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Abstract—In this paper a new low complexity method for constructing binary quasi-cyclic low-density parity-check 

(QC-LDPC) codes is introduced. In the proposed method, each block-column of the parity check matrix H is made by 

a circulant matrix in a way that the associated Tanner graph is free of cycle four. Each circulant matrix in H is made 

by a generator column. The generator columns should be selected in a way that each associated circulant matrix and 

every two distinct circulant matrices are free of cycle four. The generator columns are made by row distance sets. An 

algorithm for generating distance sets and obtaining circulant matrices with columns of weight three is presented 

separately. Simplicity of construction and having a good flexible family of quasi cyclic LDPC codes both in rate and 

length are the main properties of the proposed method. The performance of the proposed codes is compared with that 

of the random-like and Array LDPC codes over an AWGN channel. Simulation results show that from the performance 

perspective, the constructed codes are competitive with random-like and Array LDPC codes. 

Keywords- QC-LDPC codes, girth, circulant matrices, AWGN channel, concatenation. 

 

 

I. INTRODUCTION 

QC-LDPC codes are a family of capacity-
approaching and high performance error correcting 
linear codes [1, 2]. Construction of these codes is 
divided into two categories: random-like codes, such as 
[1, 2] and structured codes, such as [3-12]. As 
mentioned in many papers, the encoding complexity of 
quasi-cyclic codes is extremely low [3-5]. In general, 
QC-LDPC codes are constructed by two main methods: 
superposition techniques [4, 9] and parity check 
matrices derived by circulant matrices [6, 8]. 

The proposed method in this paper can produce QC-
LDPC codes with different lengths and rates. A parity 
check matrix H has been constructed by concatenation 
of circulant matrices as block-columns. Each circulant 
matrix is constructed by a generator column with an 
arbitrary considered weight. We must take an order on 

nonzero elements of each generator column such that 
each associated circulant matrix and every two disjoint 
circulant matrices be free of cycle four. Therefore the 
associated Tanner graph of parity check matrix H will 
have girth at least six. Constructed quasi-cyclic LDPC 
codes in this paper can have arbitrary column weights, 
lengths and rates. Therefore the main task in this paper 
is to construct appropriate generator columns. We have 
introduced a method of constructing particular sets, 
known as row distance sets, which are used for 
constructing generator columns. Furthermore, we 
represent generator columns by generator polynomials 
that demonstrate a simple exhibition of H. The 
performance of the proposed codes on an AWGN 
channel by sum-product algorithm (SPA) decoding is 
examined and compared with that of the random-like 
and Array LDPC codes as well-known QC-LDPC 
codes [13]. Simulation results show that the constructed 
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QC-LDPC codes outperform random-like and Array 
LDPC codes. There exist some papers for the 
construction of QC-LDPC codes based on difference 
sets [12, 14, 15]. They are indeed very similar to our 
work, but they are based on some algebraic and 
combinatory methods with inherent restriction on using 
and making various difference sets. Our method 
approach to constructing QC-LDPC codes that are not 
directly related to difference sets, but can be a 
generalization of them on constructing a large family of 
QC-LDPC codes. 

 This paper is organized as follows: The method of 
constructing a quasi-cyclic parity check matrix by 
generator columns and associated circulant matrices is 
introduced in Section II. The technique and algorithm 
of constructing the appropriate generator columns by 
row distance sets are given in Section III. A simple 
representation of generator columns and parity check 
matrix H by generator polynomials is introduced in 
Section IV. Simulation results are presented in Section 
V. Section VI concludes the paper. 

 

II. PARITY CHECK MATRIX CONSTRUCTION 

BASED ON THE CIRCULANT MATRICES 

Let the parity check matrix H of an LDPC code be 
denoted by 

H= [A1 A2  . . . An],                                          (1) 

where each Ai, 1≤ i ≤ θ is a circulant matrix with 

arbitrary column weight. To avoid girth four, parity 

check matrix H must have the following condition: 

Condition 1  

1. any sub-matrix Ai be free of cycle four, 

2. matrix [Ai, Aj] for 1≤ i≠j ≤ θ is free of cycle four. 

Definition 1 The row distance σ between two nonzero 

components a and b in a fixed column of a circulant 

matrix Ak is determined one greater than the number of 

rows containing a and b and it is shown by mab
k= σ. 

        Definition 2 A set of row distances of nonzero 

elements in a fixed column of a circulant matrix is 
called a row distance set.  

         Definition 3 The first column of a circulant matrix is 

called a generator column.  

Every circulant matrix Ai, 1≤ i ≤ θ in (1) made by a 

fixed cyclically shifting the associated generator 

column and every generator column is made from 

associated row distance set. Hence, first of all, we focus 

on constructing appropriate row distance sets.  

Example 1 In Fig. 1 there are four row distances in a 

column of weight three (including three nonzero 

components a, b and c). So the row distances are:  

1. The row distance between a and b is: mab= 1, 

2. The row distance between b and c is: mbc= 2, 

3. The row distance between a and c is: mac= 3, 

4. The row distance between c down to the first 

nonzero component a is mca= 4. 

So the row distance set is R={ mab= 1, mbc= 2, mac= 3, 

mca= 4}. The circulant matrix obtained by cyclically 

shifting the associated generator column is shown in Fig. 

2, note that a=b=c=1.  

Remark 1 In a column between every two nonzero 

components there is a row distance, so in a column of 

weight w, there is a row distance set with the cardinality 

of at most (𝑤
2

) + 1.  

The circulant matrices Ai, 1≤ i ≤ θ in (1) will be 

produced by different row distance sets such that the 

Condition 1 is satisfied. Therefore we have the following 

outcomes. 

Proposition 1 An associated Tanner graph of a 

circulant matrix produced by a column generator of 

weight w and row distance set of cardinality (𝑤
2

) + 1 is 

free of cycle four. 

Proof: Obviously, when the cardinality of a row 

distance set of a column generator of weight w is (𝑤
2

) +

1, then the row distances between nonzero components 

of the generator column are different and under a fixed 

cyclically shifting on the column generator, the Tanner 

graph of the produced circulant matrix will have no 

cycle of length four. 

Fig 1: Four row distances between the three nonzero components 

a, b and c in a column. 
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Fig 2: Cyclically shifting the generator column in Fig.1 to 

produce a circulant matrix. 

Theorem 1 If every two disjoint row distance sets, 

corresponding to two distinct generator columns, have 

no intersection and every associated circulant matrix 

of them satisfies Proposition 1, then there is no cycle 

of length four in Tanner graph made by the 

concatenation of their circulant matrices. 

Proof: Let A1 and A2 be two distinct circulant matrices 

pertaining to the generator columns G1 and G2, which 

satisfy Proposition 1. Without loss of generality, we 

assume that the generator columns G1 and G2 have 

weight three. Let nonzero components of generator 

column G1 and G2 be {a, b, c} and { �́� ,  �́� , �́� }, 

respectively. So the row distance set of the generator 

column G1 and G2 are R1={ 𝑚𝑎𝑏
1 , 𝑚𝑏𝑐

1 , 𝑚𝑎𝑐
1 , 𝑚𝑐𝑎

1 } and 

R2={ 𝑚𝑎′𝑏′
2 , 𝑚𝑏′𝑐′

2 , 𝑚𝑎′𝑐′
2 , 𝑚𝑐′𝑎′

2 }, respectively. We 

know that matrices A1 and A2 are made by a fixed 

cyclically shifting of the generator columns G1 and G2. 

So by Proposition 1, circulant matrices A1 and A2 will 

be free of cycle four (Condition 1 (i)). Since R1∩R2=Ø 

and circulant matrices A1 and A2 are constructed by a 

fix cyclical shift to their generator columns G1 and G2, 

respectively, then by concatenating matrices A1 and A2 

the associated Tanner graph will be free of cycle four ( 

Condition 1 (ii)). 

Corollary 1 concatenating any two disjoint circulant 

matrices that satisfy Theorem 1, results in parity check 

matrix with a Tanner graph free of cycle four. 

III. CONSTRUCTION OF CIRCULANT MATRICES 

In the following, to construct the parity check matrix 

of the form given by (1), we have focused on the 

appropriate row distance sets that satisfy Corollary 1. 

Remark 2 Proposition 2 is intended to construct parity 

check matrix with column weight three. However it can 

be easily generalized for column weights greater than 

three by enforcing more restrictions on the involved 

distance sets. 

Proposition 2 Let parity check matrix H in (1) satisfy 

Proposition 1 and Theorem 1, and also circulant 

matrices Ak, 1 ≤ k ≤θ, in (1), be h×h matrices with a 

column weight three. Then there exist disjoint distance 

sets 𝑅𝑖 ={𝑛𝑖1 , 𝑛𝑖2 , 𝑛𝑖3 , 𝑛𝑖4 }and 𝑅𝑖′ ={𝑛𝑖′1 , 𝑛𝑖′2 , 𝑛𝑖′3 , 

𝑛𝑖′4}   associated to circulant matrix 𝐴𝑖 and 𝐴𝑖′ so that 

the following restrictions hold: 

 
 

Proof: The weight of the generator columns is three 

and the associated circulant matrices in (1) are h×h. At 

first, let 𝑅𝑖 ={ 𝑛𝑖1 , 𝑛𝑖2 , 𝑛𝑖3 , 𝑛𝑖4 } be a distance set 

pertaining to sub-matrix Ai in (1), where 1 ≤ nij ≤ h , 1 

≤ j ≤ 4. For Proposition 1 to be established, elements 

of Ri must be satisfied in (2)-(4). It is evident that 

another distance set 𝑅𝑖′={𝑛𝑖′1, 𝑛𝑖′2, 𝑛𝑖′3, 𝑛𝑖′4}, 𝑖 ≠ 𝑖′, 
which is associated to the sub-matrix 𝐴𝑖′ in (1) (where 

1 ≤ 𝑛𝑖′𝑗 < ℎ, 1 ≤ 𝑗 ≤ 4) must be disjoint from Ri and 

so according to Proposition 1 and Corollary 1 must be 

satisfied in (5)-(8). Intuitively, the above-mentioned 

constraints must be satisfied for every pair of disjoint 

distance sets. 

Example 2 For positive integer h = 15, there are two 

disjoint distinct sets that satisfy Proposition 2. R1 = {1, 

2, 3, 12} and R2 = {4, 5, 9, 6} since for R1 

 
and for R2 

 
Therefore, 

R1∩R2=Ø. 

Based on Proposition 2, we can have the following 

algorithm that generates all row distance sets for an 

arbitrary positive integer h (size of circulant matrices in 

(1)). 

 

Algorithm 1 Generating row distance sets  

Input: h (size of circulant matrices Ak in (1)) and w = 3 

(weight of a generator column). 

Output: row distance sets Ri, 1 ≤ i ≤ τ (τ is the 

maximum number of row distance sets). 

Assume a, b and c are three nonzero components in a 

generator column from top to bottom. 

Start 

-i = 1, R1 = Ø; 

-While ( Ri ∩ Ri-1 = Ri ∩ Ri-2 = … = Ri ∩ R1 = Ø) 

    do { 

   - i=i+1; 

 - assign a positive integer smaller than h to 𝑚𝑎𝑏
𝑖  : 

(row distance between two nonzero elements a and b.) 
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-assign a positive integer smaller than h to 𝑚𝑏𝑐
𝑖 , such 

that 𝑚𝑎𝑏
𝑖  ≠ 𝑚𝑏𝑐

𝑖  ; (row distance between two nonzero 

elements b and c.) 

-set 𝑚𝑎𝑐
𝑖  =  𝑚𝑏𝑐

𝑖 + 𝑚𝑎𝑏
𝑖  , 1 ≤ 𝑚𝑎𝑐

𝑖 < ℎ ; (row 

distance between the two nonzero elements a and c.) 

- 𝑚𝑐𝑎
𝑖 = ℎ − 𝑚𝑎𝑐

𝑖  such that 𝑚𝑎𝑐
𝑖 ≠ 𝑚𝑐𝑎

𝑖 ≠ 𝑚𝑎𝑏
𝑖 ≠

𝑚𝑏𝑐
𝑖  and 1 ≤ 𝑚𝑐𝑎

𝑖 < ℎ ; (row distance between the 

two nonzero element c down to the first element a.) 

-set Ri={𝑚𝑎𝑏
𝑖 ,  𝑚𝑏𝑐

𝑖  , 𝑚𝑎𝑐
𝑖 ,  𝑚𝑐𝑎

𝑖 }; 

            } 

-τ=i; 

End 

 

The row distance sets, given by the above algorithm, 

and their associated generator columns can produce 

circulant matrices in a way that the Tanner graph of the 

parity check matrix H in (1) be free of cycle 4. 

 

Example 3 Let h = 21. According to Algorithm 1, there 

are three row distance sets (τ = 3) as follows: 

 
We can see the maximum number of row distance sets 

obtained by applying Algorithm 1 and varying the value 

of h in the first two columns of Table 1. 

In Table 2, some binary QC-LDPC codes with different 

lengths and rates for a fixed values of h and different 

value of θ, where 1 ≤ θ ≤ τ(= 40), are presented. 

 
TABLE 1.  PARAMETERS OF CONSTRUCTED BINARY QC-LDPC 

CODES WITH COLUMN WEIGHT 3 AND MAXIMUM NUMBER OF 

CIRCULANT MATRICES (θ = τ). 

 
 

 

IV. CONSTRUCTING CIRCULANT MATRICES VIA 

POLYNOMIALS ON F2 

Let a, b and c be three nonzero components in a 

generator column from top to bottom (𝑎, 𝑏, 𝑐 ∈F2) and 

Ri={ 𝑚𝑎𝑏
𝑖 , 𝑚𝑏𝑐

𝑖 , 𝑚𝑎𝑐
𝑖 , 𝑚𝑐𝑎

𝑖 } be the associated row 

distance set. A generator polynomial over F2 associated 

with this row distance set can be defined as: 

 

where degree (𝑔𝑖(𝑥)) = 𝑚𝑎𝑐
𝑖 . Circulant matrix Ai of 

size h×h can be determined as follows: 

 
where polynomials gi(x) are considered to be columns 

of Ai. 

Example 4: Let h = 15, according to Example 2, we 

can construct the parity check matrix H =(A1  A2) of 

size 15 × 30 based on two row distance sets 

R1={𝑚𝑎𝑏
1 = 1,  𝑚𝑏𝑐

1 = 2 , 𝑚𝑎𝑐
1 = 3,  𝑚𝑐𝑎

1 = 12}, 

R2={𝑚𝑎𝑏
2 = 4,  𝑚𝑏𝑐

2 = 5 , 𝑚𝑎𝑐
2 = 9,  𝑚𝑐𝑎

2 = 6}. 

According to (9), the associated generator polynomials 

g1(x) and g2(x) are: 

 
where g1(x) generates circulant matrix A1 and 

 
where g2(x) generates circulant matrix A2. The resultant 

parity check matrix H is shown in Fig. 3. 

We compare performance of some of our codes with 

that random-like codes and Array LDPC codes in the 

next section. 

 
Fig. 3 Parity checks matrix H and circulant matrices made 

by generator columns in Example 4. 

 

TABLE 2. PARAMETERS OF CONSTRUCTED BINARY QC-LDPC 

CODES FOR H = 292, 1 ≤ θ ≤τ (= 40) , COLUMN WEIGHT THREE, 

ROW WEIGHT 3θ AND DIERENT RATES IN MATRIX (1). 
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TABLE 3. PARAMETERS OF SOME CONSTRUCTED BINARY QC-

LDPC CODES WITH COLUMN WEIGHT THREE. 

 

V. SIMULATION RESULTS 

According to Table 3 and the discussions in Section II 

and III, we have constructed some (n, k, r) QC-LDPC 

codes with a minimum distance at least four so that the 

associated Tanner graph has no cycle of length four. 

These codes, in the following examples, have been 

compared with random-like LDPC codes, using the 

software in [16], and Array LDPC codes under SPA 

decoding on AWGN channels with maximum 50 

iterations. Furthermore, by removing some circulant 

matrices in (1), one can obtain dierent codes with 

desired lengths and rates. 

Example 5 Let h = 256. The associated parity check 

matrix given by Table 3 is: 

 
where each circulant matrix Ai, 1 ≤ i ≤ 34, is of size 

256×256 and constructed by the proposed method in 

Section III. The null space of matrix H gives a (8704, 

8448, 0.97) binary QC-LDPC code. The BER 

performance of this code over an AWGN channel is 

shown in Fig. 4 and this code is compared with 

random-like code and Array LDPC code of near length 

and rate. At a BER of 10-6, the constructed (8704, 8448, 

0.97) QC-LDPC code achieves approximately 0.2 dB 

gain over the random-like code and 0.2 dB gain over 

the Array LDPC code. In addition, the constructed 

code has better waterfall curve compared to Array 

LDPC code. 

Example 6: Let h = 226. The associated parity check 

matrix given by Table 3 is: 

 
where each circulant matrix Ai, 1 ≤ i ≤ 30, is of size 226 

× 226. The null space of matrix H gives a (6780, 6554, 

0.966) binary QC-LDPC code. The BER performance 

of this code over an AWGN channel is shown in Fig. 4 

and this code is compared with random-like code and 

Array LDPC code of the near length and rate. At a BER 

of 10-6, the constructed (6780, 6554, 0.966) QC-LDPC 

code achieves approximately 0.08 dB gain over the 

random-like code and 0.4 dB gain over Array LDPC 

codes. 

 

 
Fig. 4 Error performance of (8704, 8448, 0.970) QC-LDPC 

code and (6780, 6554, 0.966) QC-LDPC code in Examples 5 

and 6. 

Example 7 Let h = 210. The associated parity check 

matrix given by Table 3 is: 

 
where each circulant matrix Ai, 1 ≤ i ≤ 28, is of size 

210×210. The null space of matrix H gives a (5880, 

5670, 0.964) binary QC-LDPC code. The BER 

performance of this code over an AWGN channel is 

shown in Fig. 5 and this code is compared with 

random-like code and 

Array LDPC code of the same length and rate. At a 

BER of 10-5, the constructed (5880, 5670, 0,964) QC-

LDPC code achieves approximately 0.1 dB gain over 

the random-like code and Array LDPC code and it has 

better waterfall curve than them at BER of 10-6. 

Example 8 Let h = 150. The associated parity check 

matrix by Table 3 is: 

 
where each circulant matrix Ai, 1 ≤ i ≤ 20, is of size 

150×150. The null space of matrix H gives a (3000, 

2850, 0.950) binary QC-LDPC code. The BER 

performance of this code over an AWGN channel is 

shown in Fig. 5 and this code is compared with 

random-like code and Array LDPC code of the near 

length and rate. At a BER of 10-6, the constructed 

(3000, 2850, 0.950) QC-LDPC code achieves 

approximately 0.15 dB gain over the random- like code 

and 0.2 dB Gain over the Array LDPC code. 

The figures confirm that from the performance 

perspective, the constructed codes compete with and 

even outperform the random-like codes and Array 

LDPC codes. 
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Fig. 5 Error performance of (5880, 5670, 0.964) QC-

LDPC code and (3000, 2850, 0.95) QC-LDPC code in 

Examples 7 and 8. 

VI. CONCLUSION 

This paper considers a new and different QC-LDPC 

codes construction method by row distance sets with 

girth of at least six. Unlike the previous QC-LDPC 

code construction methods which were based on 

combinatorial designs and nite geometries, our method 

can produce a family of QC-LDPC codes with variable 

lengths and rates easily. Multi-rate QC-LDPC codes 

can be used in practical applications, particulary 

suitable particularly in wireless communications. 

Moreover by the introduced technique, we can simply 

construct a family of high rate QC-LDPC codes. The 

parity check matrices of these codes can be constructed 

by generator polynomials over F2. We saw that the 

proposed codes perform comparably to the well-

known Array LDPC codes, and have better waterfall 

curve than them. The results also confirm that from the 

performance perspective, the random-like LDPC codes 

at short to moderate code lengths are not better than the 

constructed codes by our method over AWGN 

channels. Moreover the proposed codes are quasi-

cyclic and hence, their encoding can be implemented 

with linear shift-registers in linear time. Constructing 

LDPC codes with girth larger than eight can be 

achieved by putting more restrictions on the proposed 

technique and is the subject of a new research. 

Therefore, constructing QC-LDPC codes with girths 

larger than six can be considered as a novel work by 

the proposed technique in this paper. 
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