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Abstract—Future mobile communication networks particularly 5G networks require to be efficient, reliable and agile
to fulfill the targeted performance requirements. All layers of the network management need to be more intelligent due
to the density and complexity anticipated for 5G networks. In this regard, one of the enabling technologies to manage
the future mobile communication networks is Self-Organizing Network (SON). Three common types of SON are self-
configuration, Self-Healing (SH) and self-optimization. In this paper, a framework is developed to analyze proactive SH
by investigating the effect of recovery actions executed in sub-health states. Our proposed framework considers both
detection and compensation processes. Learning method is employed to classify the system into several sub-health
(faulty) states in detection process. The system is modeled by Markov Decision Process (MDP) in compensation process
in which the equivalent Linear Programing (LP) approach is utilized to find the action or policy that maximizes a given
performance metric. Numerical results obtained in several scenarios with different goals demonstrate that the optimized
proposed algorithm in compensation process outperforms the algorithm with randomly selected actions.

Keywords-component; fifth generation cellular network (5G), self-organizing networks (SON), self-healing, fault detection
and compensation, markov decision problem (MDP), linear programming, machine learning, K-means clustering

with new challenges in order to satisfy the user

.~ INTRODUCTION expected quality of service (QoS) and quality of

Exponential increase in connected devices and  experience (QoE) [1]. Obviously, the above challenges
variety of services with the diverse requirements in 56~ will be more critical when new technologies such as
networks involve the network management systems  network slicing [2] and mobile edge computing (MEC)
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are utilized [3]. This problem demands management
and operation of the network to be more autonomous
smart and agile. One of the well-known concepts in
agile and intelligent management of the network is
SON where is discussing in the literature in the past
couple of years. Hence, by employing SON in the
mobile communication networks, network
management will be more smart, automated and
adaptive while human intervention will be minimized

[4]

3GPP standardization from releases 8 to 14
categories different issues of SON into three major
types, i.e., Self-Configuration, Self-Healing and Self-
Optimization [4]. SON operating in several areas such
as multi Radio Access Technology (multi-RAT)
networks, Management and Orchestration (MANO),
vertical industries and network slices are set in
managing of 5G networks [5]. Healing process which is
the focus of this paper contains monitoring the
performance, detecting faults and failures, activating
compensation and recovery phases and finally
analyzing the results. In fact, healing improves the
network reliability and simultaneously decreases the
cost of operation [6].

Recently, meaningful efforts and researches have
been done on SON as a very beneficial solution in
increasing the performance of the network and users’
quality of experience and at the same time in decreasing
the costs related to management and operation of the
network. However, several challenges that make
current SON algorithms to be inappropriate for 5G
communication networks. Thus, [8] proposes a
comprehensive framework to enrich SON algorithms
with available big data. In fact, there is currently a huge
amount of data in mobile networks and it will be much
more in future dense 5G networks that causes the SON
algorithms to be very complicated [9].

Current state-of-the-art solutions are moving
toward more intelligence SON algorithms for mobile
communication networks. The new algorithms that are
being developed, take advantage of complex but
effective ML algorithms [10]. In [11], the authors deal
with automatic detection of sleeping cell (SC) in the
network as a way for decreasing maintenance cost and
enhancing network performance. The SC is defined as
a cell which does not provide expected services to the
users. The purpose of [11] is to optimize network
efficiency while lowering maintenance and operational
cost. To this purpose, an intelligent ML framework is
presented that utilizes minimize drive testing (MDT) to
collect key PIs (KPI’s) of a LTE network. Employing
context information for automatic failure management
in small-cell indoor scenarios is proposed by [12]. This
paper identifies the user equipment (UE) as the major
source of information and proposes a framework for
integrating context awareness and SH. Furthermore,
detailed context-based detection and diagnosis
mechanisms are developed.

In [13], K-means algorithm is applied on the
evidences extracted from the suspicious nodes. This
automatic  clustering algorithm provides better
prediction for the files need to be assessed more into
depth. These files are called outliers. The remaining
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files assumed to be normal. The number of clusters is
considered unknown in general.

Hence, a method is proposed for determining the
number of clusters from the observations. The proposed
method is the EIbo method. The K-means clustering
technique is also used in [14] to process MDT
measurements in order to detect efficiently a sleeping
cell. For a comprehensive review of the proposed ML-
based techniques in SH process in mobile
communication networks refer to [15].

SON address the radio access network (RAN) and
the core of the mobile communication network. A new
algorithm is presented in [16] to detect and solve
problems related to the radio interface by considering
both mobile traces and SON. The proposed method
precisely locate RF problems according to the
evaluation of the RF conditions. Utilizing the
performance indicators (Pls) and employing a
supervised technique, [17] proposes a Self-Healing
algorithm in which the dissimilarity of the behavior of
the network statistics in various network states is
employed.

SON agents need to operate jointly for avoiding the
confliction. This issue is considered in [18] by applying
Rosen's concave games for the cooperation between
different SON agents. Discovering the degraded cells
using the time evolution of several metrics is addressed
in [19] in which the faulty pattern of the cell is
compared with a set of fictitious degraded patterns.

SH can be realized in two reactive and proactive
manners depending on whether it would trigger just
when a problem has already occurred or it is based on
predicting and preventing that problem in advance [20].
The reactive-SH functionality already implemented in
3G/AG is not able to meet 5G performance
requirements (e.g., the zero latency perception
requirement) and the targeted QOE levels [10].
Therefore, a challenging-transition from reactive to
proactive scenarios is necessary in 5G context.
Proactive SH is used in [10] by collecting the data and
creating proper models. Several techniques can be used
according to the available data that feeds the model.
From learning aspects view point, [10] surveys SON
algorithms and solutions.

The reliability behavior of a base station is modeled
by Continuous Time Markov Chain (CTMC).
Moreover, [21] presents a framework to predict the
faults by employing the developed model and
subsequent analysis in which the sub-health state is
considered between optimal operation and outage
states. However, it does not investigate the impact of
actions executed in sub-health states.

In this paper, we develop a scheme to implement a
proactive SH process including detection and
compensation processes in an extended healing model
considering sub-health states. Thus, the operator can
opt the actions or policies so that maximizes the long
term rewards. To this end, our system is considered as
a Markov Decision Process (MDP) which is a
fundamental formulation for stochastic decision
making.
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Figure 1. System model block diagram

In MDP, we have a set of states and actions
accomplished in each state to control the behavior of the
system so as to maximize a given performance metric
[22]. Detection and compensation processes require the
number of sub-health states and therefore, we apply K-
means clustering technique to figure out the number of
these states.

The rest of the paper is organized as follows.
Section Il presents the system model in two main parts:
A. fault detection and model's parameters extraction
and B. compensation process. In Section IlI, the
analysis of the proposed scheme is described for
compensation process and determining the optimal
policy. The numerical results are given in Section IV
and the conclusions are finally provided in Section V.

Il.  SYSTEM MODEL

The general block diagram of the system model is
depicted in Fig. 1. The detection and compensation
processes both are included in the model. Measured
data from the network is processed by detection block
to distinguish faulty states. The proposed method is to
classify system states into faulty, outage and normal
states of the operation utilizing the k-means algorithm,
which is a machine learning (ML) technique belongs to
the category of unsupervised learning. A set of
unlabeled input data denoted as a training set will be
used to correctly learn the faulty states. The utilized
data set for this purpose is derived from [23] which is a
collection of standard and prevalent key performance
indicators (KPI) given in Table I.

TABLE I. KEY PERFORMANCE INDICATORS USED IN
DETECTION PROCESS [23]
KPI o
KPI Description
Measurements
The number of successfully finished
Retainability connections to the total number of
successfully-initiated connections ratio

HOSR Handover success rate

RSRP Reference signal received power

RSRQ Reference signal received quality

SINR Signal to interference & noise ratio

Maximum data rate is transferred through
Throughput
a system
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Based on this context information, KPI statistics, a
detection algorithm is proposed to detect the faulty
states utilizing K-means clustering algorithm.

The learned clusters employing training data is used
for classifying the ongoing observations into faulty,
outage and normal state. As stated, the proposed
method for detection includes determining the current
sub-health state that the system belongs to.

In order to determine the optimal action that should
be executed to recover the system into normal operation
at the next step, the proposed model is adapted to
decision making formalism in stochastic domains
adopting Markov Decision Process (MDP).

MDP is a system comprising a set of some intuitive
states and actions. These actions can be carried out in a
way to maximize some desired performance criterion
[22].

A. Fault Detection and Model's Parameters
Extraction

The K-Means clustering is a powerful and popular
unsupervised clustering algorithm for clustering and
determining the centroid points of the clusters among a
set of unlabeled data [13]. The algorithm just requires
two parameters for initializing: a) the training data set
and b) the desired number of clusters indicated by K.

Based on minimum distance of each data to the
centroid point of the K clusters (which is determined
iteratively through the algorithm), K-Means partitions
data into K distinct clusters. The time complexity of
this algorithm is O(R,K,n) [13], where, n is the
number of input data, K is the number of clusters and R
is the number of repetitions to convergence. Typically,
both K and t parameters have small values which
makes the K-means an efficient linear algorithm. This
algorithm is elaborated in Algorithm 1 [10]. An
important challenge is to determine K, the number of
clusters. The utilized method in this paper for
determining K is elbow method [13]. This method helps
to select the optimal number of clusters K by fitting the
model with a range of test values for K. In a curve that
demonstrates ‘within-cluster sum of squared errors
(SSE)’ against ‘the candidate values for K’, the elbow
point is defined as the point of inflection on the curve.
Here, the error is the distance of each data sample to its
centroid point. The corresponding K of elbow point is
the best candidate for the number of clusters in
underlying model.
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Figure 2. MDP-based decision making process

Algorithm1l : K-means Algorithm

Input: Initial Data set (D), desired number of
clusters (K)

1:initialize K cluster centroids from data points
selected randomly (seeds),

2: while not converged do

3: for each centroid, identify the closest data
points

4:  Compute means using the current cluster
memberships and reassign new centroids

5: end while

B. Compensation Process

Quantitative MDP model is considered to determine
the optimal actions which can be executed by the
operator. The model is depicted in Fig. 2. The number
of clusters denoted by K corresponds to the number of
sub-health states in the MDP model. In SH process, the
decision making is fulfilled by a centralized module
called SH-agent. Hence, the decision making process is
modeled as a quantitative MDP as shown in Fig. 2.

In MDP context, there are two intuitive set of states
and actions. In order to maximize some desired
performance criteria, the actions accomplish so that
control the environment's state properly. . The MDP
model is recognized by the distinctive characteristic of
being memory less in which the chosen action at each
state is independent of previous actions. In the
circumstances of this paper, the proposed MDP model
of Fig. 2 is fully characterized by a set of 4 distinctive
quantities. These quantities are states, actions,
transitions rate between states and a reward function
that are expressed as (8, A, T, r)respectively. In the
context of mobile cellular networks and SON, the
Markov models are popular and mainly applied to
analyze self-optimization (SO) and SH [10].

We assume that the time is divided into time slots
with specific duration of T. Therfore, a discrete-time
MDP (DT-MDP) model is considered. . Thus, in order
to discuss the time-dependent variables such as states,
we define variable t =1, 2,... representing the
consecutive time instants. . Let s(t) e S =
{S0, 51, --+» Sn» Sy+1} denotes the system state at time
instant t, where s(t) = s, and s(t) = sy, represent
optimal and outage states respectively. The other states
{s;}\, represent the sub-health (or sub-health) stats. In
sub-health stats the desired performance indicators
(PIs) deviate from their optimal values but it is assumed
that the outage has not occurred yet. Where it wouldn’t
lead to ambiguity, for seeking simplicity we might
ignore t occasionally..

In a sub-health state, the system can continues to
operate while the KPIs degrade below the desired level
[21]. It is noteworthy that the sub-health states {s;}¥,
sorted in deteriorating manner. As a result, s; and sy
represent best and worst sub-health states respectively.
The model implies that for each possible fault/failure
case, a specific model with different parameters should
be considered. Similar to [21], in the proposed model,
failures are categorized into two distinct categories. The
first one is trivial failures. A ftrivial failure does not
cause full outage but drive the state from optimal state
so to one of the sub-health states {s;}_,. On the other
hand, critical failures are considered in which drive the
system to full outage sy,,. The later occurs in optimal
or one of the sub-health states. The failures are assumed

to be temporarily independent. The arrival rate of /1‘;"

and /1? are trivial and critical failures from states i to j
respectively (Fig.2) and can be modeled using Poisson
distribution.

When misbehavior detected, normally at the sub-
health or outage states, an error/failure recovery module
will activated. ,. Let finite set A = {a,, a,, ..., a,} with
size |A| = A be the set of all possible actions at each
state s € 8. We keep the generality of formulation here
by considering probabilistic policies. Defining m(a|s)
as the probability of choosing action a in state s,
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according to an optimal policy m(als), the recovery
module selectsaction a € A and tries to get the system
back to optimal state from sub-health state s.

Taking action a, the time duration which takes the
system to moves from sub-health state s; to state s;
(sub-health or optimal) is assumed to be exponentially
distributed. This time includes the required time for

anomaly detection, diagnosis and compensation with
mean value of 1/u;  (or 1/u . ) [21]. The

dc,a dc,a
compensation time required for retrieving outage to
optimal state is also assumed to be exponential with

mean value 1/uc.

Let T(s'|s, a) be the probability of transition from
state s to a new state s" € S accomplishing action a €
A. Then, the transition matrix T will be as follow:

T =
[ TCsolse) T(solsi,ar) T(solsn,an)  T(solsw+1)
I T(s1lso)  T(silsy,a1) T(silsy,an)  T(silsy+1) I
| T(snlso) T(syls1, a1) T(sylsy, an) T(sylsy4+1) l
lT(SNH|SU) T(sy41ls1,a1) T(snalsv,an)  T(syialsn+1)

M

where, 0<T(s'|s,a)<1, Vs,s'€S & VaeE
A represents the probability of going to state s’
accomplishing action a, when the system is in state s.
According to Fig. 2 and as evidence in (1), we only do
action in sub-health states {s;}),. In the other words,
recovery action in outage sate sy, is not included in
proactive MDP model.

Considering reward r (s'|s, @), V(s',s) €
S & a € A for particular transitions to s’ from s
accomplishing a, the reward matrix R is denoted by:

R =

r(solsy, an)  7(solsy41)

1
r(slsy,an)  7(silsys1) I
|

[ 7(solso) 1(sols1,a1)
I 7(s11s0) T’(S1|S1,a1)
| :

r(sylsy, an) r(sylsy+1)
r(sys1lsy, an)  T(syialsn+1)

7(sylso) r(syls1, ar)
r(sy41lS0)  T(sy4alsy, @)

()

Generally, our most important goal is determining
the optimal policy m(a|s) which maximizes the
expected reward in long term with adopting that policy
in a pretty long sequence of decision making and doing
actions. The MDP push decisions toward achieving
maximum non-zero rewards. Consequently, the
strategy in assigning the rewards r (s’[s, @) determines
the aim of MDP. The aforementioned variables and
parameters are summarized in Table II.

The described model above is an analytical model
can be adopted to model a typical proactive healing
process. This SH process could deal with any generic
faults or failure cases that may happen in hardware or
software. Considering a predefined goal, in section IlI,
we will develop an analytically tractable MDP to model
our decision making in SH process. The purpose of this
modeling is to analyzing the decision making process
and determining the optimal policy m(a|s).

TABLE II. MDP MODEL PARAMETERS

International Journal of Information & Communication Technology Research
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Parameter Description

s(HeS
S = {sg, -, Sn+1}
A={a,,.., a,}

State at time instant ¢

The set of all possible actions
State transition probability, from

T(s'|s, a) state s to new state s” applying
action a
Achievable reward of transition
r(s'ls, a) from state s to new state s’

applying action a
Optimal policy: probability of
doing action a at state s

n(als)

C. Discretizing via Uniformization

Indeed, the system of Fig. 1 is a continuous-time
Markov chain (CTMC). Consequently, analyzing its
properties in discrete-time requires a discretization
process. Let @ = [q;;] denotes the generator matrix
with elements gq;; given by

qij
( the transition rate
i froms; tos; i +]j
{ N+1 . (3)

|~ Z qij =]
\
J#1
Depending on the desired outcome, discretization of
a CTMC can be performed in a number of ways. The
adopted method in this paper is discretization by
uniformization [24]. This method sometimes called
randomization. A CTMC is uniformizable if its
infinitesimal generator matrix Q with finite elements
on the main diameter be stable and conservative [25].
Fortunately, for all typical Markov processes of interest

it will be the case that they are uniformizable [25].

Defining ¢ = sup;q; where g; = X2 q;;. According

J#i
to this method, the transition probability matrix T can
be computed as

T=1 Lo 4
- +;Ql ()

where I is the identity matrixand v = ¢, v € R.

It can be shown that in steady state, the resulted
equivalent DT chain with transition matrix T defined in
(4) is equivalent to the original CTMC.

IIl.  PROBLEM FORMULATION AND OPTIMAL
SOLUTION

As mentioned in section I, the MDP logically
pushes the decisions toward achieving large non-zero
rewards. In the other words, how to assign the rewards
r (s'|s, a) specify the goal of MDP.. Thus, our goal of
in decision making problem would be corresponds to
gathering rewards as much as possible. Therefore, we
should logically push the decisions toward maximizing
the transition from sub-health states {s;}!"_, to optimal
state s,. Considering this facts, in the following we will
formulize the optimization problem.
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Define V as the expected value of all future rewards
as:

n

1
V= lim = >, ®)
t=1

In (5), ; is the total achieved rewards till time
instant ¢ and 1/n applies to make ensure the value
function V is finite. Also. This factor discounts the
rewards that are far away in time. The aim is to
maximize the long-run average reward of V denoted in
(5). In the steady state, V can be rewritten as:

V= E{r(s)}, (6)
where, r(s) is the reward assigned to state s.

The value function V with respect to a particular
policy T, V™, is given by:

VT = E, {r(s,a)}
zzzuwm@@(n

where, 0 < p (s,a) < 1is the probability of being in
state s and doing action a. The reward r (s, a) is equal
to:

r(s,a) = Zr(s’|s,a)T(s’|s,a). (8)

N

Thus, the aim is to determine policy m that
maximize V™ denoted by r* as follows:

*t = arg,max Z Z r(s,a)p (s,a). 9

On the other hand, the probability of being in state
$, Vs5€S , indicated by p($,a) , is equal
toY,p ($a) =2;,T ($|s,a)p (s,a). Hence, we
have the following equation:

Zp(si,a)— ZT(§|S,a)p(s,a) -0

VSES. (10)

Clearly, the sum of all probabilities p (s, a) for all
valuess € S,a € A isequalto 1, i.e,

Z p(s,a) =1

Since the transition probability of moving between
each state (s,$) € § is not zero, our MDP model is
unichain. Note that an MDP is unichain if it contains a
single recurrent class plus a set of transient states. For
any unichain MDP, there exists an equivalent LP
formulation [26-27]. Noting the equations in (8)-(11),
our optimization LP problem can be formulized as
follows.

1D

Problem 1:

T = arg,max Z Z r(s,a)p (s,a) s.t.
S a

r(s,a) = Zr(s’ |s,a) T ($]s,a)

N
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ZP(S',UL)—ZT(S’ls,a)p(s,a):O V$ES

a s,a
Yrsa=1
s,a

0<p(s,a)<1

The above problem is of type LP; but it should be
noted that it accomplished offline. Consequently, the
computational complexity of the LP problem is
unimportant. Finally, the probability of choosing action
a in state s, i.e., m(al|s), can be calculated as follow:

p(s,a)
Yaca P(s,a)
IV. NUMERICAL RESULTS

In order to illustrate the performance of the
proposed detection/compensation scheme, a real-world
data set for evaluation is selected [23]. This data set
consists of labeled samples in both normal and faulty
cases. The first step is to determine the number of
clusters of faulty/sub-health states. Hence, in clustering
step the samples of normal state are excluded. The
remaining data comprises of three different faulty cases,
but this number is hidden from the classifier/detector
agent. Therefore, In Fig. 3, within-clusters SSE for each
data point in data set have been calculated for different
values of K ranges from 1to 7.

m(als) =

(12)

It is evidence, with increasing K the SSE is being
decreased continuously. But, the value K=3 is a key
point in which the fluctuation in SSE is very negligible
thereafter. As a result, the number of sub-health (faulty)
states is estimated as 3. It should be noted that the
remaining parameters that must be estimated using
input data set are p and A which is out of scope of this

paper.

In order to determine the clusters and centroid
points, the K-means algorithm is applied over the
training data set using Weka which is a collection of
ML algorithms for data mining tasks. For declaration,
the result of clustering in terms of two sample KPls, i.e.,
throughput and RSRP, is illustrated in Fig. 4. Also, the
extracted centroid points correspond to 3 clusters in
terms of 6 KPIs is given in Table IlI.

123
o

N
a
T

N
o

-
o
T

o
T

within-clusters sum of squared errors
o
o

=]

1 2 3 4 5 6 7
k (number of clusters)
Figure 3. Optimal number of clusters K using EIbow method
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TABLE V. REWARDS ASSIGEND IN DIFFERENT SCENARIOS
Param
Rla, R|a,
eter
= [ 03 04 05 0 [0 01 02 03 0
S S [0 o 0.1 0 0 0 o0 0.1 0 0
88 [0 -01 0 01 0 [0 -01 0 01 0
Sl sl
o } } . 0 —03 —02 —01 0
2 2 [0 01 02 03 010 03 04 05 0
S8 [jo o o1 o ofj0 0 o1 0 0
§8 |0 -01 0 01 0fj0 —01 0 01 0
3 3 l0 0 -01 0 0J l0 0 -01 0 OJ
S © 0 —-03 -02 —-01 ol|]lo —03 —02 -01 o
Y

attribute
TABLE III. CLUSTER'S CENTROID POINTS

Attribute Clusterl Cluster2 Cluster3

Retainability 0.9951 0.9309 0.944

HOSR 0.9876 0.9229 0.849
RSRP -77.4961 -72.6767 -65.8896
RSRQ -18.1811 -18.1279 -19.4155
SINR 12.6378 7.0127 13.6656
Throughput 89.1056 68.7371 175.0776

In compensation step, knowing the number of sub-
health states, a system with three sub-health states,
namely {s,, s,,s;} is considered as shown in Fig. 2.
Thus, the outage and optimal states are represented by
So and s, respectively. For simplicity, we assume that
there is no any transition from state s, and s; and vice
versa. In fact, we can move to states s,, s,, s, and s,
from state s;.

By estimating MDP parameters (using the given
dataset in both normal and faulty states), extracting the
optimal action in each sub-health states is straight
forward. However, in order to describe the advantage of
the proposed scheme in compensation process and
action policy extraction, we consider four scenarios.
The parameters of each scenario are given in Table V.

TABLE IV. TRANSITION RATES

Parameter Value

Scenario 1: {24}, =1/8
Scenario 2: {A#}_,=1/8
Scenario 3:

A4}, =1[1/8,1/7,1/6,1/5]
Scenario 4:

A4y, =[1/8,1/5,1/3,1/2]

(424 A¢% 224, 23]

Ay
¢ 1/8, for all scenarios
for all possible (i, j)

e
i 6, for all scenarios
for all possible (i, j)

Ha
- 10, for all scenarios
for all possible (i, j)

uc 1/12, for all scenarios
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Moreover, the rewards assigned to actions a_1 and
a_2 are demonstrated in rewards-matrix R as shown in
TABLE V. Since the rewards depend only on the
actions in a given state and we execute the actions only
in sub-health states, the reward values are set to be non-
zero for the three sub-health states. Transition from a
sub-health state to the optimal state, which is called
recovery transition, takes the positive reward. This is
also set for transition from a sub-health state to another
sub-health state with lower index which has superior
condition. On the contrary, transition to outage or
another sub-health state with an inferior condition
brings a negative reward.

In Scenario 1, more reward is allocated to a given
sub-health state to move to the optimal state when
action a, is executed while the smaller detection-
compensation time is made. This can resemble the
situation where achieving better quality of service
(QoS) has the higher priority. Scenario 2 simulates a
reverse situation, i.e., when the performance efficiency
is our concern instead of recovery time. Thus, in
scenario 2, the system consumes fewer resources for
recovery while a given state takes more transition time
to move to the optimal state. Hence, detection-
compensation time is longer when action a, is selected.
In scenarios 1 and 2, 2% (i = 0,1,2,3) are defined to be
the same. The rewards assigned to Scenarios 3 and 4 are
similar to them in Scenarios 1 and 2, respectively.
However, the transition rates from sub-health states to
outage state in both scenarios (i.e., Scenarios 3 and 4)
are selected from four different values as depicted in
Table IV. This means that the probability of occurring
outage in worse sub-health condition is more probable
as it is supposed to be in real situations. The other
parameters are assumed to be the same in all scenarios,
as demonstrated in Table IV.

We consider two algorithms to choose the policy
m(als) which are denoted by optimal and random
policies. The optimal policy is the solution to the
optimization Problem 1. While in the random policy
algorithm, we randomly opt one of the actions a, or a,
with uniform distribution in a given state. In Fig. 5, we
depict the average rewards obtained in both optimal and
random policies for four considered scenarios.
Evidently, the rewards achieved by using the optimal
policy are significantly higher than them obtained by
the random policy. However, some important
information about the behavior of the system and the
proposed optimum policy can be extracted from these


http://journal.itrc.ac.ir/article-1-405-en.html

D uicTR

[ Downloaded from journal.itrc.ac.ir on 2025-11-21 ]

observations that are explained as follows. As observed
from TableV, more rewards are assigned to the actions
a, with shortrecovery time in Scenario 1, while, action
a, with long recovery time takes the bigger rewards in
Scenario 2. On the other hand, the critical-failure rates

of 2/ in both scenarios are small and the same.
Therefore, in Scenario 2, the system has enough time
to recover from sub-health states into optimal state and
consequently the average reward is more than that of

other scenarios. In Scenario 3, although A increases
in worse sub-health state, the action a; with short
recovery time has more chance to be selected in sub-
health states. As a result, the expected recovery time is
short and most of the time the system can recover
before going to outage. The reason is that the average
reward is similar to Scenario 1. In Scenario 4, the
situation is different. The recovery time is long due to
choosing the action a,, and the system may go into
worse sub-health states (and even outage) with more

probability in the meantime. Increase in rate of A,/ with
going into worse sub-health states makes the condition
even worse. As a result, we can see a significant loss in
achieved reward in comparison to Scenario 2.

recover:;
T v

avg in the sub-

The average recovery time
health state is obtained as

3 2
recovery __ i
Tavg - Zp(si)ZH:ioc,ajn(ajlsi)'
i=1 j=1

Tose - in four considered scenarios are depicted

in Fig. 6. Obviously, the optimal policy in Scenarios 1
and 3 creates substantial short recovery time. However,
if we want to achieve more reward in Scenarios 2 and
4, we need to execute action a, which makes long
recovery time. Therefore, the increase in average
recovery time of Scenario 2 is completely normal. But
Scenario 4 needs more explanation. In fact, due to the

increasing rate of critical failure 2 in worse sub-health
states, almost all the successful system recoveries take
place in sub-health state 1 and after that in sub-health
stat 2 with less probability but yet more than sub-health
3. Therefore, the average recovery time is smaller than
Scenario 2.

1.8
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Figure 5. Average rewards achieved by proposed optimal
policy/random policy in four considered scenarios
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Figure 6. Average recovery time for proposed optimal policy/ random
policy in four considered scenarios
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Figure 7. Sub-health state probability in 4 scenarios (optimal policy)

Fig. 7 depicts the probability of being in sub-health
states in Scenarios 1 to 4, when the proposed optimal
policy is applied and the rewards defined in Table V are
utilized. As shown in Fig. 7, the sub-health state can
recover fast and hence move to the optimal state rapidly
in Scenario 1. Evidently, the probability of being in
different states decreases steadily as transferring from
state 1 to state 3 in scenarios 1, 2, and 3. This behavior
becomes more drastic in scenario 3 due to the
augmented critical failure rate from A1* to 234, In the
contrary, the SH agent recovers from sub-health states
with more recovery time while utilizes fewer resources
in Scenario 2. In fact in this scenario, SH agent acts
more efficient in terms of consuming the recourses and
therefore, the recovery time is of the secondary
importance. As a result, the SH agent may choose the
action with longer (or shorter) average recovery time in
a given sub-health state that tends to increase (or
decrease) the probability of being in worse (or best)
sub-health states. Regarding the tendency of system in
choosing one of the possible actions, the Scenarios 2
and 4 behave similarly. In Scenario 4, the critical-

failure rate of A7 in sub-health 2 is much more than
sub-health 1 and in sub-health 3 is much more than sub-
health 1 and 2. The effect of critical-failure rate is
dominant and it can be seen that the probability of being
in sub-health states decreases from sub-health 1 to 3.
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V. COCLUSION

We presented a context-aware proactive SH scheme
utilizing machine learning algorithms which includes
detection and compensation processes. K -means
clustering were employed for the detection process.
This algorithm is employed when the number of
clusters or equivalently the number of faulty states are
known. We also proposed a framework to analyze the
system stochastically and investigate the impact of
actions executed in sub-health states of a SH process.
Using discrete-time Markov Decision Process, a model
was suggested analytically to find out the optimal
actions before the outage happens. The proposed
framework supports any special fault or failure scenario
and any situation in which the system may tend to go to
a sub-health state. Since our proposed model was
inherently a continuous-time Markov chain, we applied
discretizing process to assess the model in discrete-time
behavior. Furthermore, an equivalent LP formulation
corresponding to considered optimization problem is
employed to obtain the optimal policy. We used a real
world data base for detection process and computed the
number of sub-health states. We also considered four
different scenarios for compensation phase. We
numerically analyzed the results for various rewards
and indicators of the performance, e.g., average
recovery time to compare our proposed optimal policy
with random action selection policy. The results
demonstrate that the suggested analytical model is
beneficial and proposed optimal policies perform well
in contrast to random action selection policies.
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