
Accelarated Optical Character Recognition on
Graphics Processing Units

Ehsan Arianyan
Electrical Engineering

Department
Amirkabir University of

Technology
Tehran, Iran

S. Ahmad Motamedi

ehsan_arianyan@aut.ac.ir

Electrical Engineering
Department

Amirkabir University of
Technology
Tehran, Iran

motamedi@aut.ac.ir

Iman Arianyan
Electrical Engineering

Department
Amirkabir University of

Technology
Tehran, Iran

iman_aryanian@aut.ac.ir

Mohammad Motamedi
Electrical Engineering

Department
Amirkabir University of

Technology
Tehran, Iran

mtmd@aut.ac.ir

Received: February 6, 2013- Accepted: May 21, 2013

Abstract — Optical Character Recognition (OCR) is a technique by the help of which the optical characters are
identified automatically by a computer. There are many methods for OCR, one of which is neural network that we
use. Unfortunately, the long training and testing time of these networks is disturbing, but we healed this problem by
mapping our network on graphics card by using Jacket which is the product of Accelereyes group. By so doing, we
achieved the speedup of up to twelve factors. Graphics Processing Units (GPUs) have parallel structure containing
many cores capable of running thousands of threads in parallel. We train a multi-layer perceptron network using
back propagation rule which has a degree of parallelism that is suitable for implementation on new graphics card. We
examine the Persian characters that are typed on the new system of Farsi license plates to make a database of
characters uses in this system and apply them as train and test data for our network.

Keywords- Neural network; OCR; GPU; Jacket; CUDA

I. INTRODUCTION

Graphics Processing Unit (GPU) is a highly
parallel computing device and its main task was first
only graphics rendering. However, the GPU has
gradually developed in recent years to become a more
general processor, and today is used for both
sophisticated graphics rendering and even scientific
applications. Generally speaking, the GPU has become
a powerful device for the execution of data-parallel,
arithmetic intensive applications in which the same
operations are carried out on many elements of data in
parallel. This kind of computation is called Single
Instruction Multiple Data (SIMD) and the GPU only
offers speedup for the computations that are in this
format. GPUs have advanced at an astonishing rate,
currently capable of delivering over 1 TFLOPS of
single precision performance and over 300 GFLOPS
of double precision while executing up to 240
simultaneous threads in one low-cost package. As
such, GPUs have gained significant popularity as
powerful tools for high performance computing (HPC)

achieving 2-100 times the speed of their x86
counterparts in various applications.

Artificial Neural Network (ANN) is a nonlinear
model that is typically like a black box trained to a
specific task on a large number of data samples. Slow
training of neural networks has always been a great
discomfort for scientists. Multi-layer perceptron
(MLP) is one of these structures that is too slow to be
a faithful solution for some applications. However,
there is a high parallelism in both the architecture of
MLP network, and its algorithms. Hence, by
implementing it on modern new GPUs we can get
huge speedup at relatively low cost.

When the time is more than a threshold (for
example an hour) this speedup is clearly admired, and
that is the case in online police car license plate
recognition system. Due to the heavy computation and
the speed of the cars pass across the police camera,
test time of the network is also important. So, we
devised a new system in which we first train two
separate MLP neural networks independently with
characters and numbers that are used in license plate,

ITRC

Volume 5- Number 3- Summer 2013

mailto:ehsan_arianyan@aut.ac.ir�
mailto:motamedi@aut.ac.ir�
mailto:ehsan_arianyan@aut.ac.ir�
mailto:ehsan_arianyan@aut.ac.ir�

and then copy the weights of these two network for as
many as networks that are needed so that they can be
used independently for recognition of different plates
simultaneously. Moreover, seven characters that are
present in a Farsi license plate are recognized at once
with the parallel many-core GPU structure. The
changes made to the algorithm of back propagation to
become suitable for a parallel architecture of GPUs
will be discussed in later sections.

There are many language bindings that help the
programmer, by knowing some extra extensions,
easily transform his or her code written in any
language to a code that is familiar for GPU and run the
output code on GPU. Table I lists these bindings.

TABLE I. LANGUAGE BINDINGS

Language Binded language

.NET CUDA.NET

MATLAB Jacket, GPUmat

Fortran FORTRAN CUDA, PGI
CUDA Fortran Compiler

Perl KappaCUDA

Ruby KappaCUDA

Lua KappaCUDA

A. Paper Organization
In the sections that follow, we first review related

work of other researchers, and then explain optical
character recognition. After that, we talk about MLP
and back propagation algorithm for training the neural
network, and how we changed the algorithm to be
appropriate for implementing on GPUs. In the next
section we intoduce CUDA and Jacket, and in the final
section we present our experimental results and
compare the speedup we get from GPU
implementation of a back propagation learning
algorithm against its CPU counterpart and conclude at
the end.

II. RELATED WORKS

There has been a great effort to improve the
algorithms of optical character recognition so that their
error lessens to a degree that could be trusted and
reliably recognize characters. However, a few works
have been done to both make the recognition
procedure faster with the help of GPUs, and at the
same time make a network which has little error.
Daniel and his fellow worker implemented a restricted
Boltzmann machine network on GPU and tried to take
advantage of parallelism in this kind of neural network
to map it on GPU parallel structure. They tested their
algorithm on a NVIDIA GTX280 GPU, resulting in a
computational speed of 672 million connections-per-
second and a speedup of 66 fold over an optimized
C++ program running on a 2.83GHz Intel processor.
[1]. Jang and his fellow workers implemented a multi-
layer perceptron neural network on both CPU and
GPU using CUDA and OpenMP. They reported that
their implementation times on GPU showed about 15
times faster than implementation using CPU and about

4 times faster than implementation on only GPU
without OpenMP [2]. Prabhu took advantage of GPUs
for speeding SOM neural network and chose NVIDIA
GeForce 6150 Go with Microsoft Research
Accelerator as the high level library as the
implementation platform. He mentioned that if the
computation is not heavy enough or the algorithm is
not parallel, the gain of speed that can be achieved is
not too much so that it deserves implementation on
GPU [3]. Strigl and his fellow worker presented the
implementation of a framework for accelerating
training and classification of Convolutional Neural
Networks (CNNs) on the GPU. They reported that
depending on the network topology, training and
classification on the GPU performs 2 to 24 times faster
than on the CPU [4]. Bernhard and his colleague used
GPUs to increase the speed of two image-
segmentation algorithms using spiking neural
networks and one multi-purpose spiking neural-
network simulator. They reported a speed increase
between 5 and 20 times faster in all the algorithms
implemented [5]. Moorkanikara and his fellow worker
presented the acceleration of Address Event
Representation (AER) based spike processing using a
GPU. Their implementation can achieve a kernel
speedup of up to 35x on a single NVIDIA GTX280
board when compared to a CPU-only implementation
[6]. While Suresh in “Parallel implementation of back-
propagation algorithm in networks of workstations”
had adorable efforts on parallelizing the back
propagation algorithm on the Network of
Workstations (NOWs), the fact that accessing huge
parallel processing facilities is not always cheap and
even possible is undeniable [14]. Casey in the “A
Processor-Based OCR System” also tried to divide the
OCR process to two sequential parts. In their work the
first division of processes was planned to be handle by
an interface and the second part by a separate
processor. This separation of the OCR processes in
their work can be considered as pipeline especially for
sequential inputs [15]. It is worthy to mention that,
however speeding up the OCR procedure is important;
there are still some other important issues about OCR
including the accuracy of recognition and
multidimensional OCRs. There are also lots of lots of
works on these two areas. As a case in point Roy et al.
in “Multi-Oriented English Text Line Extraction
Using Background and Foreground Information” [16]
and Pal et al. in “Multioriented and curved text lines
extraction from Indian documents“ [17] worked on
Recognizing the characters which are not in a regular
form.

Obviously there is a direct relation between
complexity and accuracy. In other words, more
accurate algorithms usually have more complicated
procedure. Such complicated procedure needs more
process and as a result more process time. Ergo, here
there is a tradeoff between the process time and
accuracy. Based on aforementioned facts, it is pretty
easy to speed up the OCR process by decreasing the
accuracy. However, in this paper we are concentrating
on parallelizing the OCR process and reducing the
execution time without diminishing the accuracy. Note
that Beg et al. in “Hybrid OCR Techniques for
Cursive Script Languages - A Review and
Applications” concentrates on this issue too [18].

Volume 5- Number 3- Summer 2013 12

http://en.wikipedia.org/wiki/.NET_Framework�
http://www.hoopoe-cloud.com/Solutions/CUDA.NET/Default.aspx�
http://en.wikipedia.org/wiki/MATLAB�
http://www.accelereyes.com/�
http://gp-you.org/�
http://en.wikipedia.org/wiki/Fortran�
http://www.hoopoe-cloud.com/Solutions/Fortran/Default.aspx�
http://www.pgroup.com/resources/cudafortran.htm�
http://www.pgroup.com/resources/cudafortran.htm�
http://www.pgroup.com/resources/cudafortran.htm�
http://en.wikipedia.org/wiki/Perl�
http://psilambda.com/download/kappa-for-perl�
http://en.wikipedia.org/wiki/Ruby_%28programming_language%29�
http://psilambda.com/download/kappa-extras�
http://en.wikipedia.org/wiki/Lua_%28programming_language%29�
http://psilambda.com/download/kappa-extras�

However, their research is focusing on implementing
the OCR process on the hardware. Our research avoids
hardware implementation due to this fact that while
hardware implementation reduces the execution time,
it makes the implemented algorithm inflexible;
implementing the algorithms on hardware usually
makes their modification arduous, expensive and even
impossible.

III. OCR

OCR is abbreviation of Optical Character
Recognition and is a technique which is used for
automatic recognition of letters that are in a
handwritten or printed text by a computer without
intervene of human and translate human-readable
characters to machine-readable codes. OCR is
applicable in many applications such as in automatic
license plate recognition, and entrance gate control.
Various methods have used for making a faithful OCR
system, one of which is neural network that is very
popular. Among neural networks, multi-layer
perceptron is very famous and is used in most
applications. Furthermore, the hidden parallelism in it
makes it suitable for implementation on many-cores
GPUs; hence we use it as our recognition system.

IV. MLP

Neural network is a highly interconnected structure
that consists of many simple processing elements or
neurons capable of performing massively parallel
computations for data processing and knowledge
representation [7]. MLP is a kind of neural network
that has two or more layers, and there are synaptic
weights in feed forward path of the network, and they
are updated with back propagation method. One needs
to define transfer function, network architecture, and
learning law according to the type of problem to be
solved [8].

V. JACKET & CUDA

CUDA is software that is developed by Nvidia
group and changed the views to GPUs from solely
being graphics rendering devices to be a general
computing device as well. The CUDA pack that the
NVIDIA group provides includes a driver, a toolkit,
and a SDK. The GPU device driver is like a runtime
system that works as an interconnection between the
software and the device. The toolkit provides the
libraries that the codes written in CUDA may link to,
so that the CUDA extensions onto the C/C++
languages in our program become interpreted by the
compiler and also to provide GPU enabled FFT and
BLAS instruction use. FFT and BLAS libraries are
two important library of the CUDA pack that
facilitates use of FFT instructions and basic linear
algebra subprograms and contain efficient functions
that are written by experts of Nvidia group. The SDK
code samples include a lot of examples that ease the
process of learning the CUDA programming. For
taking advantage from full capability of GPU, the data
communication between CPU and GPU must
diminish, because the bus bandwidth between CPU
and GPU is bounded. Furthermore, the job that is
given to the GPU must have high parallelism in itself
so that can obtain the full horsepower of GPU
architecture. Although the GPU is capable of running
many threads in parallel, this execution is done with

the help of kernels defined in CUDA program that
work on array of large data elements. There are some
limitation for these kernels, two of which- that is,
allocating memory, and memory transfer, which come
from the barrier on the length of kernels and the sum
of local memory they use, are of great importance.
Jacket minimizes these tasks transparently and yields
high GPU/CPU performance for MATLAB
applications with minimal effort from the user.

VI. IMPLEMENTATION

A. Back Propagation Rule
Various algorithm can be used for training MLP

but the back propagation is the most efficient one [9].
Also, the reality that back propagation algorithm is
capable of estimating nonlinear relations between
inputs and outputs, make them so famous [10].
However, one of the most important drawbacks of
back propagation algorithm is its slow and time
consuming train procedure. Ergo, in this research we
solve this defect by proposing a parallel back
propagation algorithm which is optimized based on the
architecture of GPUs. The feed forward back-
propagation neural network (BPNN) always consists
of at least three layers; input layer, hidden layer and
output layer [11]. The neural network should first be
trained by applying a large number of datasets before
interpreting new information. At the first stage of
training, input data is applied to the input layer of the
network. Then, the output that is made from this layer
is applied to the next layer as input data, and this
process continues in the next layers until the outputs
are computed in the neurons of the last layer. In this
layer, the result of the output neurons are compared
with the actual outputs and the difference is processed
in the backward direction as error, and the error
computation in each layer continues until it reaches the
first layer. Based on these computed errors weights of
the network are updated according to back propagation
formula. Depending on the defined expected error, the
whole explained process is repeated for all the training
pairs available in the training dataset. After training is
completed properly, neural network learns the samples
and can detect similarities when presented a new
pattern, and accordingly tell what the output pattern is.

Fig. 1 illustrates flowchart of a typical two-hidden-
layer BPNN model. The activation function is softmax
function.

∑= j
xjx eexf i /)(, (1)

Where the sum in the denominator is over all the
neurons in the same layer, and is the same for all
neurons of all layers. Fig. 1 presents the process of
feed forward and back propagation with solid and
dashed lines respectively. During feed forward
operation each input neuron iY receives an input
signal and sends this signal to the next layer neurons

1Z ,…, mZ in the hidden layer. The net input to the
neuron jZ and its output are [12]

∑= =
m
i ijij wYinz 0)(, (2)

))(()(jj inzfoutz = . (3)
Where wij is new weight in the first hidden layer

and 10 =Y is the bias term. Each neuron in the hidden

Volume 5- Number 3- Summer 201313

layer computes its activation and sends its result to the
output neurons. The net input to the output neuron iO
and its output are

∑ =
=

k

j jiij wKino
0

)(, (4)

))(()(ii inOfoutO = . (5)
Where wji is new weight in the output layer and

10 =K is the bias term. In the next step the back
propagation procedure should be executed where the
errors are computed and are used for updating weights.
The output of the network “o” is computed in the feed
forward process that is explained above, and is
compared with the target value “t” that is expected to
be generated in output layer, and the error is
computed. The error function that must be minimized
is

2)(5. otE −×= . (6)
For output units with softmax transfer function the

error is
))(1(pjpjpjpjpj otoo −−×= λδ (7)

Where pjt is target output for pattern p on node j
and pjo is actual output for pattern p on node j. For
hidden layer units with softmax activation function the
error is

 ∑ ×−×= ++
k

l
jk

l
pk

l
pj

l
pj

l
pj woo 11)1(δλδ , (8)

Where pkδ and jkw are the error and the weights
of next layer respectively, and the sum is over the k
nodes in the following layer. Finally, the equation for
updating weights is

1)()1(−+=+ l
pi

l
pj

l
ij

l
ij otwtw ηδ . (9)

Where)(twl
ij represents the weights from node i

to node j at time t in the layer l, η is a gain constant,

and l
pjδ is an error term for pattern p on node j in the

layer l, and 1−l
pio is the output of the neuron in previous

layer for pattern p.
Due to the robustness of back propagation

algorithm against noise, we can simply use single
precision floating point instead of double precision
floating point. By so doing, we can take advantage of
the 1 TFLOPS of single precision performance of
GPUs instead of 300 GFLOPS of double precision
one, and we can reach to greater speeds of execution.
Furthermore, we are sure that by correctly and
meticulously adjusting the back propagation
parameters, the network will converge to the global
minimum of the energy surface.

Both feed forward and back propagation contain
matrix-matrix multiplication XW × where W and X
can be written as below:
















=

mnmm

n

www

www
W

...

...

10

11110

 , (10)

















=

npnn

p

xxx

xxx
X

...

...

10

12010

 . (11)

Where W is the weight matrix and X is input data
in feed forward (Y) and error in back propagation (δ),
and n,m,p are the number of neurons in the first layer,
the number of neurons in the hidden layer, the number
of patterns in training dataset, respectively.

One kind of variations of back propagation
technique is batch update that has an effect on
convergence speed and is to only update the weights
after many pairs of inputs and their desired outputs are
presented to the network, rather than after every
presentation [9]. We use the batch update rather than
pattern update in back propagation so that we can
utilize the maximum capacity of GPU and do updates
in parallel. We apply the changes after the complete
set of training pairs are presented to the network, and
the result of whole matrix-matrix multiplication is
computed in only some cycles of GPU. This
multiplication takes many cycles of CPU, because it
has only up to 4 cores and this computation should be
done serially while GPU has at least 10 times more
core than CPU and can do all computation in parallel.

B. Designed Neural Network
It has been proven that any function can be

approximated with the help of solely a three layer feed
forward multi-layer perceptron which is trained with
the back propagation algorithm [13]. It is obvious that
the greater the number of layers become, the more
parameters the network should learn, and the more
complicated the learning process becomes.
Furthermore, the more the number of parameters are,
the more samples are needed for training the network,
and consequently the network is not capable of
generalization and tries to memorize the samples
which is not acceptable for us. On the other hand, if
we design the network with few layers and few
neurons in each layer, the network‘s ability for
generalization lessens and cannot approximate
complex functions. Besides, a network with few layers
or few neurons in each layer put a great burden on the
existing neurons, and learning procedure becomes
complex and time consuming. Moreover, owing to the
great number of pixels in the pictures that makes the
input data, the number of neurons in the first layer is
correspondingly great (e.g. 3600). If inadequate
number of hidden layer neurons is chosen, the network
will not be able to learn data samples and
consequently we take wrong answers in test stage.
Hence, we choose a three layer BPPN with at least 200
neurons in hidden layer to implement our algorithm.

We use the network architecture depicted in Fig. 1
which is consisted of as many neurons equal to the
number of input picture pixels, 200 to 2000 nodes in
the hidden layer, and as many neurons equal to the
number of classes in the output layer. The inputs to the
network are the binary value of pixels made the input
picture. Learning is achieved through back
propagation with momentum equal to 0.9. The initial
learning rate is 0.1. Either a mean square error rate of
less than 0.001 or maximum number of 1000 iterations
is used as a terminating condition.

C. Details of Implementation
D. I) Initial Weights
Choosing the initial weights has a great effect on

the speed of convergence. Moreover, in some cases,
choosing in appropriate initial weights can prevent the

Volume 5- Number 3- Summer 2013 14

algorithm to achieve the global minimum. Choosing a
very big initial guesses saturates the activation
function. This will reduce the derivative, so correction
of weights will be very slow. Choosing the weights in
[-0.5 +0.5] and [-1 1] domain is suitable. Based on our
experimental results, we figure out that the best
domain for initial weights is the first domain.
II) Data Forms

The convergence and at least convergence rate is
related to data forms. Choosing inappropriate data
form not only diminishes the convergence speed, but
also can even prevent the problem from being
converged. Input data can be either continuous or
discrete. However, the convergence rate for discrete
data is faster. Likewise, bipolar data and activation
functions are preferred rather than binary data and
activation functions. Because obviously in binary
form, an inactive unit will not play any rule in learning
process. By considering all of the aforementioned facts
and based on our experiments, we decided to choose
the bipolar form with discretized data.
III) Number of Hidden Layers

While increasing the number of internal hidden
layers may diminish the number of local minimums
and the chance of wrong classification, this augment
the computation time. Here there is a tradeoff between
the accuracy and precision which must be considered
carefully. There is no generalized and well-defined
solution for this problem. In some cases the number of
hidden layers is equal to the number of train samples
and in some other cases this number will be calculated
by an exponential relation to the number of inputs. In
this research we obtained this number by using trial
and error method by testing different combination and
choosing the most suitable one.
IV) Momentum

In updating, large factor of weights will result in
network to swing and small factor of weights will slow
the convergence rate. To solve this problem we used
momentum in updating the weights. By doing so, the
steps will be bigger. As a result jumping over weights
will be more possible which increase the convergence
speed.

It is worthy to mention that in this work we are
concentrating on parallelizing and speeding up neural
network based OCR. In another word, since this work
is related to the speeding up the training and testing
phases of multi layer perceptron and not to the
recognition accuracy, the network design based on the
details provided in the paper does not guarantee to
overcome the over fitting problem.

E. Computational Hinders
We faced three main problems in the process of

back propagation computing which are: NaN (Not a
Number) messages from the compiler, subnormal, and
saturation. These obstacles are not dedicated to GPU,
and sometimes we encounter such problems in CPU
computing, but we almost see it in GPU rather than
CPU. These unwanted mistakes appear when we make
a big neural network with excessive layers which
contain many neurons in the input, hidden and, output
layers. In normal applications which a big network is
not needed to solve the problem, these messages is not
seen. As we add the cumulative size in back
propagation algorithm, a huge summation must be
undertake, and hence floating point overflows, and for
this reason we may see NaN for the weights value
when debugging our code. As soon as such a NaN
produces, it cooperates in the next multiplications and
its value will distribute among other weights, making
the test result wrong. Lessening the learning rate helps
to solve the problem to some extent, but it slows the
learning process. To overcome this problem, we
changed the softmax function and made it compatible
with GPU by dividing both its nominator and
denominator into exp(xmax); xmax is the maximum of
inputs to each layer. By doing so, the new equation of
softmax function will be obtained which is shown in
(12).

𝑓𝑓(𝑥𝑥𝑖𝑖) =
𝑒𝑒𝑒𝑒𝑒𝑒�𝑥𝑥𝑗𝑗 − 𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚 �
∑ 𝑒𝑒𝑒𝑒𝑒𝑒(𝑥𝑥𝑖𝑖 − 𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚)𝑖𝑖

 (12)

Obviously in (12) the inputs are smaller ergo it is
less possible to face an overflow. Second problem
caused with miniature values, lead the CPU to label
them as subnormals, and the process on these
subnormals is very slow. Defining lower cutoff
threshold may heal this problem. Next disturbance is
the saturation of neurons in the back propagation
process that stops any further leaning of this neuron
and the weights connected to it are not updated. This
phenomenon take place when the value of the neuron
output pjo nears to one, and the production)1(l

pj
l
pj oo −

in (7) will produce zero, leading l
pjδ become zero and

consequently no more update will occur in (8).

VII. EXPERIMENTAL RESULTS

Since there is not a standard database for Farsi
characters that are used in Persian license plates, we
made a simple handmade database. Our database has
25 classes which is consisted of 9 classes of digits and
16 classes of characters where each class contains 5
samples with different view of camera or illumination.
Table II depicts instances of these classes.

We test this algorithm for recognition of number
plate of cars in Iran. There are 8 different characters
on the number plate of cars in Iran. When our system
receive an image of a number plate, the recognition of
all units will be start simultaneously. Moreover, not
only the recognition of all 8 characters for each
number plate is parallel but also, the proposed system
is able to investigate several number plates at the same
time. Ergo, it makes monitoring of large number of
cars at the same time possible. Figure 1. Neural Network structure

Volume 5- Number 3- Summer 201315

We copied the achieved weights of neural network
in 8 different place of memory. Now, 8 neural
networks will work simultaneously and each network
is responsible for detecting one of the 8 characters.
Note that we trained two different networks. One
network is for recognition of letters and another
network for recognition of characters. This will
separate the process of number recognition and letter
recognition, so both number and letter recognition
process will be easier, faster and more accurate.

We tested the whole network on four platforms,
two of which are laptops and the others are PCs. The
result of running our network on the mentioned
platforms shows speedup of training and testing
procedure of multiple back propagation algorithm only
when the number of neurons is greater than a
threshold. The configuration of the platforms, the
speedup range, and the accuracy of the network in
detecting new inputs is presented in Table III. The
speedup and the accuracy changes according to the
number of neurons in the hidden layer and the value of
back propagation parameters. The accuracy is the
maximum accuracy that we reached when changing
the network parameters.

TABLE II. CHARACTERS IN DIFFERENT CLASS OF DATABSE

VIII. CONCLUSION
Training and testing of neural networks is a time

consuming process especially when the volume of data
to be processed is great, and that is the case in the
system of police car license plate recognition. We
implemented a fast system of optical character
recognition of Farsi license plate characters using
graphics card that are available on most PCs. We took
advantage of Accelereyes Jacket software for
implementing our system on GPU. With the use of this
Jacket the matlab programmer, with knowing some
extensions that Jacket adds to matlab, simply writes
his program in a user friendly environment of matlab
mfile and run it on GPU. So, we easily used the
graphics unit interface of matlab for construction of
our model and simply run our tests many times on
both CPU and GPU. We test our system on 4
computers with different configurations and get the
speedup of between 2 and astoundingly 12 factors.

ACKNOWLEDGMENT
We thanks fast processing laboratory of Amirkabir

University and CyberSpace Research Institute (former
ITRC) that provide us platforms to test and run our
system.

REFERENCES
[1] Daniel L. Ly, Volodymyr Paprotski, Danny Yen, “Neural

Networks on GPUs: Restricted Boltzmann Machines”, see
http://www.eecg.toronto.edu/~moshovos/CUDA08/doku.php?
id=project_presentations_reports_source_code;

[2] H. H. Jang, A. J. Park, and K. C. Jung, “Neural Network
Implementation Using CUDA and OpenMP,” Computing:
Techniques and Applications, pp. 155–161, 2008.

[3] Raghavendra D Prabhu ,“SOMGPU: An Unsupervised
Pattern Classifier on Graphical Processing Unit”,
Evolutionary Computation, 2008. CEC 2008, 1-6 June
2008,pp. 1011 – 1018, doi: 10.1109/CEC.2008.4630920 .

[4] Daniel Strigl, Klaus Kofler and Stefan Podlipnig,
“Performance and Scalability of GPU-based Convolutional
Neural Networks”, Parallel, Distributed and Network-Based
Processing (PDP) , 17-19 Feb. 2010, pp. 317 – 324, doi:
10.1109/PDP.2010.43 .

[5] F.Bernhard, and R.Keriven, "Spiking neurons on GPUs",
International Conference on Computational Science:
Workshop on GPGPU, May 2006

[6] J.Moorkanikara Nageswaran, Yingxue Wang, Nikil Dutt,
Tobi Delbrueck, "Computing Spike-based Convolution on
GPUs", Circuits and Systems, 2009. ISCAS 2009, 24-27 May
2009, pp. 1917 – 1920, doi: 10.1109/ISCAS.2009.5118157 .

[7] Kosko B., Neural networks and fuzzy systems: a dynamical
systems approach to machine intelligence. New Delhi:
Prentice-Hall; 1994. pp. 12–7.

[8] Simpson PK., Artificial neural system—foundation,
paradigm, application and implementations., New York:
Pergamon; 1990.

[9] Mutasem khalil Sari Alsmadi, Khairuddin Bin Omar and
Shahrul Azman Noah, “Back Propagation Algorithm : The
Best Algorithm Among the Multi-layer Perceptron
Algorithm”, IJCSNS International Journal of Computer
Science and Network Security, VOL.9 No.4 pp. 378-383,
April 2009,

[10] Alsmadi, M.K., Bin Omar, K., Noah, S.A., Almarashdah, I.,
“Performance Comparison of Multi-layer Perceptron (Back
Propagation, Delta Rule and Perceptron) algorithms in Neural
Networks.”, Advance Computing Conference, 2009. IACC
2009. IEEE International , 6-7 March 2009 , pp. 296 - 299,
doi: 10.1109/IADCC.2009.4809024

[11] Tawadrous AS, Katsabanis PD, “Prediction of surface crown
pillar stability using artificial neural networks”. International
Journal for Numerical and Analytical Methods in
Geomechanics, Volume 31, Issue 7, June 2007, pp. 917–931,
doi: 10.1002/nag.566

[12] M. Monjezi, H. Dehghani, “Evaluation of effect of blasting
pattern parameters on back break using neural networks”
International Journal of Rock Mechanics & Mining Sciences,
vol. 45, Issue 8, Dec. 2008, pp. 1446-1453.

[13] Haykin Simon, Neural Networks: A Comprehensive
Foundation, 2rd ed., Prentice Hall. ISBN 0132733501,
1998,pp. 178 – 278

[14] Suresh, S.; Omkar, S.N.; Mani, V.; , "Parallel implementation
of back-propagation algorithm in networks of workstations,"
Parallel and Distributed Systems, IEEE Transactions on ,
vol.16, no.1, pp. 24- 34, Jan. 2005.

[15] Casey, R. G.; Jih, C. R.; , "A Processor-Based OCR System,"
IBM Journal of Research and Development , vol.27, no.4,
pp.386-399, July 1983.

[16] Roy, P.P.; Pal, U.; Llados, J.; Kimura, F.; , "Multi-Oriented
English Text Line Extraction Using Background and
Foreground Information," Document Analysis Systems, 2008.
DAS '08. The Eighth IAPR International Workshop on , vol.,
no., pp.315-322, 16-19 Sept. 2008.

[17] Pal, U.; Roy, P.P.; , "Multioriented and curved text lines
extraction from Indian documents," Systems, Man, and
Cybernetics, Part B: Cybernetics, IEEE Transactions on ,
vol.34, no.4, pp.1676-1684, Aug. 2004.

[18] Beg, A.; Ahmed, F.; Campbell, P.; , "Hybrid OCR
Techniques for Cursive Script Languages - A Review and
Applications," Computational Intelligence, Communication
Systems and Networks (CICSyN), 2010 Second International
Conference on , vol., no., pp.101-105, 28-30 July 2010.

Volume 5- Number 3- Summer 2013 16

http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=4625778�
http://dx.doi.org/10.1109/CEC.2008.4630920�
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=5452233�
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=5452233�
http://dx.doi.org/10.1109/PDP.2010.43�
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=5076158�
http://dx.doi.org/10.1109/ISCAS.2009.5118157�
http://www.ieeexplore.ieee.org/search/srchabstract.jsp?tp=&arnumber=4809024&queryText%3D%28multi+layer+perceptron%29%26openedRefinements%3D*%26ranges%3D2009_2010_Publication_Year%26matchBoolean%3Dtrue%26searchField%3DSearch+All�
http://www.ieeexplore.ieee.org/search/srchabstract.jsp?tp=&arnumber=4809024&queryText%3D%28multi+layer+perceptron%29%26openedRefinements%3D*%26ranges%3D2009_2010_Publication_Year%26matchBoolean%3Dtrue%26searchField%3DSearch+All�
http://www.ieeexplore.ieee.org/search/srchabstract.jsp?tp=&arnumber=4809024&queryText%3D%28multi+layer+perceptron%29%26openedRefinements%3D*%26ranges%3D2009_2010_Publication_Year%26matchBoolean%3Dtrue%26searchField%3DSearch+All�
http://www.ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=4799789�
http://www.ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=4799789�
http://www.ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=4799789�
http://dx.doi.org/10.1109/IADCC.2009.4809024�
http://onlinelibrary.wiley.com/doi/10.1002/nag.v31:7/issuetoc�
http://www.sciencedirect.com/science?_ob=PublicationURL&_tockey=%23TOC%235769%232008%23999549991%23701982%23FLA%23&_cdi=5769&_pubType=J&view=c&_auth=y&_acct=C000050221&_version=1&_urlVersion=0&_userid=10&md5=956064495b8c8ec64618a46d3c1a251e�
http://en.wikipedia.org/wiki/Simon_Haykin�
http://en.wikipedia.org/wiki/International_Standard_Book_Number�
http://en.wikipedia.org/wiki/Special:BookSources/0132733501�

TABLE III. PLATFORMS CONFIGURATION

Ehsan Arianyan is with High
Performance Computing (HPC) Lab. of
the Electrical Engineering Department of
the Amirkabir University of Technology
(AUT). He received his B.Sc. degree
from Iran University of Science and
Technology in 2008 and his M.Sc.
degree from the AUT in 2010. He is

currently a PhD student in the AUT and his research areas
are high performance computing, cluster computing, cloud
computing, and decision algorithms.

 Seyed Ahmad Motamedi received his
B.Sc. degree in electronic engineering
from Amirkabir University of
Technology (AUT), Tehran, Iran, in
1979. He received his M.Sc. degree in
computer hardware in 1981 and his
Ph.D. degree in information systems
(computer hardware) in 1984, both from

University of Pierre & Marie Curie (Paris VI), France.
Currently he is a Full Professor at the Electrical Engineering
Department of Amirkabir University of Technology (AUT)
and has been a faculty member of this institute since 1984.
His research interests include Parallel Processing, Image
Processing, Microprocessor Systems, Wireless Industrial
Networks, Wireless Sensor Networks, Automation and
Biomedical Engineering. Prof. Motamedi was the president
of Iranian Research Organization for Science and
Technology (IROST) from 1986 to 2001. He is the head of
High-Speed Processing Research Center, AUT, Tehran,
Iran. He has been the author of several books and has
published many scientific papers in international
conferences and journals.

Iman Aryanian was born in Iran in
1986. He obtained his B.Sc. degree in
electrical engineering from Amirkabir
University of Technology, Tehran, Iran
in 2008, and his M.Sc. degree from
Amirkabir University of Technology,
Tehran, Iran in 2010. He is currently
working toward his Ph.D. program. His

research interests are in the areas of high performance
computing, cluster computing, and cloud computing.

Mohammad Motamedi received his
B.Sc. degree in electrical engineering
from the AUT, Tehran, Iran in 2012.
Currently he is pursuing his M.Sc.
degree at Electrical Engineering
Department of AUT. His main research
areas are parallel processing and high
performance computing. He is currently

with HPC lab of the AUT and is working with Sahisystem
Corporation as a system designer.

platform

Configuration

CPU processor RAM of
CPU

Operating
system GPU model

GPU
dedicated
memory

Number of
streaming
processors

Train
speedup
range

%
accuracy

1

AMD
Athlon(tm) 64
X2 Dual Core

2.61 GHZ

2 GB Windows
XP 32-bit

NVUDIA
GeForce
8400 GS

256 MB 16 0.1 to
1.15 25 - 100

2
Intel(R)

Core(TM) i7 Q
720 @ 1.6GHz

4GB Windows 7
64-bit

NVIDIA
GeForce

GT 320M
1 GB 24 0.5 to 2.5 25 -100

3
Intel(R)

Core(TM) i7 Q
720 @ 1.6GHz

6 GB Windows 7
64-bit

NVIDIA
GeForce

GT 330M
1 GB 48 0.6 to 4 25 - 100

4 2 Zeon Quad
Core 2.4 GHZ 8 GB Windows 7

64-bit

NVIDIA
TESLA C

1060
4 GB 240 0.8 to 12 25 - 100

Volume 5- Number 3- Summer 201317

	2-arianian.pdf
	introduction
	Paper Organization

	related works
	ocr
	mlp
	jacket & cuda
	implementation
	Back Propagation Rule
	Designed Neural Network
	Details of Implementation
	I) Initial Weights
	Computational Hinders

	experimental results
	conclusion
	Acknowledgment
	References

	4-Salehi.pdf
	Introduction
	Literature survey
	Content based filtering
	Collaborative filtering
	Hybrid approach

	Methodology
	Material profiling
	Wighted Attribute based Content-based Recommendation (WACB)
	Adaptive strategy
	Weighted Attribute based Collaborative Filterting (WACF)
	Final recommendation(WAH)

	Result and discussion
	Data set and Evaluation metrics
	Performance evaluation
	Parameters setting

	Performance comparison

	Conclusion
	Acknowledgment
	References

	6-Farhood.pdf
	Introduction
	Search Result Classification
	Related Work
	b) Classification-based IR model
	a) Standard IR model
	Proposed Classification-Based IR System
	Conceptual View
	Architecture

	Classification
	Experiment
	Experimental Results
	Classifiers Assessment
	B.Classification-based IR System Assessment

	Conclusion
	References

	7-Tajpour.pdf
	1.introduction
	2. OVERVIEW OF SQL INJECTION ATTACK
	2.1.Definition of SQLIA
	2.2. Sql Injection Attack Types
	2.3. SQL Injection Detection And Prevention Tools

	3.Comparison
	3.1. Comparison of SQL Injection Detection/Prevention Tools Based on Deployment Requirement
	3.3. Comparison of Tools Based on Evaluation Parameters
	4. Detailed Framework Diagrams
	4.1. Create Testbed
	4.3.Install Tool
	4.4.Re-Perform SQLIAs with Tool
	4.5.Analyze Result

	5.Complete Evaluation Framework

	6.CONCLUSION
	REFERENCES

	9.pdf
	Page 12

	11.pdf
	Page 14

	page summer 2013.pdf
	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10
	Page 11
	Page 12
	Page 13
	Page 14
	Page 15
	Page 16
	Page 17
	Page 18
	Page 19
	Page 20
	Page 21
	Page 22
	Page 23
	Page 24
	Page 25
	Page 26
	Page 27
	Page 28
	Page 29
	Page 30
	Page 31
	Page 32
	Page 33
	Page 34
	Page 35
	Page 36
	Page 37
	Page 38
	Page 39
	Page 40
	Page 41
	Page 42
	Page 43
	Page 44
	Page 45
	Page 46
	Page 47
	Page 48
	Page 49
	Page 50
	Page 51
	Page 52
	Page 53
	Page 54
	Page 55
	Page 56
	Page 57
	Page 58
	Page 59
	Page 60
	Page 61
	Page 62
	Page 63
	Page 64
	Page 65
	Page 66
	Page 67

