9.611 X 10 0.023 1.068 X 10
Colon cancer Maximum value 0.268 0.529 0.007
The node corresponding to the MAX SP1 SP1
maximum value
Threshold 1011 X 10° 0.247 3.006 X 10
Minimum value 9.079 X 10°® 0 0
Average value 1441 X 103 0.029 1.858 X 10°
Lung cancer Maximum value 0283 0.540 0.009
The node corresponding to the MAX MYC MYC
maximum value
Threshold 1.491 X 107 1.953 X 102 1.458 X 10

A. Threshold tuning

To select the best threshold, two stages
were performed, in both of which the
criterion for optimization was F-measure. In
the first stage, five statistical indicators of
minimum, average, median, mode, and
maximum are used as threshold values.
These five indicators summarize the
information of all nodes in one value.

The best criterion among these five
indicators for all three networks was the
average. The best criterion is the index by
which F-measure is maximized compared to
the rest.

For example, Fig. 4 shows performance
compared to different indices of the three
centralities for the breast cancer network.

As shown in Fig. 4, the model is sensitive
to the threshold value, and as the threshold
changes, the performance of the model
changes. Fig. 4 shows that the best index is
62 because it has the highest F-measure.

Considering the three rings that are
considered for each of the centralities and
each of which has five defined values, index
62 is related to the values of 0.001, 0.030,
and 1.890 X 10-5, which are related to the
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average of the three centralities of degree,
closeness, betweenness, respectively.

In the second stage, based on the output
of the first stage (namely the average of each
centrality), a search interval is found
experimentally to find the improved values
for the threshold. The results of this stage are
shown in Fig. 5 for the breast cancer
network.

Finally, the values that had the highest F-
measure value at this stage are considered as
the final threshold values, which are
expressed in Table 2 as rounded values to
three decimal places.

Threshold for Breast Cancer Netwark

A .
sengomingd | poaad U b pengomenet ...,.';7 YAV VAR T Y.V SR UL LR 4 4 l.' }
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| ‘ | [l I
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Fig. 4. Model performance at different threshold
values in the first stage.

Fig. 5. Model performance at different threshold values in
the second stage.

IV. EVALUATION OF THE PROPOSED ALGORITHM

As described in Section 3, the algorithm
in step 7 considers common unique nodes as
cancer-causing genes. The algorithm can
finally extract the list of genes as drivers
based on the described approach. Then
labeling is done for the actual and predicted
data. So that the data that truly cause cancer
and output data of step 7 of the algorithm,
that means predicted driver, are labeled with
1 (negative: driver), and the rest of the data
with O (positive: normal). We compared the
results of the algorithm with eighteen

8 The Cancer Genome Atlas
% https://cancer.sanger.ac.uk/census
10 Breast invasive carcinoma
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previous computational and network-based
methods. To obtain the results of the
previous methods, we used the DriverDBv2
database [23]. In this database, the results of
each cancer are reported based on the
TCGA?S dataset for each method. We also
used a set of validated cancer-causing genes
introduced by TCGA [24] to evaluate the
results. TCGA is an evaluation database
used in many bioinformatics studies such as
[15, 20, and 21]. In this database, datasets
are available® for three breast, colon, and
lung cancers named TCGA-BRCA 10
TCGA-COAD ', and TCGA-LUSC %2,
respectively. That the number of genes as
drivers introduced, the same order is 572,
572, and 566 for three different types of
cancers.

To evaluate cMaxDriver, we used the
criteria ° precision, recall, accuracy, and F-
measure that are common in binary
classification approaches. The F-measure is
a common and good criterion for evaluating
classifiers, which obtained the percentage of
correct positive predictions by calculating
the harmonic mean of the two criteria of
precision and recall, which is defined as
follows:

2 X Precision X Recall

F— = 4
measure Precision + Recall )

While precision and recall are defined as
follows:

o TP
Precision = TP 7 FP 5
TP
Recall = TP T FN (6)

Accuracy is also calculated by Equation
(7).
TP + TN
AcCUracy = 4 TN + FP + FN

()

Details of the evaluation of the methods
used are shown in Tables 3 and 4. For
example, in breast cancer, cMaxDriver had
10249 true positives (TP) and 164 true
negatives (TN), i.e. it correctly identified
164 genes as a driver and 10249 genes as

11 Colon adenocarcinoma
2 Lung squamous cell carcinoma
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normal in breast cancer. It also has 408 false
positives (FP) and 633 false negatives (FN),
which are related to type | and type Il errors,
respectively. Which shows the number of
normal genes that are incorrectly predicted
as drivers by this algorithm, and the number
of driver genes that are incorrectly predicted
as normal by this algorithm, respectively.
The complete results are shown in Table 3.

Considering the condition of at least two
intersections will give better results than the
intersection between all three centralities
because the intersection between all three
centralities imposes more restrictions on the
data, so the results have less bias but more
variance. Therefore, as shown in step 5, the
proposed method uses the condition of at
least two intersections. The results of
running the cMaxDriver algorithm on three
cancer networks are shown in Table 4.
Comparing the results of cMaxDriver with
other methods is given in Section 5.

TABLE IV. THE CONFUSION MATRIXES OF CMAXDRIVER

Criterion
Network Type
TP TN FP FN
Breast cancer 10249 164 408 633
Colon cancer 15074 158 414 590
Lung cancer 10449 153 413 566
TABLE V. VALUES OBTAINED FROM CMAXDRIVER
EVALUATION.
Criterion
(<5
Qo
£ .
X g 5 = 5
g S =
g 5 2 3 g
£ 8 e & £
z < o i
Breast 0.909 0.206 0.287 0.240
cancer
Colon 0.938 0.211 0.276 0.239
cancer
Lung 0.915 0.213 0.270 0.238
cancer
V. RESULTS

The proposed algorithm was run on three
cancer networks. Then, based on the
threshold values introduced in Section 3, the
genes were classified into two classes:
driver and normal. Afterward, using the
performance criteria introduced in Section
4, we compared cMaxDriver with eighteen

Volume 14- Number 1 — 2022 (57 -68)

previous computational and network-based
methods. The corresponding results for
breast cancer are shown in Fig. 6. As seen,
cMaxDriver with Recall = 0.287 is ranked
first among network-based methods and
ranked second among all computational and
network-based methods. Although some
computational methods have higher
precision and recall they are not in a good
position in terms of the F-measure and the
number of cancer-casual genes they predict.

As mentioned, precision and recall alone
cannot show the performance of a
classification system. Therefore, the
harmonic mean of these two criteria is used.
As shown in the results, cMaxDriver with F-
measure = 0.24 has the highest value among
all  computational and network-based
methods and has significantly improved
performance.

Breast Cancer Network

Methad Name

Fig. 6. Comparison of evaluation criteria of the cMaxDriver
and other methods in breast cancer.

We also compared the cMaxDriver and
other methods based on the number of driver
genes predicted. The results are shown in
Fig. 9. As seen, cMaxDriver reached ranks
first among previous network-based
methods and second among all methods by
identifying 164 genes in breast cancer.

Colon Cancer Network

Criterion
10 Precision
- measure

Method Name

Fig. 7. Comparison of evaluation criteria of the cMaxDriver
and other methods in colon cancer.

The results of cMaxDriver and other
methods in colon cancer are shown in Fig. 7.
As seen, cMaxDriver with F-measure =
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0.239 has the highest value among all
computational and network-based methods
and has significantly improved
performance. Also, in terms of the number
of drivers detected, as shown in Fig. 9,
cMaxDriver, with 158 drivers detected for
colon cancer, ranks first among previous
network-based methods and second among
all methods.

Lung Cancer Network

Mathad Name

Fig. 8. Comparison of evaluation criteria of the cMaxDriver
and other methods in lung cancer.

Also, based on Fig. 8 be seen, cMaxDriver for
lung cancer by F-measure = 0.238 with a slight
difference  after iMaxDriver-W among all
computational and network-based methods is ranked
second, but based on Recall = 0.27, it's ranked first
among all methods. In addition, based on the number
of drivers detected, as seen in results are shown in
Fig. 9, cMaxDriver reached ranked first among all
computational and network-based methods by
identifying 153 genes in lung cancer.

We also compared the overlap of genes identified
by cMaxDriver and other methods. The results are
shown as a Venn diagram in Fig. 10. As seen in Fig.
10, cMaxDriver was able to cover 140, 143, and 135
genes identified by other computational and network-
based methods in breast, Colon, and lung cancer,
respectively. In addition, it has identified 24, 15, and
18 unique genes in breast, colon, and lung cancer that
have not been identified by any of the previous
computational and network-based methods.

Also, compared to previous network-based
methods, cMaxDriver identified 123, 123, and 129
cancer-causing genes detected by other network-
based methods in the same order. In addition,
cMaxDriver similarly identified 41, 35, and 24
unique genes in the three named cancers that were not
detected by other network methods. Lists of unique
cancer-causing genes correctly identified by
cMaxDriver is given in Tables 5.
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Method Name

Fig. 9. Comparison of the number of cancer-causing genes
identified by cMaxDriver and other methods in three

types of cancer.

jion of computational methods

0(0.0%) 1(0.3%)
1(0.3%)
41(243%) 40(237%)  0(00%)
15 (4.1%) 3(0.8%)

62(36.7%) 27 (7.5%) 0(0.0%)
210124%)  1(06%)
24 (6.6%) 193 (53.3%)
35 (9.7%)
12 (3.3%) 0(0.0%)
9(2.5%)  25(6.9%)

17 (4.7%)

(a)

1(0.3%) 3(0.8%)
3(0.8%)
35(207%) 41(243%)  3(18%)
16 (4.2%) 1(0.3%)

65 (38.5%) 23 (6.1%) 1(0.3%)
17(101%)  4(24%)
15 (3.9%) 211 (55.5%)
42 (11.1%)
8(2.1%) 2(0.5%)
9(2.4%)  25(6.6%)

20 (5.3%)

(b)

15 (5.2%) 3 (1.0%)
4(1.4%)
30 (20.4%) 2(0.7%)

20(129%  50(269%) 24 (129%)

65 (34.9%) 48 (16.6%) 0(0.0%)

4(7.5%] 4(2.2%!
14(7.5%) 2 2%) 18(6.2%) 103 (35.6%)

17 (5.9%)

13 (4.5%) 9 (3.1%)
1(0.3%) 20(6.9%)
6(2.1%)

(©

Fig. 10. Left to right: Overlap of genes identified by
cMaxDriver with other network-based methods and
with other methods. (a), (b), and (c) are related to
breast, colon, and lung cancers, respectively.

The main aim of the study was not to examine
time complexity. The primary objective was to
improve the performance criteria and the number of
identified driver genes. In addition the time
complexity of the previous methods is not mentioned.
However, program run time of our proposed method
(step 1 to 7) in a system with CPU intel core i5 and
Ram 8 are as follows: breast cancer=62ms, colon
cancer= 61ms and lung cancer =75ms. These values
do not include the time to set the optimal threshold.

VI. CONCLUSION

In this study, an algorithm called cMaxDriver was
proposed to classification and detection cancer-
causing genes in transcriptional regulatory networks.
One of the advantages of proposed method is that it
does not depend on mutation and genomic data. And
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identifies driver genes only using the structure of
gene interactions and the network approach. Itis also
much faster than previous networking methods. The
cMaxDriver has the best performance compared to
other computational and network-based methods in
terms of f-measure and the number of diagnostic
drivers. First, three cancer regulatory networks were
constructed using gene expression and regulatory
interactions data. Then the different steps of the
algorithm were performed on the networks, as
described in Section 3. Finally, genes were classified
into cancer-casual and normal based on defined
threshold values. The results were compared with
eighteen computational and network-based methods
in terms of efficiency criteria and the number of
identified cancer-casual genes. The results in terms of
efficiency and F-measure ranked first among all

Volume 14- Number 1 — 2022 (57 -68)

methods of detecting breast and colon cancer and
second in terms of identifying the number of cancer-
casual genes. Also, for lung cancer, the proposed
algorithm ranks first among all computational and
network-based methods in terms of the number of
cancer-causing genes detected and second in terms of
performance with a slight difference from the first
rank. In addition, the proposed approach, while
identifying a significant number of diagnostic genes
by other methods, can identify genes that have not
been identified by any of the other methods.

Data availability:

Data is available publicly at
https://github.com/MASafar/cMaxDriver.

TABLE VI. THE LIST OF UNIQUE CANCER-CAUSING GENES PRODUCED BY CMAXDRIVER.

Breast Cancer Network Colon Cancer Network Lung Cancer Network
Compared to all | Compared to | Compared to all | Compared to | Compared to all | Compared to
methods network-based methods network-based methods network-based

methods methods methods
SMARCB1 NONO DDB2 SMARCB1 LMO1 ETV6
MLLT1 SMARCB1 IKZF1 CHD4 MLLT3 MLLT1
ETV6 MLLT1 SMARCE1 FOXP1 MLLT10 BCL11B
TAL1 CHD4 BTG1 APC BCL11B HOXC13
ERCC2 ETV6 BCL11B SMARCE1 HOXC13 ETV1
FUBP1 TALL TRIM33 BCL11B TRIM33 PAX3
SMARCE1 ERCC2 KDM5A HOXC13 ETV6 TNFAIP3
MDM4 FUBP1 HMGA2 ETV1 MLLT1 AFF1
OLIG2 SMARCE1 XPC PAX3 CIC ERCC3
ETV1 PSIP1 POU2AF1 ZFHX3 DEK SMARCD1
TNFAIP3 ZMYM2 NR4A3 HOXD13 ELL MLLT10
SMARCD1 MDM4 HOXA13 ERCC3 AFF1 TRIM33
KAT6A OLIG2 ETV5 ARID1B ERCC3 NSD1
MAFB ETV1 SRSF3 SMARCD1 ETV5 ELL
BTG1 TNFAIP3 SMARCD1 IKZF1 XPC ETV5
ELL HOXD13 BTG1 NFIB XPC
ETV5 AFF1 TRIM33 TFE3 NFIB
DEK ERCC3 HMGA2 SMARCD1 CIC
LMO1 PBRM1 PRRX1 TFE3
MLLT3 KAT6A POU2AF1 DEK
DDB2 SMARCD1 NSD1 ATRX
NR4A3 MLLT10 ELL LMO1
ELF4 MAFB HOXA13 MLLT3
BCOR BTG1 ETV5 MED12

FUS XPC

PRRX1 SRSF3

NSD1 NFIB

ELL CIC

ETV5 DEK

XPC ATRX

CIC MLLT3

DEK DDB2

ATRX KAT6B

LMO1 KDM5A

MLLT3 NR4A3

DDB2

KAT6B

MED12

NR4A3

ELF4

BCOR
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