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Abstract— An approximate analytical method for the
evaluation of the cumulative distribution function (CDF)
of the sum of L independent random variables (RVs) is
presented. The proposed method is based on the
convergent infinite series approach, which makes it
possible to describe the CDF in the form of an infinite
series. The computation of the coefficients of this series
needs complicated integrations over the RV’s
probability density function (PDF). In some cases, the
required integrations have closed-form in terms of
confluent hypergeometric function and in other cases,
the required integrations can not be analytically solved
and have not a closed-form solution. In this paper, an
approximation method for computation of the
coefficients of the CDF series is presented that only
needs the mean and the variance of the RV, so it has low
computational complexity; it eliminates the need for
calculation of complex functions and can be used as a
unified tool for determining CDF of a sum of statistically
independent RVs. To present an application for the
developed approximation method, it is used to find the
distribution of the sum of generalized Gamma (GG)
RVs. The derived approximate expressions are used in
the performance analysis of equal-gain combining
(EGC) receivers operating over GG fading channels.
The accuracy of the developed approximation method is
verified by performing comparisons between exact
existing results in the literature and computer
simulations results,
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1. INTRODUCTION

The problem of finding the distribution of the sum
of statistically independent random variables (RVs) is
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a well-recognized but cumbersome statistical task [1].
Such a problem occurs in several wireless
applications. For example, in the performance analysis
of equal-gain combining (EGC) receiver over fading
channels, where the received faded signals are equally
weighted, cophased, and then summed to form the
resultant output. Since an analytical solution for this
problem is very difficult to derive, the use of
approximate solutions and union bound were proposed
in the literature. In [2], an infinite series was derived
for determining the cumulative distribution function
(CDF) of the sum of Rayleigh distributed RVs. In [3],
and [4] the distribution of such a sum was presented
using saddle point integration for uniformly weighted
RVs, and for arbitrary weights, respectively. In [5], the
sum of Nakagami RVs was considered and an
approximate probability density function (PDF)
expression was derived for such a sum. In [6], accurate
and simple closed-form approximations to the CDF
and PDF of the sum of independent and identically
distributed (i.i.d.) Rayleigh RVs were presented, while
in [7] a closed-form union upper bound for the CDF of
the weighted sum of independent Rayleigh RVs was
derived. Very recently and with the aid of the well-
known arithmetic—geometric mean inequality, in [8] a
closed-form union upper-bound in terms of the
complex Meier’s G functions was presented for the
distribution of the sum of independent generalized
Gamma (GG) distributed RVs.

In this paper, an approximate analytical method for
the computation of the CDF of a sum of independent,
but not necessarily identically distributed RVs is
developed based on convergent infinite series
approach [2]. This approach makes it possible to
describe the CDF of a sum of independent RVs as an
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infinite series. One of the main challenges for applying
infinite series approach is the computation of the
required coefficients in the CDF series, which needs
complicated integration over the RV’s distribution
function. In some cases, for example Nakagami and
Rician distributions, the required integrations have
closed-form in terms of confluent hypergeometric
function [9] [10]. The need for the evaluation of
special complex functions as the confluent
hypergeometric presents serious time overflow
problems under some circumstances [11, Appendix
B]; moreover, in [10] the Nakagami m-parameter was
constrained to take integer values which are not true
for real mobile radio environments. In other cases such
as Weibull distribution, the required integrations can
not be analytically solved and have not a closed-form
solution. In this paper, an approximation method for
computation of the coefficients of the CDF series is
presented that avoids the calculation of complex
functions and can be efficiently applied to practical
wireless applications. This method only needs the
mean and the variance of the RV’s distribution; hence
it eliminates the need for complicated integration over
RV’s distribution function while computing the
required coefficients. This fact provides interesting
features to the developed method. It has low
computational complexity and can be used as a unified
method for determining CDF of a sum of statistically
independent RVs, especially where the required
integration has not a closed-form solution or tabulated.

In order to show the general applicability of the
proposed method, it is used to find the distribution of
the sum of GG RVs. GG distribution is a generic
model and covers the well-known fading models
including Nakagami, Weibull and Rayleigh as special
cases, the lognormal as a limiting case, and it can
approximate Suzuki distribution [12][13], so it is a
good candidate to show the applicability of the
developed approximation method. To show the
accuracy of the proposed method, the special cases of
GG distribution are considered. The results derived
based on the proposed method match accurately with
the exact existing results related to these special cascs.
Moreover, for arbitrarily GG distribution parameters,
the required quantities are numerically evaluated and
are compared with those derived based on the
developed approximate expressions. Results show the
good accuracy of the proposed method for different
GG distribution parameters.

Despite the ability of GG distribution to
characterize so many different fading channel models,
only a few performance study of diversity and
specifically EGC receivers over GG fading channcls
have been presented in the literature [14]-[15] and [8].
In [14] the average symbol error probability of EGC
receiver with coherent multilevel modulation schemes
is obtained by employing a characteristic function
based approach in independent GG fading channels.
However, the solutions were presented in integral
form. In [15] a canonical-form expression of the
average symbol error probability for EGC receiver
with M-ary orthogonal FSK under the assumption of
independent GG faded branches was presented. In [8]
union upper bounds for the outage and the average bit

error probability were derived and were evaluated in
terms of Meijer’s G-functions.

In this paper a different approach is used for
performance analysis of L-branch EGC receivers
operating over GG fading channel. For such receivers,
the proposed approximation method is used to derive
the CDF and the PDF of the output signal-to-noise
ratio (SNR). One straightforward usage of these
important statistical functions is to evaluate the outage
probability, the average probability of error and to
study the effects of the different GG fading channel
parameters on the performance of EGC receiver. The
accuracy of the developed approximation method is
verified by performing comparisons between existing
upper bounds in the literature and computer
simulations results.

The reminder of the paper is organized as follows.
In section II, the convergent infinite series approach
for deriving the CDF of the sum of independent RVs is
discussed briefly. In section III, the proposed
approximation method is introduced. Distribution of
the sum of GG distributed RVs based on the proposed
method is provided in section IV. Section V contains
the accuracy analysis of the proposed approximation
method. As a practical application, in section VI the
developed method is used in the performance analysis
of L-branch EGC receiver operating over GG fading
channcls. Finally, the main points arc summarized in
section VIL

[I.  THe CDF OF THE SUM OF INDEPENDENT
RANDOM VARIABLLES

Let X=X, +Xy+...+X; be the sum of L
independent RVs X, ([= ,2,..., L), then the CDF of
X, Fy(x) can be computed within a determined
accuracy as [2]:

FX(x):Pr(XSx): ! Z
s

n=1

m is oeled

with

\/(52 {cos(no X )} + E2 {sin(no X )}

L2
A,,zH \

)
= e

ﬁ"'lE[sin —&
Q-EMn(EMS v (3)

where £ =x/Landw =27/T . Here, T is the period
of the square wave used in deriving the series [2], and
E [.] denotes expectation. By taking the first derivative
of CDF with respect to X, the corresponding PDF can
be obtained. To evaluate (2), it is required to

determine 4, and 6, or equivalently to

determine E{cos(an,)} and E{ sin(naJX,)} . One
possible approach is to evaluate the integrals after
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multiplying the Cosine or Sine term with the PDF
of X; , as follows:

E[COS(nQ’Xt )]: fcos(na) X)) Sy, (x;)dx, C)

Efsin(no X, )] = fsin(na) x)f,, (x)dx, )

One of the main challenges for applying infinite
series approach is the computation of the required
coefficients in the CDF series (i.e., 4, and 8, in (3)
and (4)), which needs the calculation of
the E{ cos(nor X;)} and E{sin(nw X,)} in (4) and (5).
GG distribution was introduced by Stacy, back in
1962, as a generalization of the two-parameter Gamma
distribution [17]. The PDF of the GG distributed
RV X, is given by [17, eq. (1)}

2y ™
Ix, ()= ! X exp —lﬁ—’ (6)

(@/my)™ T (my) !

where m; 2 1/2 is the fading parameter, v; > 0 is the
shape parameter, Q; is the average signal-to-noise
(SNR) scaling parameter and I'() is the Gamma

function. The lower and upper tails of the distributions
in (16) can be adjusted by controlling the parameters

m; and v; , respectively [13]. Consequently, the
distribution in (16) is very generic since it covers
several commonly used fading distributions as special
or limiting cases: Rayleigh (for v, =1, m; =1),
Nakagami (for v; =1 ), Weibull (for m; =1), and
lognormal (for m; — «o,v; > 0). The GG distribution
also has the interesting property that it can model both
amplitude and intensity fluctuations. By using (7), the

mean gy and the variance af\,l of GG distributed
RV X; can be described as:

o ZLI_[JN,:+%}
v ZV
uX,=E{X1}=(—1] =< )

T (m)

I
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For  computation  of E{cos(na X;)}
and E{ sin(ne X;)} in the case of GG distribution, one

needs to calculate the integrals of (4) and (5)
considering f (x;) given in (6) as follows:

Elcos(na X, )] = 2V, f xFim cos(ne x;)

Qz/ml)m' T (m,)

Elsin(ro X, )|= 2v ] J:va’ "7 sin(nwx;)

(ﬁ,/m,)m’ N (m, (10)

At first, we consider the integral in (9). To solve
this integral, we can start with presenting the Cosine
function as contour integral [18],

o+ jo _
coslpalt, )= 22 [ el myee ()
7))
2

By applying (11) in (4) and interchanging the order of
integrations, we will have (12) in the bottom of this
page. If we let vy =1;/k; , where /, and k;, are
positive integers, and change the variable s with /;s
and use the multiplication theorem, (12) can be written
in terms of Meijer’s G-function as is shown in (13) in

top of the next page, where Meijer’s G-function is
defined as follows [18]:

By using the same approach, £ { sin(nw X; )} can be

described as (15). Note that Meijers G-function is a
standard built-in function in well-known mathematical
software  packages, such as MAPLE and
MATHEMATICA.

It can be shown that for the special case of
v, =1(l; =k; =1) (13) and (15) reduce to equations
(12) and (13) of [10] for Nakagami distribution. To
verify this fact, we first consider (13) and insert
v; =1(I; =k; =1). So, (13) converts to:

E[cos(na) X )]=

Considering the relation between Meijer’s G-function
and hypergeometric function
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where lF(a;b; z) is the confluent hypergeometric Considering (18) and th ies of Mei =
. onsidering and the properties of Meijer’s G -
i onTdE s i g, (21 0M)]: function [18] which is presented in (21), equation (19)
can be described as (22) in top of the next page which
is similar to the result that was presented in [10, eq.

(13)].

Where (a), =1 and (a),, =T (a+n)/T'(n) . Equation G";""; |:z a+a:l=zaG‘,g,g {z ajl 2n

(16) can be described in terms of hypergeometric bta ’ b
function as follow

Although, (13) and (15) give exact closed-form results

. for calculating E{cos(rwX,)} and E{sin(noX,)},

E[ [ 1_ne? QIJ since the derived expressions are presented in te: f

cos(an,)]:lF, my—— 19) ce the v P s are presented mn terms o

4m, complex Meijer’s G- function, results have limited

usage. In the next section, we develop a new

which is similar to the result which was presented in approanatlon method  for calculatlon. el i
[10, eq. (12)]. In the same manner, with  SXPressions for E{ cos(na X 1)} and E{ sin(nw X ,)}
v; =1(l; =k; =1), (15) changed to: which only needs the mean and the variance of the

RV X, and hence, this technique bypasses the need

for direct integration of (4) and (5).
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III.  THE PROPOSED APPROXIMATION METHOD

The approximation method proposed in this paper
is similar to that of [16] used in deriving bit-error

probability of a spread spectrum multiple-access

system. If g(x)is a function of RV x, then by Taylor

series expansion of g(x), we have:

2(x) = g(u)+ (x — ) 2EX)
ox |x=u
2% g(x)

+...
ox2 lx=u

%(x—m

where 4 denotes the mean of the RV x .

reasonable and well-known approximation method,
E {g(x)} can be approximated as:

20%g|
02 IF=# (o

1 2g(pu+h)-2g(u)+g(u-h)
g+ 2 2

E{g(x}~ g(#)+%c

where o is the standard deviation of RV x and 4 is the
differential parameter. According to the result of [16],
a proper approximate value for 4 equals 3o from

accuracy point of view. Then the equation (24) can be
written as:

E{g(x)}z %g(#) + %g(,u + \/ga')+ %g(pz r w/gd) (25)

By a

If (25) is used, E{cos(noX,)} and E{sin(nwX,)}
can be described as are shown in (26) and (27) in the
bottom of this page, where y, and o, are the mean
and the standard deviation of RV X;. As was shown
in (26) and (27), the proposed approximation method
provides a simple closed-form expressions for
E{cos(no X, ,)} and E { sin(nw X, 1)} which let us to
formulate the required coefficients 4, and T, in (2)

and (3) in closed-form analytical expressions. By
applying (26) and (2) in (2) and (3), we have:

L
4, = 11;[1\/%+%c0s(\/§na)axl)+%cosz(\/§na)ax’) (28)

2 1 '
1 Scos(na)yxl )+§cos(nwpxl )cos(\/gnwaxl ) 29)

%sin(nwp,, ) +-;-sin(nawx, )cos(\/g ncucrxl )

Fig. 1 shows the approximated values of 4,
and'rn for n =1 to n = 40 (n is odd) for T = 100 and

200 for L iid GG distributed RV’s with v, =1,
m; =6 for different values of L, based on our
proposed approximation method in comparison with
the exact results [10]. Results show that our proposed
method can approximate 4, and 7, with very good
accuracy. In Fig. 2 the exact and approximated values
of the CDF of a sum of L=3, 6, 8, 16 GG RVs with
m=m=landv;=v=3, ;=Q=2dB and 7=400
is shown. Results show that the developed
approximation method estimates the values of CDF
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E[sin (na)X,)] & ?sm(nw,uX[ )+ %sm(nm(yxl + ‘EGX )+ —;—sm(na)(yXl - \ﬁchl » @7
I

very good. Moreover, by taking the first derivative of
CDF with respect to x, the corresponding PDF can be
obtained. As an example, in Fig. 3 the exact and
estimated PDF of the GG distributed RV’s are given.
Results show that the proposed method also
approximates the PDF of the sum of independent RVs
with good accuracy.

T=100 |

T=100
”
—— Exact values

e es [ Approximated values

- o
—: Exact values

=« - Approximated vilies

20 ’ 20 40

Index n Index n

et Exact values
«ssr D Approximaied values
’ »

- Exact values

by »0ve D Approximated values J
L -

Index n Indexn

Figure 1. The values of An and [ n (for n=1—40, n is odd) based
on our proposed approximation method and exact results for T
=100

Exact
= == Approsimaled

Figure 2. The exact and approximated values of the CDF of a sum
of L GG RVs with m,=m=1landv,=v=3, Q;=Q=2dB
and T=400.

Figure 3. The exact and approximated values of the PDF of a sum
of L GG RVs with my =m=1,vy=v=3, Q=0Q=2dB
and 7=400.

IV. ACCURACY ANALYSI

The proposed approximation method is based on
the Taylor series expansion over the expected function
E{g(x)} around the value of g(u) , where u is the

mean value of RV x, so the accuracy of this series
improves when the concentration of distribution
around its mean increases. As an example, in Fig. 4
the behavior of GG distribution with v=1 for
different values of m is shown. Fig.4 shows that in this
case and with the increase of m, the concentration of
the distribution around its mean increases and we
expect that the accuracy of our proposed method
improves. This fact is verified in Fig. 5.

International Journal of Information & Communication Technology




Also the accuracy of the proposed method can be
controlled by convergent series parameter 7 via
parameter @ = 27/T . In particular, choosing large
values of T will improve the accuracy and at the same
time, can compensate the deleterious effects of large
values of index » on the accuracy. In Fig. 10, the
values of E{cos(nwX;)} and E{sin(nwX;)} are

presented for GG distributed RV with v; =1 and
m; =1 for different values of T . The results show that

the accuracy improves as the parameter T increases.
As was mentioned in [2], [9] and [10], the parameter T
controls the accuracy of the CDF series and greater \ Exact —— Exsol

accuracy may be obtained using a larger value of T. = "“ﬂwi"“;m 1 - ; = Mn:ﬂ:lmm I
-] 1
SNA scaling faator, 98 SNA saaling tactor, dB

3

For example in [9] the value of 7 was chosen to lie
between 200 and 500 corresponding to an estimated

accuracy on the order of +107'° . Therefore, choosing T
larger value of T makes it possible to apply the and  E{sin(ne X;)} for GG distribution with v; =1, =1, =200
developed approximation method for computation of
the individual coefficient 4, and r, (for different
values of n) in the CDF series with greater accuracy. yi=wX exp(jo)+ny, 1e{l2,..L} (28)
Fig.11 shows the the exact and approximated values of
4, and 6, for L =2 iid GG distributed Rvs Where X; is the instantancous fading envelope
with vy=v=1, m=m=2 , 51=Q:10 dB and modeled as a GG distributed RV, w is the complex

T=200. transmitted symbol with E, = E|[uf” | which is the

Figure 5. The exact and approximated values of E{cos(nw X;)}

transmitted average symbols’ energy, ¢, is the
instantaneous phase of the channel which is assumed

B q 2. Lok . " known for the receiver, and n; is the instantaneous
resented numerical examples in previous sections oF g . . .
verify the good accuracy of the proposed method in a'ddltlve' Wiie) (Gansulan fGise (AW.GN) sample Wﬁ.h
the approximation of the CDF and the PDF of the sum  Single-sided power spectral density No that is
of independent RVs. In this section, to give a practical ~ identical for all channels. The instantaneous SNR per
application, the proposed approximation method is  symbol of the /th diversity branch can be described as:
used to analyze the performance of a multi-branch

EGC receiver. Consider an EGC diversity combining

system with L input branches operating over v =
independent but not necessarily identically distributed

GG fading channel. The baseband received signal at

the /-th branch can be written as: whose corresponding average SNR is described as

follows:

V. PRACTICAL APPLICATION AND NUMERICAL
RESULTS

2 E;

'N, 29

E
No \m r(m)

—\1/v,
Z=E[X12]—s=[&J L (m +17v7) (500

The instantaneous EGC output SNR per symbol
can be expressed as:

2 Ej 2 Ej
=(X;+Xr+..+X — =Xx“—= (31
vEGe =(X1+ X, L) LN, LNO( )

By using (2), the CDF of the EGC output SNR
(F,EGC ( 7)) can be calculated as follows:

Figure 4. beheivior of GG distribution for v=1 and different

LN,
values of m P(yecc Sy)=P x? Es <y|=P| X< 2y 1 (32)
LNy Es

Therefore,
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Fy e (y)=FX[ e 7J (33)

Where Fy(x) was given by (1). If y,, is a certain
specified threshold, then the outage probability (Pout)
is defined as the probability that ypgc falls
below yy, . The F,,, can be obtained by replacing ¥
with 4, in (33) as follows:

Poulrm)=Fy . (ren) (34)

In Fig. 6, the values of P, is calculated as a

function of the normalized outage threshold, 7, / ;_/ for
an L-branch EGC receiver over iid GG fading
channel with I=4, vy =v=125, m;=m=2. For
comparison purpose, the curves for the corresponding
upper bound obtained from [8] and the corresponding
exact P, obtained via computer simulation are

included in the same figure. Comparing the
approximated results evaluated based on the developed
approximation method with the computer simulated
ones and also with the upper bound of [8]
demonstrates the accuracy of the proposed
approximation method. In Fig. 7, the values of P, is

calculated as a function of the normalized outage
threshold, 7, /y for an L-branch EGC receiver over
iid GG fading
m; =m=2and different values of L. Results show

channel with v;=v=15 ,

that P, improves with an increase of L and also with
the increase of the parameter v .In Fig. 13, P, is
plotted as function of the normalized outage threshold
for L=8, vy =v=1.5 and different values of m; .

Results show that the performance improves with the
increase of m.

Apprcovmaton
= ===+Llppar bound (B8]}
— = = gimulaiion

6 8
Normalized Outege Threshold, dB

Figure 6. Outage probability of L branch EGC receiver for L=4

over iid GG fading channel with '/ =v=125

mp=m=2

and

/d' =
= P
-

e
y

. i '/

=Y .
. P4 / 7‘\ E
AN i La8
7/ A S

T m=2, v=15

m=2, v=15

Cutages Probability

m=2, v=l

Nomalized Outage Threshold, dB

Figure 7. Outage probability of L branch EGC receiver for L=3, 8
over i.i.d GG fading channel derived.

Another important performance criteria is the
amount of fading (AoF), which is a unified measure of
the severity of fading [1]. AoF is defined as the ratio
of the variance to the square average SNR per symbol
as follows:

S
AoF =Var (y3cc)! ¥ ce (35)

The average and the variance of the output SNR
can be calculated by using its PDF. Having
numerically evaluated the required parameters using
our proposed approximation method to calculate the
PDF of SNR, in Fig. 16 the Amount of fading at the
output of the EGC receiver is plotted as a function of v
for L=8 and i.i.d branch SNR. As can be deduced from
Fig. 16, AoF decreases as v and/or m increases.

Figure 8. Amount of fading at the output of the EGC receiver as a
function of v for L=8 and i.i.d branch SNRs.
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VI. CONCLUSION

In this paper, the problem of finding the CDF of
the sum of independent RVs is considered and a
novel, simple approximation method has developed
based on the convergent infinite series approach. The
proposed method generalizes the applicability of the
convergent infinite series approach for different
distributions. As an example, in this paper, it has been
used to calculate the statistical parameters of the GG
distribution, which is a versatile envelope distribution
that generalizes many of the commonly used models
for multipath and shadow fading. The proposed
method has been applied in the performance analysis
of EGC receiver over GG fading channel. In a similar
way, the developed method can be used to
approximate the characteristic function of the fading
envelope and efficiently used in the performance
analysis of EGC receivers using characteristic
function based approach over different independent
fading channels.

REFERENCES

M. K. Simon and M.-S. Alouini, Digital Communication
over Fading Channels, 2* ed. New York: Wiley, 2005,

N. C. Beaulieu, “An infinite series for the computation of
the complementary probability distribution function of a
sum of independent random variables and its application to
the sum of Rayleigh random variables,” IEEE Trans.
Commun., vol. 38, no. 10, pp. 14631474, Sept. 1990.

C. W. Helstrom, “Performance of receivers with linear
detectors,” IEEE Trans. Aerosp. Lectron. Syst., vol. 26, no.
2, pp. 210-217, Mar. 1990.

C. W. Helstrom, “Computing the distribution of sums of
random sine waves and of Rayleigh-distributed random
variables by saddle-point integration,” IEEE Trans.
Commun., vol. 45, no. 11, pp. 1487-1494, Nov. 1997.

J. C. 8. S. Filho and M. D. Yacoub, “Nakagami-m
approximation to the sum of m non-identical independent
Nakagami-m variates,” Electron. Lett., vol. 40, no. 15, pp.
951-952, July 2004.

J. Hu and N. C. Beaulieu, “Accurate closed-form
approximations to Rayleigh sum distributions and
densities,” IEEE Commun. Lett., vol. 9, no. 2, pp. 109-111,
Feb. 2005.

G. K. Karagiannidis, T. A. Tsiftsis, and N. C. Sagias, “A
closed form upper-bound for the distribution of the
weighted sum of Rayleigh variates,” IEEE Commun. Lett.,
vol. 9, no. 7, pp. 589-591, July 2005.

N. C. Sagias, G. K. Karagiannidis, P. T. Mathiopoulos and
T. A. Tsiftsis, "On the Performance Analysis of Equal-Gain
Diversity Receivers over Generalized Gamma Fading
1IEEE Transactions on
Communications, Vol. 5, No. 10, pp. 2967-2975, October
2006.

Channels," Wireless

wicTHREN

[9] Abu-Dayya and N. C. Beaulieu, “Microdiversity on Ricean
channels,” JEEE Trans. Commun., vol. 42, no. 6, pp. 2258—
2267, Jun. 1994.

[10] N. C. Beaulieu and A. A. Abu-Dayya, “Analysis of equal
gain diversity on Nakagami fading channels,” IEEE Trans.
Commun., vol. 39, no. 2, pp. 225-234, Feb. 1991.
Annamalai, C. Tellambura, and V. Bhargava, “Exact
evaluation of maximal-ratio and equal-gain diversity
receivers forM-ary QAM on Nakagami fading channels,”
IEEE Trans. Commun., vol. 47, no. 9, pp. 1335— 1344,
Sept. 1999.

M. D. Yacoub, “The a-y distribution: A general fading
distribution,” in Proc. IEEE International Symposium on
Personal, Indoor, Mobile Radio Commun., vol. 2, Lisbon,
Sept. 2002, pp. 629-633.

J. Coulson, A. G. Williamson, and R. G Vaughan,
“Improved fading distribution for mobile radio”, IEE Proc.
Part F — Commun., vol. 145, no.13, pp. 197-202, June
1998.

T. Piboongungon, V. A. Aalo, and C.-D. Iskander, "Average
error rate of linear diversity reception schemes over
generalized gamma fading channels", Proc. IEEE
Southeastcon, Ft. Lauderdale, FL, Apr. 2005.

J. Cheng and T. Berger, "Performance analysis for MRC
and postdetection EGC over generalized gamma fading
channels,” in Proceedings IEEE Wireless Communications
and Networking Conference (WCNC'03), New Orleans, LA,
USA, March 16-20, 2003, pp. 120-125.

J. M. Holtzman, “A simple, accurate method to calculate
spread-spectrum multiple-access error probability,” IEEE
Trans. Commun., vol. 40, no. 3, pp. 461-464, March
1992.channels,” IEEE Trans. Veh. Technol., vol. 48, pp.
1151-1154, Jul. 1999.

[17] E. W. Stacy, “A generalization of the Gamma distribution,”
Ann. Math.Stat., vol. 33, no. 3, pp. 1187-1192, Sept. 1962.

[18] S. Gradshteyn and .M. Ryzhik, Table of Integrals, Series,
and Products, 5th ed. New York: Academic, 1994.

[19] Cheng, J.,, Tellambura, C.,
‘Performance analysis of digital modulations on Weibull

and Beaulieu, N.C.

fading channels’. Vehicular Technology Conference, VTC
2003-Fall, 6-9 October 2003, Vol. 1, pp. 236-240.

[20] PR Sahu and AK Chaturvedi, “Performance Analysis of
Predetection EGC Receiver in Weibull Fading Channel”,
IEE Electronics Letters, Vol. 41, Issue 2, pp. 85-86,
January 2005.

Hossein Samimi was born in Tehran-Iran,
on May 7, 1972. He received the B.Sc. and
M.Sc., degrees in electrical engineering
from Tehran University, Tehran-Iran, in
1994 and 1998, respectively and Ph.D.
degree in electrical engineering from
Tarbiat Modares University (TMU) in
2008. He is currently the Head of the Information
Technology (IT) Faculty of the Iran Telecommunication
Research Center (ITRC), Tehran, Iran and is also a member
of the faculty board with the Radio Communication Group,
ITRC.

International Journal of Information & Communication Technology




. 12 N[«

His current research interests include  wireless
communications,  diversity = systems, and digital
communication over fading channels.

Paeiz Azmi was born in Tehran-Iran, on
April 17, 1974. He received the B.Sc.,
M.Sc., and Ph.D. degrees in electrical
engineering from Sharif University of
Technology (SUT), Tehran-Iran, in 1996,
v 1998, and 2002, respectively. Since
September 2002, he has been with the
Electrical and Computer Engineering
Department of Tarbiat Modares University, Tehran-Iran,
where he became an associate professor on January 2006.
From 1999 to 2001, he was with the Advanced
Communication Science Research Laboratory, Iran
Telecommunications Research Center (ITRC), Tehran, Iran.
From 2002 to 2005, he was with the Signal Processing
Research Group at ITRC.
His current research interests include modulation and coding
techniques, digital signal processing, and wireless and
optical CDMA communications.

International Journal of information & Communication Technology





