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Abstract— Efficient monitoring and quick feedback control are the main requirements of smart cities to guarantee the
stability and safety of urban infrastructures. Real-time monitoring in order to detect anomalies leads to the intensive
data processing and hence requires a new computing scheme to offer large-scale and low latency services. Fog
architecture by extending computing to the edge of the network, provides the ability to accurate and fast detection of
abnormal patterns. A hierarchical fog computing architecture and an efficient hyperellipsoidal clustering algorithm
presented in previous studies have been applied to identify anomalous behaviors in water distribution grids. We created
an urban water distribution grid dataset using Epanet2w simulator software by measuring grid features: pressure and
head for several scenarios. We created 12 distinct events (unexpected behavior) with different scales during the
simulation time. To evaluate the effectiveness of the hierarchical anomaly detection model in water distribution grids,
the data and computing nodes at different layers were executed as docker containers. The evaluation results proved the
efficiency of the proposed hierarchical anomaly detection model with a significant reduction in latency compared to the
centralized scheme, while reaching a significant detection accuracy compared to the centralized one.
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l. INTRODUCTION

The performance, sustainability and safety of
smart cities are achieved by the integration of massive
infrastructure components and services in the areas of
energy, transportation, healthcare, education, smart
homes, smart lighting, and utilities. Fulfilling these
objectives, requires the real-time monitoring and
analysis of the behavior of different infrastructure
components and a quick feedback control system [1].
For monitoring the critical infrastructures in smart
cities like bridges, gas/oil/water pipelines, roads, and
subways, wireless sensor networks (WSNSs) consists
of small, cheap and intelligent sensor node with the
ability to collecting raw data from a large scale area
are the most suitable platform The sensor nodes
monitor system behavior and measure required
parameters. Malfunctions, faults or unexpected events
in the environment may cause unexpected
measurements by the sensors called anomaly. The
anomaly is unusual observations that contradict the
distribution of the majority of the data. In this context,
it is important to identify and report those erroneous
measurements to provide reliable and safe network
performance. The process of detecting unusual
behavior or hazardous events in the system is known
as anomaly detection [2]. Identification of anomalous
behaviors necessitates having a model for the majority
of normal data, and then detection of the anomalies
based on those data vectors, which are significantly
differ from the normal model. Measurements
collected by the sensor nodes form time-ordered data
and anomalies can be detected by analyzing the time
series data [3], [4]. However, sometimes, during the
lifetime of data collection, the underlying
phenomenon that is being observed may alter
(concept drift) [5]. This will cause a change in the data
distribution of the nodes; thus the data distribution
will no longer be stationary rather a non-stationary
one. If a system has a stationary data distribution, the
model of the data from which anomalies are identified
only needs to be constructed once. In contrast, in an
environment with a non-stationary data distribution,
it is necessary to construct a new model at certain time
intervals in order to account for changes in the data
distribution. In non-stationary systems, the data are
temporally correlated, with correlation increasing as
temporal distance decreases. Therefore, in order to
achieve the best generalization error, the model needs
to be formed from data that are temporally close to the
data that will form the testing set [6].

Beside the non-stationary data distribution,
another point to consider is the concept of big data.
The large-scale distributed sensor networks generate
a huge volumes of data, which leads to the challenge
of processing big data. The centralized processing of
high volume of data results in high processing delay,
which is in conflict with the timing requirements of
the time-sensitive applications [7]. Moreover, the
large quantity of data causes high transmission traffic
on the communication networks, and consequently the
high communication delay. Location-awareness
requirement are also necessary for some applications.
Therefore, the cloud computing paradigm faces great
challenges with the explosive amount of big data, the
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network bandwidth limitation, the low speed of data
transmission, and the additional need for location
awareness. Fog computing concept proposed by Cisco
[8], is an efficient alternative to the cloud computing
to meet these requirements. Fog computing extends
the cloud computing architecture to the edge of the
network to perform large-scale services throughout
the network [9], [10]. Offloading some portions of the
computing tasks to the fog nodes with computation
and storage capability at the edge of the network will
satisfy the requirements of low latency, low
communication and location awareness in our
applications. The Fog paradigm is well positioned for
real-time big data analysis.

The concepts of smart monitoring and anomaly
detection can be utilized to obtain the real-time
control of smart grid conditions, and make decisions
towards more efficient resource management. It has
the potential to reduce peak demand, improve energy
conservation, and enable the integration of renewable
energy sources, which guarantees sustainable energy
resource [11]. In this paper, smart monitoring is
leveraged to detect anomalies in an urban water
distribution grid. The urban water distribution grids as
one of the most important infrastructures in the cities
play significant role in the water supplying. However,
several threats like aging and unexpected
environmental events (sudden air temperature change)
endanger the performance of water pipelines. These
threats may result in corrosion, leakage, and failure of
the grid, and consequently severe economic and urban
problems [12].

In this paper, a four-layer hierarchical fog
computing architecture is applied to detect anomalies
in a non-stationary water distribution grid. In this
research, anomalies are supposed as abnormal
observations occurred via unexpected events at the
water grids, which can be detected at any layers based
on the extent of the area in which the data deviation
happens. We define three different types of anomalies
to be detected using the gateway, fog and cloud levels
as follows. Local anomaly, which is due to an element
failure or malfunction like pipeline leakage as a
prevalent failure in the water pipelines. This failure
affects the measured data of one or more sensor nodes
locally where anomaly has occurred and makes their
data as outlier. Regional anomaly, in which adverse
events lead to failures or malfunctions like water
supply disconnection or water pressure reduction at a
region. Regional anomalies affect one or more
locations of a region and change the normal behavior
of sensor nodes in those locations. Global anomaly
commonly caused by some global events like
earthquake or extremely hot or cold weather that make
global failures or malfunctions like water supply
disconnection in the grid. Regarding these three types
of anomalies, the task of detection could be offloaded
at each corresponding layer of the hierarchical
architecture.

The main contribution in this research is the
evaluation of applying a hierarchical fog computing
model for anomaly detection in a non-stationary water
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distribution grid compared to the centralized scheme
in terms of the accuracy of detection and the amount
of data transmissions. We exploited spatial/temporal
correlation of data at each layer to detect existing
anomalies in the created dataset. The results showed
that the hierarchical model have made significant
decrease in the data transmission compared to the
centralized schemes, while achieving a comparable
detection accuracy compared to the centralized one.

The rest of this paper is organized as follows: In
Section Il, we introduce some related works on
anomaly detection, fog computing architecture and
data correlations. In Section 11, an overview of the
hierarchical fog computing scheme and related
methods for anomaly detection is described. Section
IV illustrates the model for anomaly detection in
water distribution grids. Evaluation results are
presented in Section V. Finally, section VI concludes
the paper.

Il.  RELATED WORKS

A. Anomaly Detection with Fog Computing Scheme

The challenges of analyzing the big data created
by smart cities require using novel and high-
performance architecture of fog computing. The key
objective of fog computing architecture is distributing
workloads throughout the network in order to reach
low delay, less communication network overhead and
higher performance computing capability. Bonomi et
al. [13] described the fog computing advantages,
which make it an appropriate choice for a number of
real-time applications with low latency in Internet of
Things (loT) and big data processing. The Fog
paradigm is well positioned for real-time big data
analysis by supporting densely distributed data
collection points, and providing advantages in terms
of superior user experience.

Detecting interesting or wunusual events as
anomalies is an open issue in the data mining
community. Non-parametric anomaly detection
methods, does not have any prior knowledge about the
distribution of the collected data at each time window.
These methods are proper for dynamic environments
where the condition and consequently, the data
distribution may change frequently over the time
(non-stationary). Lyu et al. [14] introduced a non-
parametric distributed fog-empowered method for
anomaly detection in large-scale systems. Authors
utilized the fog computing advantages along with a
hyperellipsoidal clustering algorithm and a scoring
mechanism (ENOF) to detect anomalies at the vicinity
of the network. Their research focus is using fog
architecture for anomaly detection in order to
diminish the latency and communication overheads.

Water distribution grids are prone to various types
of threats, failures and unexpected events.
Conventional anomaly detection techniques have
been widely utilized for detecting anomalous
measurements at these infrastructures. Daniel et al.
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[15] used the full label BATADAL dataset [16] to
identify anomalies in the water distribution grids by
applying several traditional anomaly detection
approaches and proposing an ensemble technique.
This technique uses a quadratic discriminant analysis
(QDA\) process that combines the output of a distance-
based shared nearest neighbors (SOD) algorithm
designed to detect outliers in high-dimensional data
[17] with a local outlier factor (LOF) algorithm [18]
to detect outliers in low-dimensional data to classify
data points into anomalous or normal classes. Authors
considered stationary systems and used supervised
methods for centralized training. In [19], time series
data modeling were applied by researchers to detect
anomalies in smart power grids. They used statistical
methods to detect outliers in the low volume data and
applied RNN to recognize the normal behavior at a
stationary grid with a centralized scheme. The authors
in [20] focus on real-time identification of cyber-
physical attacks on water distribution grids. They
applied supervised machine learning anomaly
detection techniques in stationary water grids by
creating four modules. The first layer checks whether
the given observations follow the right rules specified
for the system, while the second layer finds statistical
outliers. The third module has an Artificial Neural
Network Model (ANN) that predicts the anomalies.
The fourth module contains Principle Component
Analysis (PCA) to classify data as normal or
anomalies.

The aforementioned methods for the anomaly
detection in the smart grids mostly applied the
supervised machine learning methods for model
classification without considering the concept drift in
the data distribution. Moreover, these works mainly
analyzed the system behavior based on a central
scheme, which suffers from the scalability issues, the
high latency and the high communication overhead.
At this research, a hierarchical architecture along with
an unsupervised detection method has been applied
for the anomaly detection problem in a water
distribution grid.

B. Correlation of Data

In WSNSs, in order to certify the full coverage of a
monitored environment, a spatially dense deployment
of sensor node is required [21], [22]. This deployment
results in observing same condition by multiple sensor
nodes. For example, in water distribution grid, sensor
nodes measure same physical features for water at
pipes; consequently, they have the same data
distribution. A set of sensor nodes within a spatial
proximity, which measure the same phenomenon have
the spatial correlation of their data. These spatial
correlation among gathered data could be used to
detect anomaly at that time.

In addition to spatial correlation, temporal
correlation of data may occur. When the underlying
features of the phenomenon that is being recorded
change gradually over the time, temporal correlation
arises between consecutive data points. Data
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measurements on an individual sensor node become
temporally correlated due to the nature of the
phenomenon that is being monitored; for example, in
distribution grids, pressure measurements at each
consumer node exhibit a predictable behavior pattern
(gradual change) during the lifetime of simulation.
Temporal correlation can also be used to detect
anomalies by comparing data point of several
sequential time windows [6].

Therefore, spatial-temporal correlation of data
may occur in WSNs where data collected on different
nodes and at different times, exhibit a predictable
relationship. The spatial, temporal and spatial-
temporal correlation of data can be exploited to
identify an anomaly and determine its cause [6].
Vuran et al. [23] studied data correlations in order to
reduce energy consumption in a WSN. The objective
of this research is to exploit spatial/temporal
correlation of the WSN paradigm to enable the
development of efficient communication protocols.
They use spatial and temporal correlation for efficient
medium access and reliable event transport in WSN,
respectively.

Anomalies caused by errors occur independently,
whereas anomalies caused by events exhibit spatial
and/or temporal correlation. At this paper, we defined
anomalies occurred by unexpected events with
spatial/temporal correlation.

I1l. FOG COMPUTING ARCHITECTURE
A. Distributed Schemes

In WSNs, raw data are recorded by the individual
sensor nodes, which are dispersed in a physical
environment and monitor the environmental
conditions of their vicinity. The spatial correlation of
sensor nodes ensures the similar experiences of one
sensor node to the other close nodes, hence it is useful
for these nodes to share identified characteristics of
their data for better perception of the system behavior.
This may lead to a distributed learning structure where
information describing the data of one sensor node is
communicated with other nodes to build a
comprehensive model of the environment to identify
the outliers and the anomalous sensor nodes
accurately [24]. Learning in a distributed environment
is divided into two distinct categories; hierarchical
and central.

In the centralized approach [15], [19], [20], all
sensor data are transmitted via multiple hop
communication to a central node. The central node
constructs the data model using the whole data, and
anomalies are detected by analyzing the created
model. High accuracy in the anomaly detection
process is attained due to the computational power of
the central node that enables it to run more
computationally  complex anomaly detection
algorithms on the immense amounts of data. Though,
the communication costs in transmitting all local
nodes data measurements to a central node could be
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prohibitive. In addition, scalability issues when the
measurement numbers scales up become a noticeable
problem. Finally, the delay incurred by the
transmission of the massive data to a central node and
processing that big data to detect anomalies increases
the response time for online applications. Therefore,
cloud computing architecture (centralized approach)
cannot meet the requirements of scalability,
communication cost and timely response in the large-
scale real-time applications.

Hierarchical learning attempts to limit the
transmissions to a central node by building sub-
models locally and merging sub-models to a complete
model as data goes up in the hierarchy. An
intermediate node in the hierarchy run the same
instance of the model fusion and anomaly detection
algorithms to first build a parent model from received
sub-models and then check for anomalies.
Intermediate nodes merely transmit information about
the local models to the parent node in the higher layer
rather than the whole data from sensor nodes in the
network. Summarized information that contains the
form of model parameters and/or anomalies, is
transmitted to ensure a reduction in transmission time
and load in transmitting nodes. Furthermore, the
hierarchical scheme supports location-awareness of
anomalies and allows different types of anomalies to
be detected based on the range of anomaly, namely,
local anomalies, regional anomalies and global
anomalies, using the fog and cloud level cluster
information. However, the hierarchy can affect the
accuracy of anomaly detection by indirect information
exchange among all the end nodes either.

pem—__ Y &
Cloud Lays£ 501 >

Fog Layer

W, GwW1 ) W Gw2 ) Gateway Layer

J D J Sensing Layer

Fig 1. Hierarchical four-layer fog computing architecture.

Considering the scale of water grids, we use a
four-layer hierarchical fog computing architecture
(Fig. 1) for anomaly detection as follows [1]:

e Sensing layer: which is comprised of numerous
sensor nodes monitoring the environment features and
record required data at the regular time intervals. At
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the end of each time window, sensor nodes forward its
raw data into the upper layer (gateway layer).

e Gateway layer: which contains intermediate
nodes with relatively low-power and high
performance capability. Each gateway devices is
connected to and responsible for a local group of
sensors in its vicinity. Gateway nodes receive the
collected raw data from their local sensors and process
them to detect anomalies. The gateways output
involves: (1) summary information of the processed
data to be sent to the next upper layer in the hierarchy,
(2) a signal message to be sent to one or more of its
local sensors to alarm about the detected malfunction
or fault at them.

e Fog layer: consists of a number of nodes with
intermediate storage and computing capability
connected to a group of gateway nodes. Fog nodes
should process transmitted summary information
from the gateways to identify the potential anomalous
events. They merge received information from the
gateway layer, analyze them and send the summaries
to the cloud layer. They also make quick control
response to the gateway layer when an unexpected
event is detected.

e Cloud layer: All the results of cluster analysis at
the fog layer are communicated to the cloud layer, for
more comprehensive and precise system analysis and
global monitoring. This layer provides city-scale
monitoring and centralized controlling via a cloud
computing data center. Next, we describe a clustering
algorithm uses hyperellipsoidal clusters to model the
collected data of sensor nodes.

B. Clustering Algorithm

Based on the statistical and machine learning
algorithms, the anomaly detection approaches are
classified as follows: clustering-based approaches,
classification-based approaches, dimension-
reduction-based approaches, and hybrid approaches
that combine multiple technologies together [25]. The
clustering approach, which is the process of dividing
data points to several groups such that each group
contains highly similar data points, has been broadly
applied as a non-parametric knowledge discovery tool
in the systems with restricted resources, such as the
wireless sensor networks. In the data clustering based
approaches, the data are first clustered and then
anomaly detection method is applied to detect the
outliers and anomalous clusters [26]. We applied
unsupervised HyCARCE [26] algorithm as a
computationally efficient clustering algorithm in our
anomaly detection platform. This algorithm can
model many different data distributions including
hyperspherical to linear. Besides, the number of
clusters is chosen by an automatic mechanism, and a
linear computational overhead is imposed in terms of
the number of data vectors processed. This algorithm
has an input parameter: initial grid cell width w. The
main steps of the HyCARCE algorithm are as follows
[26]:
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Step 1. At first, the input space is divided into a set
of same size cells with d-dimension. Then, empty
cells are removed.

Step 2. The grid cells that contain a small number
of data points are removed. If the cardinality of an
initial cell is less than the mean value minus the
standard deviation value of all data points, the grid
cells is deleted. Then, the clusters is created over the
data points of the remaining cells. The mahalanobis
distance with the sample mean p of data points in a
cell having covariance matrix X is used to make
hyperellipsoid clusters around the mean in each cell
(Eg.1). The threshold ¢ = ()(g)p (i.e., the inverse of

the chi-squared statistic with d-degrees of freedom) as
the effective radius results in a hyperellipsoids with at
least p = 95% coverage of the data points of a cell.
This threshold is used to make the boundary of
hyperellipsoids. Each data point x that satisfies the
following equation falls inside the hyperellipsoid e.

e(wZLt)={xe RU(x-— W 27t (x— <
t} @

Step 3. At this step, the algorithm enlarges the
ellipsoids to better fit the shape of the cluster. The
enlargement is achieved by scaling the inverse
covariance matrix X ~' by the scaling factor Sy as
shown in Eq. (2). The amount of the scaling factor
mainly depends on the distribution of the data. In a
very dense data distribution, a value close to one can
be chosen for this factor, in contrast to sparser data
distributions the smaller value is more suitable [25].
New mean and new covariance matrix are
recalculated based on the new data points inside the
enlarged ellipsoids and ellipsoid boundaries are
adjusted to incorporate the new data points. These
processes continue until the number of new added
data points to the new clusters becomes less than a
threshold.

z1 enlarged = Sf x z7t 2

Step 4. At the last step, the algorithm identifies the
redundant ellipsoids which their center are very close
to each other and delete the one with less number of
the data points. After removing the redundant
ellipsoids, the remaining ellipsoids mark the
boundaries of the clusters. Next, we discuss an
algorithm that analyzes these hyperellipsoidal clusters
and provides an outlierness score to identify
anomalous clusters and detect anomalies.

C. Spatial Correlation

Once a set of hyperellipsoidal clusters are created,
a scoring mechanism should be applied to identify the
normal and anomalous clusters. Regarding the spatial
correlation of data at each time window, we use ENOF
[26] algorithm to classify clusters as the normal and
anomalous base on an outlierness score for each
ellipsoid. ENOF mainly relies on the distance metric
and the use “focal distance” between two ellipsoids to
find close neighborhoods of each ellipsoid [27]. Then,
the outlying ellipsoids are identified relative to their
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close neighborhood, with respect to the densities of
their neighborhoods. ENOF mechanism calculates an
outlierness scoring parameter by comparing the
reachability density of each ellipsoid with the average
reachability density of its close neighbors in order to
identify the ellipsoids which are outlying relative to
their close neighborhoods. In particular, an ellipsoid
that belongs to a dense group of ellipsoids has a
smaller outlier score than an ellipsoid that is far from
this group of ellipsoids. This is a ratio between the
average neighborhood reachability density of the
neighbors and the ellipsoids’ own neighborhood
reachability density. This ratio becomes 1 when an
ellipsoid becomes comparable to its neighboring
ellipsoids. For the faraway ellipsoids from their
neighbors, the ENOF becomes significantly higher
than 1. ENOF scores are used to determine the
anomalous clusters via comparing cluster scores with
a Threshold computed using the ENOF scores.

The ENOF procedure can only work efficiently,
when an event affects a number of nodes at one layer
and a part of ellipsoids or data deviate from the rest of
ellipsoids or data. Then, the procedure detects the
outliers in comparison with the normal data of each
time window. Although, some events similarly affect
the behavior of all nodes at a location and
consequently, the whole data model of that location.
Hence, the ENOF algorithm cannot detect these
anomalies effectively. At the next, we discuss
temporal correlation and introduce a method to detect
these anomalies based on the temporal similarity.

D. Temporal Correlation

As mentioned in introduction, alterations in the
condition of underlying environment that is being
monitored make a non-stationary system, in which
collected data changes during the lifetime of the
environment. Data distribution of sensor nodes
gradually changes along with the environment
changes. Since the data measurements at close
intervals are expected to be more correlated, temporal
correlation can be exploited to detect unexpected and
sharp data changes portending hazardous events.
Therefore, we compare the data models of two
consecutive time windows in order to detect abrupt
changes and accordingly the temporal anomalies.

The procedure uses the similarity of two
consecutive models to detect temporal changes. It
compute these similarity as follows: At first, the
procedure checks whether two models are exactly
same or there is a change. If the model has changed,
it calculates the amount of change (model shift) by
computing the average focal distances of each
ellipsoid in the current model from all ellipsoids of the
previous one. Then, it calculates the average of these
average distances computed for each ellipsoid. This
value is compared with the temporal threshold T to
detect abrupt change and unusual events. The
temporal change greater than T notifies an anomaluy.
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Algorithm 1: Temporal Change Detection

Role: Computing nodes (gateway, fog, cloud) calculate
the temporal similarity between two models (i, j)

{
Compare tow models (i, j)
If (not copy)
{
for each ellipsoid ey in model i

compute the focal distance of ellipsoid
ey from the all ellipsoids of model j.

calculate the average t, of these focal
distances.

compute t;; as the average of all computed t;
for each ellipsoid.

if (t; <T)
“no temporal anomaly detected.”
else

“temporal anomaly detected.”

Fig. 2 shows the measured accuracy values for the
spatial and spatial-temporal correlations. A four-layer
fog computing architecture and a water grid dataset
were used.
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Fig 2. accuracy in anomaly detection with spatial and spatial-
temporal correlations.

E. Merging Algorithm

Fog or cloud nodes at the upper layers should
firstly merge their received clusters from the lower
layers in order to obtain their own level clusters.
Clusters can be merged in a pairwise manner. For
each pair of clusters e; and e;, with mean vectors ;
and u;, covariance matrices X; and Xj, and the
number of cluster elements N; and N;, the merged
(hyperellipsoidal) cluster e, will have the mean
vector p,,, covariance matrix X, and the number of
cluster elements N,,, computed as follows [27]:
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Many researchers choose Euclidean distances as a
metric for measuring the similarity of two clusters.
Two clusters should be close to one another and they
should have a large number of data points in common
to be merged; there should not be a significant gap
where no data sample exists [28]. Accordingly, we
used focal distance [27] between two ellipsoids as a
metric for choosing two clusters to merge (Fig. 3). If
the focal distance of two ellipsoid is less than a
merging threshold R, two ellipsoid are merged. Next,
we present the introduced anomaly detection methods
to identify anomalies in the water distribution grids
with the four-layer fog computing architecture.

Fig 3. Focal distances between two ellipsoids.

I WATER DISTRIBUTION GRID
MODELING

In this section, the overview of the hierarchical
model for anomaly detection is presented. A smart
water grid should have ability to monitor the safety of
pipelines throughout the grid and detect potential
dangerous events. By monitoring and analyzing the
physical parameters of water (pressure, flow and
head) during a time window, unexpected behaviors
can be detected. These behaviors may indicate a
system failure or an emergency event. Indeed, the
basis of the scheme is the real-time surveillance of the
water distribution grid, processing the received data
and accurate and quick detection of unexpected events
as anomalies.

The hierarchy of the scheme alleviates the
computational overhead imposed at the cloud.
Further, using the computing nodes at the edge of the
network helps early identification of anomalies along
with minimizing the data transmission. The detailed
functions of each node in the hierarchy are as follows:

Volume 13- Number 2 — 2021 (12 -23)

e Each sensor node gathers the raw data of water
pipelines during a time window and transmits its
measured data to the upper connected gateway node.

e Gateway nodes at each time window, after
receiving all the raw data from their associated sensor
nodes, perform clustering on the data using the
hyperellipsoidal clustering algorithm (HyCARCE) to
model the gateway level clusters. Then, the ENOF
algorithm is applied on the clusters to find the outliers
and anomalous clusters as the local level anomalies.
Gateway raises alarm messages for any possible
detected anomalies. However when an undesirable
event affects all the sensor nodes in a time window the
gateway will not be able to detect anomalies by
applying ENOF on the clusters. This is where the
temporal correlation comes to play. Comparing the
temporal difference of two constitutive models, abrupt
change in the current model could be detected. Abrupt
change indicates an unexpected event in the
underlying environment monitored. This detection is
alarmed by the gateway nodes. Then, the gateway
clusters summary information (ID, mean, and
covariance matrix) are communicated to the fog nodes
at the next upper layer for regional analysis.

e The Fog nodes merge the received cluster data of
their sub-ordinate gateway nodes based on the
procedure explained in the previous section by using
a user-defined parameter R as the merging threshold .
ENOF is applied on the merged clusters to classify the
anomalous and normal clusters and find the spatial
regional level anomalies. Then temporal similarity is
calculated to detect temporal anomalies at this level.
Since the regional anomalies affect nearly all parts of
a region, all sensor data of one or more gateways are
affected; the sensor nodes of these gateways are
labeled as anomalous and the fog node creates an
alarm signal to their connected gateways. After that,
the fog level clusters will be transmitted to the upper
layer for global analysis.

e The received clusters at the cloud layer are
merged in order to form the cloud layer clusters. Then,
ENOF is exploited to find spatial anomalies at the
cloud layer and consequently the temporal similarity
is exerted to identify abrupt temporal changes. If a
global anomaly have been occurred in the water
distribution grid, the cloud can detect that and send an
alarm signal to the related nodes.

IV. EVALUATION RESULTS

In this section, the accuracy and percentage of the
communication saving for the hierarchical fog
computing scheme are evaluated compared to the
centralized scheme in the previous studies ([15], [19],
and [20]). An evaluation test-bed were crated as a set
of Docker [29] containers for emulating the four-layer
fog and centralized architectures. Any intermediate
nodes in the hierarchy executed as a container with
predefined resource capacity. For emulating the
sensor nodes functionality, a containerized Node-Red
[30] process were used that successively queries
measurements from a database node and transmits to
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the upper layer interval by interval using MQTT [31]
protocol. All the transmitted messages are JSON
strings containing the sensor data, intermediate
models or anomaly alerts.

A. Data Sets

For this research, we made a real-world dataset by
simulating a sample of water distribution grid in a city
[32]. Epanet 2 + WaterNetGen simulation software
[33] was used for designing and implementing an
urban water distribution grid. The software is able to
perform extended-period simulation of the hydraulic
and water quality behavior within pressurized pipe
networks, which consist of pipes, consumer nodes,
storage tanks, and so on. It can be used to track the
flow of water in each pipe, the pressure and head of
water at each consumer node, the height of the water
in each tank, a chemical concentration, the age of the
water, and source tracing throughout the network
during a simulation period.

A water distribution grid consists of three distinct
three streets regions were designed by the software,
in each region each including six consumer nodes was
deployed in the software. The hierarchical fog
architecture configuration used for the aforesaid data
set are illustrated in Fig. 4. Each consumer node was
monitored by a sensor node. Hence a total of 54 sensor
nodes were used to cover this grid. Streets and regions
are monitored by a gateway and fog nodes
respectively. The whole grid is under the surveillance
of one cloud node. In contrast, in the centralized
configuration, all 54 sensor nodes are monitored by a
central node and the data is transmitted to it by multi-
hop communications.

The Epanet software was set to record water
parameters at the consumer nodes every 30 seconds
during the simulation time to make the dataset. The
sensor nodes send the collected measurements during
a 30 minutes time window to the gateway nodes. The
Simulation lasted six hours and at each time window,
4300 two-dimension data vectors were measured by
each sensor node, having normal distribution (proved
by the Kolmogorov—Smirnov test) with various
cluster overlaps degree.

&
® @ @
OO DO @@

Fig 4. The hierarchical fog architecture configuration used for the
evaluation.)
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Fig 5. Scatter plot of all combined data at a time window.

Fig. 5 shows the scatter plot of the measurements
made by all 54 sensor nodes in a time window. This
plot shows three distinct colors denoting the measured
data at each region during a time window. We used
the maximum/ minimum value of the combined data
of all sensors to normalize data to the range [0, 1]. As
you can see, an anomaly is observed in the plotted
data. It is a small collection of data vectors in the
lower right hand corner of the plot that differs
significantly from the majority of the data. This
anomalous data constitutes a part of the data from the
region 3 (fog node 3). We labeled these visually
obvious anomalous data vectors as anomalies, and the
rest of the data vectors as normal for our evaluation
purposes.

B. Accuracy

Here, we compared the detection accuracy of the
proposed hierarchical scheme with the centralized
anomaly detection scheme considering the temporal
and spatial correlations. In the centralized detection,
anomalies were identified based on all the 54 sensors’
data at each sliding window. The accuracy of the
scheme was assessed based on these two parameters:
(i) true positives (TP), and (ii) true negatives (TN).
The number of correctly detected anomalous behavior
are defined as TP, and the number of correctly
detected normal behavior are defined as TN. Using
these at each time window, the accuracy parameter
was computed as accuracy = (TP + TN)/n, where
n was the number of data vectors in each sliding
window [14]. Finally, the overall accuracy was
considered as the average of all computed accuracies
at each time window.

Experiments repeated using different values for
two parameters of the HyCARCE and merge
algorithms: cell size w and the merging threshold R
[14]. Fig. 6 shows the results for the accuracy
measurement with different window sizes, while
keeping the merging threshold R fixed at 0.005. The
scaling factor of HyCARCE is set to 0.95, the z and k
values of the ENOF are set as 3 and 25% respectively,
and the temporal threshold T is set .005 in this
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research. The research findings affirm the close
accuracy to the centralized scheme; the smaller cell
sizes result in the closer accuracy to the centralized
scheme. Because, using lower w produces more
number of clusters leading to similar results to the
centralized scheme.

In addition to the cell size, the merging threshold
can also affect the detection accuracy. Fig. 7
illustrates the accuracy results for a range of R with
the fixed cell sizew = 0.01. As you can observe in
the Fig. 7, in the bigger R values more number of the
clusters will be merged which causes much more
information loss and less accuracy. While in the lower
R values, less merged clustered results in a better
accuracy.

=2} ©
S S

Accuracy

N
S

Centralized Scheme
20

Hierarchical Scheme

0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04

w

Fig 6. Example Anomaly detection accuracy with different values
of w.

100

20 Centralized Scheme

Hierarchical Scheme

0 0.005 0.01 0.015 0.02 0.025

Fig 7. Example Anomaly detection accuracy with different
values of R.

C. Communication Traffic

We compared the hierarchical fog computing
scheme with the centralized cloud computing scheme
based on the number of inter-layer data transmissions.
In the fog model, the raw data is just transmitted
between the sensor and the gateway layers, after that
only the clustering information (model of the data) is
communicated along the hierarchy. Hence, it is clearly
expected that a notable reduction in communication
traffic will be achieved in this scheme. This is in
contrast to the centralized scheme where no

Volume 13- Number 2 — 2021 (12 -23)

intermediate data model is constructed and all
transmissions involve detailed sensor measurements.

We performed simulations for different cell sizes
w ranging from 0.007 to 1 in 0.05. Each sensor node
in the centralized scheme is assumed to be three hops
away from the cloud and the raw data vectors are
passed through three communication hops to reach the
cloud. The saving percentage in communication load
was calculated based on Eq. (6) that NTH denotes the
total number of the transmissions (data and cluster
information) in the hierarchical scheme and NTC
denotes the number of the transmissions in the
centralized Scheme.

Saving Percantage = (1 - %) * 100 (6)

The total reduction in traffic for different cell
sizes and different values of R are shown in Fig. 8 and
9 respectively. In Fig. 8, the fixed merging threshold
R =.005 and in the Fig. 9, the fixed cell sizew =
0.01 were used.

It was observed that the larger the cell size is
chosen, the higher reduction in communication traffic
is achieved. Larger cell sizes result in a clustering with
fewer numbers of clusters which causes a smaller data
model to transmit to the upward layer (Fig. 8). It
argument is also true for explaining the results in Fig.
9.

100
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Saving Percentage (%)

20
Hierarchical Scheme

Fig 8. The percentage of communication saving in the
hierarchical architecture for different cell sizes.
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Fig9. The percentage of communication saving in the
hierarchical architecture with different R values.
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Fig 10.  Comparison of the execution times of HYCARCE and
K-means Algorithms for different dataset sizes.

D. Clustering Performance

The results of comparing HyCARCE clustering
algorithm with the well-known K-means algorithm in
terms of execution time and accuracy are presented
here. Both HyCARCE and K-means algorithms were
applied on the dataset to create clusters. As shown in
Fig. 10, for the small dataset sizes, two algorithms had
similar execution times, however as the size of dataset
increases the HyCARCE algorithm create clusters
much faster. To compare the accuracy of algorithms,
three internal metrics: Silhouette Coefficient (the

Davies Bouldin HyCARCE K-means Calinski_harabasz

Nl =

higher value means better quality), Calinski_Harabasz
(the higher value means better quality) and Davies
Bouldin (the lower value means better quality) [34]
were used. Fig. 11 shows the result of comparison of
two algorithms in terms of accuracy. Obviously,
opposed to k-means, the accuracy of the HyCARCE
algorithm is very sensitive to the selection of cell size.
As shown in this figure w=0.01 worked the best for
HyCARCE. However overall, k-means outperformed
HyCARCE in terms of accuracy.

V. CONCLUSIONS

Fog computing is an interesting scheme for
collecting and processing the expanding amounts of
10T data in large scale surveillance applications. In the
time-critical applications, quick and accurate
detection of the anomalous behaviors in the
environment is the most important challenge. We used
a four-layer fog computing architecture in order to
detect anomalous consumption patterns in water
distribution grids. The hierarchical architecture makes
possible the early and accurate identification of
various ranges of anomalies. This scheme resulted in
real-time detection of anomalies with low inter-layer
communication traffic compared to the centralized
schemes. Evaluation results proved that the
hierarchical fog computing architecture could reach to
acceptable anomaly detection accuracy compared to
the centralized scheme. As the future work, we aim to
apply the hierarchical clustering algorithm to locate
faulty elements in distribution grids.
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Example Comparisons of the accuracy of HYCARCE and K-means algorithms based on: (a) Davies Bouldin metric, (b)

Calinski_Harabasz metric and (c) Silhouette Coefficient metric for different values of W.

REFRENCES

[1] Tang, Zhen Chen, G. Hefferman, S. Pei, T. Wei, H. He,
Q. Yang, “Incorporating Intelligence in Fog Computing
for Big Data Analysis in Smart Cities,” IEEE
Transactions on Industrial Informatics, vlo.13, No. 5,
October 2017.

[2] A. Gaddam, T. Wilkin, and M. Angelova, “Anomaly
detection models for detecting sensor faults and outliers
in the 10T-a survey,” 13th International Conference on
Sensing Technology (ICST). IEEE, pp. 1-6, 2019.

International Journal of Information & Communication Technology Research

[3] Andrew A.Cook, Goksel Misirl, Zhong Fan, “Anomaly
Detection for 10T Time-Series Data: A Survey,” IEEE
Internet Things J., vol. 7, pp. 6481-6494, 2020.

[4] Jiugi Zhang, Di Wu, Benoit Boulet, “Time Series
Anomaly Detection for Smart Grids: A Survey,” IEEE
Canadian Electrical Power and Energy Conference,
2021.

[5] C.H. Tan, V.C. Lee, and M. Salehi, "MIR_MAD: An
Efficient and On-line Approach for Anomaly Detection
in  Dynamic Data Stream,"” 2020 International



http://dx.doi.org/10.52547/ijict.13.3.12
http://journal.itrc.ac.ir/article-1-486-en.html

D) icr

[ Downloaded from journal.itrc.ac.ir on 2025-11-21 ]

[ DOI: 10.52547ijict.13.3.12]

(6]

[71

(8]
(9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

Conference on Data Mining Workshops (ICDMW), pp.
424-431, 2020.

O’Reilly, A. Gluhak, M. A. Imran, and S. Rajasegarar,
“Anomaly detection in wireless sensor networks in a
non-stationary environment,” IEEE Communications
Surveys Tutorials, vol. 16, no. 3, pp. 1413-1432, Third
2014.

Z. Zhou, N. Chawla, Y. Jin, and G. Williams, “Big data
opportunities and challenges: Discussions from data
analytics perspectives,” [IEEE Comput. Intell. Mag., vol.
9, no. 4, pp. 62—74, Nov. 2014.

Cisco, C. V. N. I. (2015), Global Mobile Data Traffic
Forecast Update, 2019 (white paper).

J. Gubbi, R. Buyya, S. Marusic, and M. Palaniswami,
“Internet of Things (IoT): A vision, architectural
elements, and future directions,” Future Gener. Comput.
Syst., vol. 29, no. 7, pp. 1645-1660, 2013.

Miorandi, S.Sicari, Fracesco D.Pellegrini, |. Chlamtac,
“Internet of things: Vision, applications and research
challenges,” Ad Hoc Networks journal, vol. 10,
pp.1497-1516, 2012.

R. Moghaddass and J. Wang, “A Hierarchical
Framework for Smart Grid Anomaly Detection Using
Large-Scale Smart Meter Data, ” in IEEE Transactions
on Smart Grid, vol. 9, no. 6, pp. 5820-5830, Nov. 2018.
L. Mart'1, N. Sanchez-Pi, J. M. Molina, and A. C. B.
Garcia, “Anomaly detection based on sensor data in
petroleum industry applications,” Sensors, vol. 15, no.
2, pp. 2774-2797, 2015.

Flavio Bonomi, Rodolfo Milito, Preethi Natarajan, and
Jiang Zhu, “Fog Computing: A Platform for Internet of
Things and Analytics,” Big Data and Internet of Things,
2014.

L. Lyu, J. Jin, S. Rajasegarar, X. He, and M.
Palaniswami, “Fog-empowered anomaly detection in
internet of things using hyperellipsoidal clustering,”
IEEE Internet of Things Journal, 2017.

Daniel Ramotsoela, Gerhrad Hancke, and Adnan
M.Abu-Mahfouz, “Attack detection in  water
distribution systems using machine learning,” Hum.
Cent. Comput. Inf. Sci., 2019.

Taormina, R, Galelli, S, Tippenhauer, NO, Salomons,
E, Ostfeld, A, Eliades, DG, Aghashahi, M,
Sundararajan, R, Pourahmadi, M, Banks, MK, “Battle
of the Attack Detection Algorithms: Disclosing cyber-
attacks on water distribution networks,” Journal of
Water Resources Planning and Management, vol. 144,
no. 8, 2018.

C.C. Aggarwal, “High-Dimensional Outlier Detection:
The Subspace Method. In Outlier Analysis,” Springer
New York: New York, NY, USA, pp. 135-167, 2013.
Markus M.Breunig, Hans-Peter Kriegel, Raymond
T.Ng, Jorg Sander, “LOF: Identifying Density-Based
Local Outliers, ” In Proceedings of the 2000 ACM
SIGMOD International Conference on Management of
Data, SIGMOD ’00, Dallas, TX, USA, 16-18 May
2000; Association for Computing Machinery: New
York, NY, USA, pp. 93-104, 2000.

Q. Weiet al., "GLAD: A Method of Micro-grid
Anomaly Detection Based on ESD in Smart Power Grid,
” 2020 IEEE International Conference on Power,
Intelligent Computing and Systems (ICPICS), pp. 103-
107, 2020.

Abokifa, Ahmed A., Kelsey Haddad, Cynthia Lo, and
Pratim Biswas, “Real-time identification of cyber-
physical attacks on water distribution systems via
machine learning—based anomaly detection techniques,
” Journal of Water Resources Planning and
Management, vol.145, no. 1, 2019.

T. Clouqueur, V. Phipatanasuphorn, P. Ramanathan,
and K. K. Saluja, “Sensor deployment strategy for target
detection,” in Proc. 1st ACM, Int. Workshop on
Wireless Sensor Networks and Applicat., Atlanta, GA,
pp. 42-48, Sept. 2002.

Susana C.Gomes, Susana Vinga, and Rui Henriques,
“Spatiotemporal Correlation Feature Spaces to Support
Anomaly Detection in Water Distribution Networks,”
Water, vol. 13, no. 18: 2551, 2021.

M. C. Vuran, O. B. Akan, and I. F. Akyildiz, “Spatio-
temporal correlation: Theory and applications for

Volume 13- Number 2 — 2021 (12 -23)

wireless sensor networks,” Comput. Netw., vol. 45, no.
3, p. 245, 2004.

[24] S. Rajasegarar, C. Leckie, M. Palaniswami, J.C.
Bezdek, “Distributed anomaly detection in wireless
sensor networks,” 10th IEEE International Conference
on Communication systems, Singapore, pp. 1-5, 2006.

[25] Jinfang Jiang, Guangjie Han, Li Liu, Lei Shu, Mohsen
Guizani, “Outlier Detection Approaches Based on
Machine Learning in the Internet-of-Things, ” IEEE
Wireless Communications, vol. 27, no. 53-59. 2020.

[26] M. Moshtaghi, S. Rajasegarar, C. Leckie, and S.
Karunasekera, “An efficient Hyperellipsoidal clustering
algorithm for resource-constrained environments,”
Pattern Recog., vol. 44, no. 9, pp. 2197-2209, 2011.

[27] Sutharshan Rajasegarar, A. Gluhak, M. A. Imran, M.
Nati, M. Moshtaghi, C. Leckie, M, Palaniswami,
“Ellipsoidal neighborhood outlier factor for distributed
anomaly detection in resource constrained networks,”
Pattern Recognition, vol. 47, no. 9, pp. 2867-2879,
2014.

[28] P.M. Kelly, “An algorithm for merging hyperellipsoidal
clusters,” Los Alamos National Laboratory, Tech. Rep,
1994.

[29] Docker Desktop on Windows,
https://docs.docker.com/desktop/windows/install/

[30] “Node-RED Tools”, https://nodered.org/.

[31] “Mosquitto Documentation”, https://mosquitto.org/.

[32] S. Mirzaie, M. AvazAghaei and O. Bushehrian,
"Anomaly Detection in Urban Water Distribution Grids
Using Fog Computing Architecture," 2021 29th Iranian
Conference on Electrical Engineering (ICEE), pp. 591-
595, 2021.

[33] “Epanet User Manual”,
https://epanet22.readthedocs.io/en/latest/, 2020.

[34] https://scikit-learn.org/ stable/ modules /
clustering.html#clustering-performance-evaluation.

Sara Mirzaie received her
B.Sc. degree in Computer
Software Engineering from
Shahid Chamran University,
Ahvaz, Iran, in 2007, and M.Sc.
degree in Computer Network
Engineering from the Yazd
University, Yazd, Iran, in 2010.
She is a Ph.D. candidate in Computer Engineering at
Shiraz University of Technology, Shiraz, Iran. Her
research interests are: 10T, Smart Cities, Anomaly
Detection and Data Mining.

Mohammad Reza AvazAghaei
received his B.Sc. degree in
Computer Engineering from Fasa
University, Fasa, Iran, in 2018, and
M.Sc. degree in Computer Network
Engineering from Shiraz University
of Technology, Shiraz, Iran, in
2021. His research interests are 10T, Anomaly
Detection and Network programing.

International Journal of Information & Communication Technology Research


https://docs.docker.com/desktop/windows/install/
https://nodered.org/
https://mosquitto.org/
https://epanet22.readthedocs.io/en/latest/
http://dx.doi.org/10.52547/ijict.13.3.12
http://journal.itrc.ac.ir/article-1-486-en.html

[ Downloaded from journal.itrc.ac.ir on 2025-11-21 ]

[ DOI: 10.52547ijict.13.3.12]

Volume 13- Number 2 — 2021 (12 -23)

Omid Bushehrian received his
B.Sc. in Software Engineering
from Amirkabir University of
Technology  (Tehran  poly-
techniques) in 2001. He received
his M.Sc. and Ph.D. degrees from
Iran University of Science and
Tech (IUST) in  Software
Engineering in 2003 and 2008
respectively. He is currently an Associate Professor at
Shiraz University of Technology working on different
areas related to the Distributed Computing. His
research interests are loT, Application Migration to
Cloud and Distributed and Large-Scale Systems. He
also has been working in telecom companies since
2008 as software project manager and consultant.

il

International Journal of Information & Communication Technology Research



http://dx.doi.org/10.52547/ijict.13.3.12
http://journal.itrc.ac.ir/article-1-486-en.html
http://www.tcpdf.org

