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Abstract—This paper investigates a novel method to solve distributed optimization problems in the presence of
communication delays between the networked agents that cooperate together to find an optimal solution of a global cost
function composed of local ones. In the problem of distributed optimization in a network of multi-agent because of
existing phenomena such as communication delay, deriving approaches having appropriate performance so that the
states of all agents converge to the same value always has been a substantial challenge. Delay-dependent conditions in
the form of linear matrix inequities are derived to analyze the convergence of the introduced scheme to the optimal
solution. It is demonstrated that the maximum allowable time delay in the network and convergence rate of the
optimization procedure are increased by the suggested strategy. Finally, comparative simulation results are considered
to illustrate the superior performance of the introduced scheme compared to a rival one in the literature.
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l. INTRODUCTION

In the problem of distributed optimization, a global
cost function composed of several local ones is
optimized by the cooperation of networked agents.
Each agent which has access only to one local objective
function contributes to the solution of the problem
through local computations and information exchange
with the neighbors. Due to widespread applications of
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distributed optimization in real-world systems such as
distributed estimation in sensor networks, motion
planning, distributed predictive control, resource
allocation over networks, and the economic power
dispatch problem, this issue has attracted much
attention in recent years [1-6].

The majority of works in the area of distributed
optimization for multi-agent systems are focused on
discrete-time formulations [7-11]. However, because of


http://dx.doi.org/10.52547/itrc.13.4.18
http://journal.itrc.ac.ir/article-1-495-en.html

[ Downloaded from journal.itrc.ac.ir on 2025-11-21 ]

[ DOI: 10.52547/itrc.13.4.18 ]

Volume 13- Number 4 — 2021 (18 -27)

the simple application of the Lyapunov stability
theorem for convergence analysis and also potential
applications in continuous-time physical systems, much
attention has been recently concentrated on the study of
continuous-time distributed optimization [12-16].

In most of the aforementioned publications,
communication channels between agents were
assumed to be ideal, for instance, see the work of Weng
et al [17], while time delays are inevitable in data
exchange between agents in the networks due to a
finite bandwidth of the communication medium and
limited speed of agents for calculating and sending
their outputs [18, 19]. Also, in practical systems such
as unmanned aerial vehicles (UAVSs), when the
information would be transmitted by an UAV to others
occurring time delay is inevitable. Compensation of
destructive effect of communication delays on the
performance and stability of solution process is an
important challenge that is addressed only by a few
papers in the literature. Therefore, it is beneficial to
propose the approaches that consider communication
delay in multi agent systems [20].

Authors in [21] by utilizing the mirror descent
method, derived a distributed algorithm to solve a
distributed optimization problem, which phenomenon
of time delays in a multi-agent system are considered
and analyzed the effects of delay on convergence rate.
In [22], based on the dual averaging notion, an
algorithm was derived to solve distributed cooperative
optimization problems subject to delayed sub-gradient
data in a networked system with delay. In [23], the
problem of distributed optimization in the presence of
inter-agent communication delays was solved via a
proportional-integral consensus algorithm in a
passivity-based framework. It was proved that the
transmission delays can be handled while ensuring the
convergence property using scattering transformation.
Authors have developed a distributed optimization
approach for a continuous-time multi-agent system
subject to communication delays in [24]. Sufficient
conditions in the form of linear matrix inequities were
presented for convergence to analysis. In the paper by
Lin et al [25], distributed optimization problem was
solved by implementing a sub-gradient projection
algorithm for a networked system subject to
communication delays and nonidentical constraints.
Moreover, a distributed optimization problem of multi-
agent systems with delayed sampled data is considered
in [26], then based on Lyapunov theory and graph the
convergence of all the agents to the optimal solution
was proved.

In this paper, inspired by [24] and [25], a novel
technique is developed to solve efficiently the
distributed optimization problem in the presence of
communication delays utilizing the sub-gradient
projection idea. The key idea to improve the
approaches of [24] and [25] is that, for each agent
based on the communication graph, a weighted
information of its neighbors in the gradient term is
implemented to update the value of the state of each
agent. The main contributions of the proposed
approach can be highlighted as follows:
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(1) convergence of the proposed algorithm is assured
using the Lyapunov-Krasovskii stability argument;
(2) it is demonstrated that compared to the rival
method in [24], the convergence rate is increased by
the proposed strategy; moreover, convergence to the
optimal solution is achieved for higher values of
transmission delay.

The remainder of this paper proceeds as follows.
In section 2, first, the necessary background materials
are called form literature and then the problem of
distributed optimization for the system with multi-
agent is modeled. The proposed algorithm is given in
Section 3, then, the convergence of the optimization
process is analyzed. In Section 5, comparative
simulation results are presented to verify the
superiority of the suggested scheme compared to the
rival method in the literature. Ultimately, the
conclusion is given in 6.

Il.  PROBLEM STATEMENT AND PRELIMINARIES

Considering a network of A agents interacting
over a directed graph Z(V,E) that consists of nodes
(agents) set,V ={1,...,A} and an edge set, E cV xV
. An edge from v, to v, described by (,v;)
denotes that v; can obtain data from v, ; then v; is
known a neighbor of v, . The set A, ={j|(i, j) € E}

denotes all neighbors of the agent i . The considered
graph is assumed to be strongly connected; namely, for
every pair of nodes, there is a directed path connecting

them. The adjacency matrix of the graph Z(V,E) is

represented by A which is a AxA matrix, whose
entries a; are given as:

0 otherwise. (1)
The out-degree and in-degree of a node v, in the

aij:{l ifi=jand(i, j)ee,

graph are b, = anaij and b' = anaji , respectively.
=i =i

The considered graph Z is supposed to be weighted-
balanced; that is, b =b!, for any agent v, eV [27,

28]. The overall cost function of the minimization
problem is considered as follows:

F(x)=% f,(x) 2
wherein the agent i c;lly accesses to its local cost,
f.(x) which m, -strongly is convex in x . That is,
Vi, (2)- Vi, (x)° <1 (z-x)?(Vf (z)-Vf(x))  and
Vi is I -Lipchitz over R" ; that is for all

The aim is to find variables
X=(X,%,,....X,) € R" such that the general objective

X,ZECCRE

function F(x) in (2) attains its minimal value. For

minimization of (2), the agents, V in the network
coordinate their decisions through a set of
communication links. To formulate this fact, the
coupling among agents is transformed to a set of
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constraints [29]. Therefore, the minimization of
structure (2) is defined as:
minimize F(x)= ﬁfi (x)

=1

st. X =%, i={L.,A}, jeA,
where x, € R" denotes the state of the agent i . The

role of each agent i is to contribute to finding the
optimal solution of the problem (3) via cooperation
with other agents. Inspired by the distributed
optimization techniques in literature such as dual-
decomposition and consensus fashions [15, 30, 31] the
following networked system is obtained to find the
solution of the optimization problem.

7, = y%aij [Xi —Xj]

®)

X, :—ani(xi)—zi—ﬁ%aij[xi—xj] (4)
j=1
where «, f and y are positive weights and the

weighting that agent i associates to the agent j is ;;

. Note that the system (4) inherits the properties of dual-
decomposition and consensus methods in solving the
distributed optimization problem; namely, the fast
transient behavior of consensus and desirable
convergence of dual-decomposition.

Since the agents exchange information together
through a communication graph subject to time-delay,
the information of neighbors are not immediately in
hand to be used in (4), i.e. at step time t , the amount of

X, (t—d(t)) is available instead of X, (t) , where

d(t) is assigned to demonstrate time-varying delay
among agents i and j , which is bounded as

0<d(t)<d , with d(t)<1. In the next section,

system (4) is refined to tackle this issue efficiently.
Before proceeding, some useful facts which will be
employed in the derivation of our results are recalled
from the literature.

Lemma 1. [15]. Laplace matrix concerned with the
graph Z is described as the following representation:

Z a; =]
L=[¢;JeR™.¢, :{JEAi o (5)
—a; i#]

It is alternatively can be construed as L=D,, — A,
with D, =diag{by.b%....b5} €R™ . The

out? Mout ?* * 7 Mout
Laplacian L of graph Z is a positive semi-definite
matrix and for a connected graph, the Laplacian has a
single zero eigenvalue and the corresponding

eigenvector is a vector of ones, defined by
{kln :k eR}, which 1, eR".

Lemma 2. [32]. For an undirected connected graph
with symmetric L, there exist A —1 real eigenvalues
in the open right half plane (RHP)
0=A4 <A <...24, . The matrix L can be

diagonalized through an orthogonal transformation as
the following:

L=RJR'
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where the diagonal matrix J is as

J _ O le(Afl)
O(A—])xl Y

in which Y has a (A—1)x(A-1) diagonal matrix

containing the mentioned RHP eigenvalues of L and
R is constructed using the right eigenvectors of L as

R=[r,r,..n,] ., wherein r, ie{l2.. A}
defining the right eigenvectors of L where r'r =1,
and r, =1, INA . Lemma 3. [33]. For any function
x(t)eL,[-s,0] and any positive matrix ¥ , the
following inequality holds

X7 (t)Wx(t)dt > %(jf’s X" (t)dt)w (] x(t)dt)
Lemma 4 [34]. Assume that we have

Q eR™™,...,Q. eR™™ been positive matrices. For

n;xm;

] i
all a; >0 with Zj;aj =1 and for all S;eR ,

j=12,...b, i=1...,j—1, where

R
* Qi

The following relation holds:

T
e1 Ql 812 816 el
€, * Qz Sza €,

*

M=

1
S8 Q8 2
] aJ

eB * * 000 QB e

forall e eR",...,e; eR™.

Ill.  MAIN RESULTS

In this section, a novel continuous-time system is
provided to be replaced with (4) in the case of delayed
information; then convergence of the proposed method
is analyzed. The merits of the proposed method are
illustrated in the next section by simulation. The
delayed subgradient information received at time step

t is used to update evolution of X (t) in the agent i
can be defined as the following form:

Z (t) = 7%0%] [Xi (t -d (t))_xi (t —d (t))]

% (t) =—aVf, [W;Xi (t)+ 5 w'x; (t-d (t))j

i#ijen

A
-z (t)—ﬂZlau [Xi (t-d(t))-x(t-d (t)ﬂ Q)
i=
for i th agent and its neighbors, the weight coefficients
w. and w’ are devoted, respectively; such that
matrices w, = diag[w.],. . and

W, =[W/ 1. JeA;, j#i satisfy:

. A "
w,+ > w =1i=1..,A. Now, we can rewrite
i, jen
system (6) in the compact form as the following
representation:
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2(t) = yLx(t—d(t)) (1, O -p, II, I O
X(t) = —aVF (W, x(t) + w, x(t —d(t))) — z(t) @) * IL, —pyly, I, Iy S
~ BLX(t-d (1)), * * My 0 I 0
where x=(X %5, X)) , *ooF * I, Iy O
* * * * H H
VE(x(t)) = (VE, (%, (£)T VE, 0 (1) VL (X, (D)D) L. . L o For
2=(7,2,...2,") , L=L®I,eR™" and ® . . N % =
represents the Kronecker product. Note that time delay * * * * * *
appears in the x component. Therefore, the initial . N N N . N
value x needs to be known as a function x in L .
- n o . —-aP, 0 0
C([—d,O],R ) which is the space of continuous T
B I1,, aP, 0
functions mapping the interval [-d,0] into R™ —aP, 0 _do,
subject to norm ¢ =sup_; , (). mn, T, 0
I M, -dpQ,J|<0
A. Optimality Analysis 057 058 /E))Qz
In the following theorem, it is proven that the system _
(7) converges to the optimal solution of (3), subject to 6l 0 -daQ,
delayed transmission. Let f,,ieV is differentiable * ol 0
and m, -strongly convex, and its gradient is I, - & k3 -Q | ®)
Lipschitz also, the graph Z is strongly connected and
weighted-balanced. With
LU S e any seR’ ' I, =Q -Q,+Q;+ m(27f_ (2_01 P,
S(e)={(z,x)|@, ®1,)"z=¢} is apositive invariant &

setand X is an optimal solution of (3) if and only if I, = m(gyf_(z_“ ES
(—aVF(Wax*+WnX*),x*)e S$(0,) is an equilibrium . a12
~ a
of systems (7). I, = Em(Zy I - (; Pu))Zy.
Proof. See the appendix. 1 . 2a
B. Convergence analysis s = Em(Zyl _(E Pu))Zsz,
Next, in order to find the optimal solution X" to o - 1 oo i 2a
system (7), sufficient conditions in the form of LMIs 24 —Em( 4 _(E P11)) Zo1
are presented to guarantee the convergence.
. . [y =yPJ =Pyl +Q, =S
Theorem 3.2: The System (7) with time-delay 1 . o
d(t)<@<1 and the initial condition S(0,) is e —(; P)) 2z,
convergent to the optimal solution of (3) if there exist .
(A-1)x(A-1) matrix S, P,, P,, and positive My ==a(Py = Pu)ls o Tl = =P, =P,
definite matrices Q,, Q,, Q,,P, and positive scalars & Mo ==ARJ+7RJ,

. A 2
, py and p,, such that: I, =m(2y _(f D)0,
Q S 1 ~ 2a
{* Qj>0 I, ZE'D(ZV' _(E pll))ZlZ’
Pulra P 1l 2a 1 2a
PAT D IA—l P2 >0 H47 - E(E pu)k121n48 - E(E pu)ku
AN M, =-(1-2)Q, —2Q, +S"
~ 2a
+S +m2y1 = (—py)) 92,
&
1 2a
I, = Qz _S1H57 = E(E pll)k22’

1 2a
g = E(E pll)kZl'HGG = _Ql _Qz
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which m=min{m,m,,..,m,} that m, -strongly is

convex, | =max{l,,1,,...1,} that I, is Lipschitz

coefficient, a, e diag[w!], . ,

|:211 Zj, i| —w'w |:911 912} —w'w
- Watn — "'n'n
221 Z22 ng gZZ

|:k11 I(12 :| — WT
k21 k22 "

Proof: see the appendix.

It is noteworthy to mention that as stated in the next
section, the values of the weight coefficients have been
employed to derive sufficient conditions of the
convergence. In other words, w, and w, affect the

feasibility of LMIs (8).

IV.  BENEFIT AND APPLICATION OF THIS
KIND OF OPTIMIZATION

BENEFIT: This paper is assigned to investigate the
problem of distributed multi-agent optimization over
delaying networks. The optimization equation (6) is
derived for objective enduring higher values of
transmission delay and increasing of the converge rate.
Differently from (4) in which the gradient of f, is

computed only on x; , in the proposed system (6); the
gradient term is evaluated on a weighted sum of x,
and all delayed x; . In equation (6), both weight

coefficients w, and w, would be chosen by the

designer, and as demonstrated in the proceeding, these
weight coefficients are implemented in establishing the
sufficient conditions to assure the convergence of the
proposed approach (i.e. in Linear Matrix Inequalities
(LMIs) (8)). In addition, as shown later in the
simulations, this idea leads to improved performance
compared to [24].

APPLICATIONS: As we know, the distributed
optimization technique is the backbone for the learning
and formation control of many practical applications.
For instance, networked mobile robots are
collaborating with each other in order to reach a certain
task, therefore, they have to cooperate together to
minimize a collective cost such that a central
computing station was not employed. As a case study,
we can use this proposed optimization approach in
[35], where networked mobile robots are connected
through a communication graph and are aimed to
minimize their speeds and maximize their distance
from each other. This kind of optimization approach
also could be implemented in problems such as [15],
and collaborative multi-robot systems for search and
rescue [36].

V.  SIMULATION RESULTS

In this section, the advantages of the addressed
distributed optimization method are provided by two
examples.

Example 1: In this example, the results of the
performance of the proposed scheme are compared to

Volume 13- Number 4 — 2021 (18 -27)

a rival one in the literature. A network including five
agents is considered subject to a graph which can be
seen in Figure. 1. The communication graph is weight-
balanced and strongly connected.

Note that in order to easily see, fewer agents are
deliberately considered in the network for simulation
results. Although if we consider a network with more
agents, better results would be obtained for the
proposed method. Local cost functions with x e R are
as the following

f,(x) =09(x* +2x+1), f, (x) =(x-4)’,
f,(x)=0.5x" -1,

f4(x)=sin(gj+x—22,fs(x):(x—3)2 ©

which are strongly convex and globally Lipschitz. It
can be simply verified that the general cost function

F :Affi, gets its minimum value F, =16.05, at
i=1

X.in =1.51. In the first simulation, the delay value is

supposed to be constant d =0.62 . The values of the
weight coefficients are chosen as follows:

Fig 1. The communication topology of five agents
(13 0 0 0 ©
0 13 0 0 O
w,={0 0 13 0 0],
0 0 0 13 0
0O 0 O 0 13

w,=| 0 -01 O 0 -02|,
0 0 03 0
0 0 0 -03 O

Figure 2 (a) shows the result obtained by the algorithm
of [26] and Figure 2(b) depicts the consequence of the
proposed algorithm with ==y =0.6. Although,
two methods can tolerate the same time delay it is clear
that the convergence speed in Figure 2(b) is
considerably faster than Figure 2(a).
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0 10 20 30 40 50
Time(s)

Fig 2. The agents’ state trajectories for d =0.62 . (a):
the method of [26] and (b) the proposed method.

10 a

[}

0 1‘0 2‘0 3‘0 46 50
Time(s)

Fig3.  The agents’ state trajectories for d =0.78 . (a):

the method of [26] and (b) the proposed method.

In Figure. 3 state trajectories of agents are shown for
d =0.78 with rival and suggested schemes to verify
that the maximum allowable delay in our method is
much larger compared to [24]. To convenient evolution
of maximum tolerable delay value, maximum
allowable delays are reported in table 1 for the
introduced method and rival schemes. It is clear that
the converging criterion of the proposed method is less
conservative compared to the maximum allowable
delay of the rival scheme.

TABLE I. THE PERFORMANCE OF THE PROPOSED APPROACH
IApproaches * **
[The proposed method 0.82 0.8171
[The Method of [24] 0.64 0.6093

™ Actual value
**Obtained from stability  condition

Example 2: Consider the following local cost
functions subject to the communication graph in
Figure. 4:

FO9 =2 1,09,

where

(11)
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(x-6)*,f,(x)=0.8x" +2,

09(x +2x+1)

(x— ) s(X)=05x* -1,
o(5)5

0.6x% +x, fy (x) = (x—3)2 (12)

fl

X)
)

X

(

a

fo(x)
(x)=s
(x)=

o (x

fG

Now, System (7) including eight agents is employed to
solve optimization structure (11) subject to (12). It is
assumed that we have the communication delays via a
determined value. The parameters in system (7) are
selected as o =0.6,f=y=0.5. The values of the

weight coefficients are chosen as follows:

13 0 0 0 0O O 0 O
0 13 0 o0 O O 0 oO
0O 013 0 0 O O O
W - 0 0 0 13 0 0 o0 O
2 0 0 0 0 13 0 0 O}
0O 0 0 O 0 13 0 oO
0O 0 0 O O 0 13 O
|0 0 0 0 0 0 0 13
[0 -03 0O 0 0 0 0 0 |
0 0 01 O 0 -01 -01 O
-03 0 0 0 0 0 0 0
W - 0 -03 0 0 0 0 0 0
" 0 0 0 -03 0 0 0 0
0 0 0 0 -03 0 0 0
0 0 0 0 0 0 0 -03
L 0 03 O 0 0 0 0 0 |
Q ©
1)
2/
Fig 4. The communication topology of eight agents.
. Time Series Plot:

Time(s)

Fig5.  The agents’ state trajectories for d = 0.6 .
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Time Series Plot:

0 10 20 30 40 50
Time(s)

Fig6.  The agents’ state trajectories for d =0.72..

Time Series Plot:

-40

0 10 20 30 40 50
Time(s)

Fig7.  The agents’ state trajectories for d = 0.80 .of
sensor design.

According to the communication graph in Figure. 4, the
simulation results for time-delay d =0.60, d =0.72
and d =0.80 are shown in Figures. 5-7, respectively.

Figure. 7, unlike Figure. 5 and 6, x(t) is not
convergent.

VI. CONCLUSIONS

In this paper, the problem of distributed multi-
agent optimization over delaying networks is
investigated. A novel method has been presented to
solve a distributed continuous-time optimization
problem with a multi-agent system subject to
communication delay. Sufficient conditions have been
derived in terms of LMIs to check the convergence of
the algorithm to the optimal solution utilizing
Lyapunov-Krasovskii's theory. Comparative
simulation results have been presented to demonstrate
that maximum allowable delay and rate of convergence
are both improved compared to the recent rival method
in the literature. Many issues are still open for future
research, for instance considering uncertainties, and
quantization effects [37] in the parameters of a multi-
agent system.

VII. APPENDIX
Proof. of Theorem 3.1.

Regarding that communication delay occurs in the
x component of the delayed system (7), the initial

Volume 13- Number 4 — 2021 (18 -27)

value of system (7) is z(0). From Lemma 2, we have
1, ®1,) (L®1,)=(0,®1,)" ;So

1L, ®1,) z(t) =y, ®1,)
LX(t —d ('[)) =0
which states that the set S(¢) is invariant for any ¢,

therefore:
(1A®In)Tz(t)=(1A®In)Tz(0) (14)

which implies & =(1, ®1,)" z(0).

Additionally, assume (z*,x*) denotes  the

(13)

n

equilibrium point of (7) in S(0,), and recall the

Laplace matrix L concerned with a graph, then from
Lemma 2, we have

0=yLX0=-aVF (X' )-pLX -2’ (15)

wherein X" =1, ®x". By multiplying (1, ®1,)" to

(15) from the left and regarding (13), we have

—aVF(X*)zo Regarding weight coefficients

assigned to agents in (6), the related X~ =w, X +w, X"
results in X” =x" and we have the following:

A .

—aVF (X ) =-aX¥f' (X)) = 16

aVF (X) = a2 ¥ (X) (16)

to find the optimal condition of X ™. In addition, due

to 0=yLx" and 0=-aVF(X')-BLx -z, we can

obtain z :—aVF(X*) . The proof of converse is

uncomplicated. Note that the initial value for solving
the problem (6) requires to be located in S(O,)
otherwise, if £=(1, ®1,)"z(0)#0,, due to (15) we
have a(l, ®1,)" VF(X)#0, that verifies the system

(6) may converge to the vector X that is not the

optimal solution.

Proof. of Theorem 3.2. Consider definitions
7=z-7" and X=x-x", the equilibrium point
transformers to the origin by replacing Z and X within
the structure (7).

72=(R®1,)V,
x=(R®I,)(wu(t))+(R®I,) (17)
x(wnu(t—d(t)))
R is in the form of [, R,]" with r,=(L/AL,.
Let v be (v ,vI,)" with v, eR", v,, eR*"" and
in a similar process: u=(u,",uy,)" . Since the initial

condition belongs to S(0,) , system (7) can be
converted to
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v, =0,
Vyp = Uy, (t-d(t))
U, = —ar/h(z)
U,, =-aR}h(Z)-Bdu,, (t-d(t))
(10)
_VZ:/\ (t)

wherein J=J®I,, n=r®Il, , R,=R,®I, and
h(z)=VF(2+2")-VF(z) (19)
Concerning the initial condition and v, =0, , we can

have v, =0. Then, we only need to focus on the other

three relations of (18).
V =V, +V, +V; +V, (20)

n?

with

—-

V,=n"PnV,= | u

t—d

Td J UL, (5)Q,u,., (s)dsdev,

24 (8)Quzx (5)dsV,

t
= [ u-ZF:A (S)Q3u2:/\ (s)ds (21)
e-d()

In which Q =Q®I,(i=123) ,

=(u/,uy,,v,,)" ,and P=P®]I, such that:

pll P4
P= PAT Pelyia P (22)
' R

Itis obviousthat V > 0. Derivation of V,, V,,V, and
V, are calculated along the trajectories of systems (21)
as the following representation:

V, = —2ap,u; (1)(r h(2)) —2a pyu;,, (DR N(2)

=23 Pyl (1) Uy, (t=d (1) — 200 (t)P,RN(2)

—2pu (t)PJu,, (t-d(t))
=2u] ()P, (t) - 2auy,, (t)P, 1 h(2)

= 2PyUizs (V4 (1)

+2ypul , ()P,Ju,, (t—d(t))
—2av), ()P,RIN(2)
=2V, ()P, Uy, (t—d (1)) (23)
=20, (P, (1)
+ 2V, P, (E—d (D)),
vz :u;:A( )Q1 2A( )

24
u;/\( )Ql 2A(t d) (24)

V, = d %7, (5)Qu,, (1)dO
—d [ uy, t+0)Q,u,, (t+6)do o5

= azu;/\ (t)QZuZ:A (t)
- aj‘tt—a u;:/\ (H)Qzuz:/\ (H)d 0

International Journal of Information & Communication Technology Research

victTR ENN

v4 = u;:A (1)Qsu,, (1)
—(L-d(©)ug, (t—d(E)QuU,, (t—d (1))
» Uz QU (1) = A= @)Uy, (t—d (1))
2 Qa”z:A (t -d (t))
Now, consider the first two expressions in V, , the
following relations can be obtained:

Q=-2ap,u; (1)(r/h(2))
—-2a p22u;:A (t)R; h(2)
=-2ap,u" (HR'h(Z)

—2a(p, - pll)u;:ARZ h(2)
Note that R'"R =1, vyields to R)R, =1, ,, then we
have R, =1. from the right term in equation (17), we
have Z' =u(t)w;R" +u’ (t—-d)w,R" . On the
other hand, the following inequality holds:

u'R’ :iiuTW;RT +iiUT (t-d)w R"
W,
al ! (28)
——u' (t—d)w,R'
W

a

(26)

(27)

Where u refers to u(t), replacing (28) in (27) and

1 1 . .
using —w, =—w, =1, , results in the equation:

a a

Q=-2%p 2Th(@)+ 2% pu (t-dW R h(2)
2] o (29)
—2a(py, - pn)u;/\ R; h(z)
Asregards F isstrongly convexand VF is Lipchitz,
the followings hold:

RIh(z)',, h(2)’,, iz"h(2) (30)
Z'h(z)zmz'z=mu'u (31)
in which

u'u=(u"w,"R" +u" (t-d)w]R" )(Rw,u
+Rw, u(t-d))
Inequality (31) yields to
512'h(2)-8(R,h(2))
Z'h(Z)-6(rh(2))
So, finally, we have:

0<@251-2%p,)7"'h()
o

(Ran(@)0
0

D" (6h(2)).

+2Z p U (t-d)xw RTh(2)
Q.

—2a(p, - pll)u;—:A R; h(2)
-8(R,h(2))" (R,h(2))

-8(rh(@) (th@) <m(sT-2ap)u’u (33
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+2% pu" t-d)xw RTh(2)
a

—2a(p, - pll)u;:A R; h(2)
-8(R,h(2)) (R,h(2)) - 5(r,h(2))" (r,h(2)).

Note that we can have the following equation
uu=u'wiw,u+u'wwu(t—d)

u' (t—d)wywu+u (t—d)wiw,u(t-d)
and be defined u = (u] ,u;,)" intermsof u/ and uj,
.Since wiw, =a’l, we have:

uT
Ul T T U 1
uwwu={u ul, |wlw
a’a |: 1 2.A] a’'"a |:U;:A:| (34)
2 2
= ulTai u + u;:Aai IA—lu;:A

7, 1 .
Let wiw, ={ H u} then we can obtain
221 Z22

u'wiw u(t-d)=uz,u,
+ u;:A ZZZ”;A (t - d) + ulT leu;:/\ (t - d) (35)
+ u;:A (t - d)zz1u1(t - d)
Yo Yo
Ya Ya
u' (t—d)w;w,u=u/ (t—d)Y,u,(t-d)
+ u;:A (t -d )Y22u2:A + ulT (t -d )leuz:/\ (36)
+ u;:A (t —d )Y21ul

Definingww, :{ } , We reach to

01 Op
9, 9
u' (t—d)w!w, u(t—-d)=u/ (t-d)g,u,(t—d)

+Ug, (t=d)gyuz, (t—d)

+Uy (t-d)g,,u;, (t-d)

+up, (t—d)g,u, (t—d)

and, defining wiw, :[ } , We have

@37)

k, k
by parsing w/ :{k“ “} yields to,

21 k22

2%Pu Tt _d)WRTh(2) =

o

29Pu T (1~ d)k,, i h(2)

a,

+29P T (- d)k,RIN(2)
a,

+2%Pu Tt d)k,RINE)
al

22Pa T )k, T h(Z)

1
Regarding (33)-(37), upper-bounded of ©Q can be
acquired that ultimately, it will be used to make final
LMls.
Additionally, by substituting

Uy, =-aR3h(Z)-Bdu,, (t—d(t))-v,, (t) into the
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fist  term  of V, ,  we  have:
d2uy, (1)Qyu,, () =7" (HUTQU7(t) (38)
Where
At) = (U] (1), Uz, (1).v5, (1),
uf (t—d(®)uy, (t—d(t),uz, t-d), (39)
h"(2)R,,h" (D)’
and
U =[0,0,-dQ,,0,-d 4Q,J,0,—daQ,,0] (40)

Now, consider the following term in (25):
— t
—d t—(-i[(t)u;A (6)Q.u,, (0)do

Then, by using Lemma 2 and Lemma 2, the following
relations can be obtained:

—d |} 53, (0)Q,U,, (£)dO =
.[t d(l) TA(H)QZ A(H)d@
d

_ajttfd(t) u;:A (B)Qzuz:/\ (H)dg,, d (t) el Qzel

d ... (&)
_J—d(t)ezQzez_ (ej

d

m Qz . (el ] (41)

d e,
d—d(t) 2

&) (Q Si)(e
- e2 * QZ e2
where & =U,, (t)—u,, (t—d(t)) and

e, =U,, (t—d(t))-u,, (t—d) . combining (38) and
(41), the following upper bound is obtained for V3

1 Qz SlZ e.l.
7' (OUT Q) - U ( QZLJ “2)

Now, If we combine all the above equations, we can
have V., 7 (t)(I®1,)7(t)+7" (1)U QUA(t)
where II is LMIs (8). Due to the considered
Lyapunov-Krasovskii candidate, if V (t)<0 then the

origin is asymptotically stable. Therefore, it can be
simply moved to LMIs (8).
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