Inconsistency Repair to Improve the Alignment Results of Ontology Matchers

Bahareh Behkamal
Department of Computer Engineering
Ferdowsi University of Mashhad
Mashhad, Iran
b.behkamal@mail.um.ac.ir

Mahmoud Naghibzadeh
Department of Computer Engineering
Ferdowsi University of Mashhad,
Mashhad, Iran
naghibzadeh@um.ac.ir

Received: October 22, 2016- Accepted: March 14, 2017

Abstract — Ontology inconsistency is one of the most important topics in the field of ontology matching. Until now many matchers are introduced but most of them suffer from inconsistencies. Many of the ontology matching tools have severe problems with respect to the quality of matching results and therefore the results of matching process is not adequate. In this paper, we focus on this topic and present a new method to produce better results from the matching process. The major novelty of this paper is in detecting the inconsistencies in ontologies before starting the matching process. In this phase, many problems caused by ontology diversity are resolved. Besides, some new patterns and inconsistencies in ontologies are detected and then refactoring operations are applied on them. At the end, one of the well-known matchers in OAEI is selected to evaluate our work. Experimental results show that the transformed ontologies are more efficient than original unrepaired ones with respect to the standard evaluation measures.

Keywords— Ontology matching; Alignment; Inconsistency; Refactoring; Pattern detection

I. INTRODUCTION

The vast progress of data and communication on the web has caused a huge amount of diversity in information. The problem of managing heterogeneity in various information resources is increasing. Until now many solutions have been proposed to facilitate this problem, and specifically, to automate integration of distributed data resources. Among them, semantic technologies have attracted particular attention. One of the best semantic technologies in this field is ontology matching. Ontology matching is a technique that takes the ontologies as an input and extracts the alignments as an output. The alignment is a set of correspondences between entities of ontologies that are semantically related. These correspondences can be used for various tasks, such as ontology integration [1], ontology evolution [2], data integration [3], and data warehouses [4]. Until now, many different tools for matching process are developed. However, most of them suffer from many problems with respect to the quality of matching results. Thus, in this paper we proposed an approach to get a better results from matching processes. The solution is adding a preprocessing phase to matchers. In the preprocessing phase, many input ontologies are analyzed in order to detect inconsistencies and inappropriate patterns modeled by various developers. For detecting these inconsistencies, ontology preprocessing language (OPPL) is used. Then, the refactoring rules are applied on detected patterns to repair the inconsistencies in input ontologies. At the end, assimilated ontologies delivered to matchers for matching process. In this paper for evaluating this work one of the best matcher namely, ASMOV from OAEI is selected. The Ontology Alignment Evaluation Initiative (OAEI) is a coordinated international initiative, which evaluate all matchers every year. As you can see in Figure 1, ASMOV has a good rank in comparison to other matchers with respect to the standard evaluation measurements such as precision, recall, and F-measure [5]. The precision, recall, and F-measure are explained in Section V. The second reason for selecting the ASMOV to evaluate our work is that it can do n:m alignment in contrast to other matchers like, SAMBO, Falcon, DSsim, RiMOM, Anchor-Flood, and AgreementMaker which can do only 1:1 alignment.
The rest of the paper is organized as follows: Section 2 introduces some general terminologies relevant to this research. Section 3 gives a theoretical background of related work and Section 4 elaborates on the methodology. In Section 5, the quality of the matching results is evaluated. Finally, Section 7 provides the conclusion and future work.

II. GENERAL TERMINOLOGIES

In the following some preliminary definitions and terms that are relevant to this literature and are used throughout this paper are described.

A. Ontology

Ontology O contains a set of entities related to a number of relations. Entities of an ontology can be divided into components as follows [6]:

- Classes (C): Classes define the concepts within the ontology
- Individuals (I): Individuals denote the object instances of classes
- Literals (L): Literals represent concrete data values
- Data types (T): Data types determine the possible types of those values
- Object properties (OP): Include the definitions of possible associations between two individuals
- Data type properties (DP): Include the definitions of possible associations between one individual and a literal.

There are four specific relations in ontology matching: equivalence, subsumption, disjointness, and membership.

B. Matching process

Matching is the process of finding the relations and correspondences between entities of different ontologies. The matching operation determines the alignment A for a pair of ontologies. Generally, matching algorithms can be classified based on the input of the algorithms, the characteristics of the matching process, and the output of the algorithms. The input dimension focuses on the input type on which algorithms operate. Algorithms can be classified depending on the data/conceptual models in which ontologies or schemas are described. The matching process can be based on its general properties. In particular, this depends on the approximate or exact nature of its computation. The output of a matching algorithm is related to the form of the alignment. For example, the correspondence between ontology entities is either one-to-one or not. Another dimension concerns is the kind of relations between entities that a system can provide. Most of the matching softwares focus on equivalence (\equiv) relation, while a few others are able to provide more expressive results (e.g. subsumption and incompatibility) [7, 8].

C. Alignment

The alignment of ontologies o and o' is a set of correspondences between two or more (in the case of multiple matching) ontologies. The alignment is the output of the matching process between the entities of o and o'. The alignment can be achieved in various cardinalities: $1:1$ (one-to-one), $1:m$ (one-to-many), $n:1$ (many-to-one) or $n:m$ (many-to-many).

D. Refactoring

Refactoring is recognized as changes that are made to the internal structure of the software in order to make it easier to understand and to modify without changing its observable behavior.

III. THEORETICAL BACKGROUND

To establish suitable semantic correspondences between entities of different ontologies, the integration of the input ontologies is needed. Unfortunately, many ontology matching systems ignore the semantics of the input ontologies in the matching process. Therefore, the matching result is not satisfactory. In this paper, we attempt to combine four apparently distant areas to handle this problem. These areas are: ontology matching, ontology patterns, ontology refactoring, and inconsistency repair. Accordingly, in this section, some research conducted in each of these areas are described.

Research in ontology matching has been burgeoning since the early 2000’s. So far, most articles on the ontology matching field have focused on the method of matching processes and have introduced some matchers with diverse approaches. In this section, some matchers which have high ranks in ontology alignment evaluation initiative (OAEI) are introduced. ASMOV (Automated Semantic Matching of Ontologies with Verification) [6] have been applied to the lexical and structural characteristics of two ontologies to calculate the similarity measures. Then the alignment have been verified to ensure that it does not contain semantic inconsistencies. RiMOM [9] is a dynamic multi-strategy ontology alignment framework that combines multiple strategies to improve matching efficiency. The key intuition in this framework is that similarity characteristics between ontologies may vary widely. This approach has considered both the textual and structural characteristics of ontologies. RiMOM is a framework based on risk minimization of the Bayesian
Elemental level matching techniques compute matching elements by analyzing entities in isolation and ignoring their relations with other entities. Structural level techniques compute matching elements by analyzing how entities appear together in a structure and considering the relation of concepts in taxonomy tree [15].

In recent years, some works on ontology patterns is done [16-19]. Ontology patterns have been used in many fields, but they have rarely been applied in the field of ontology matching. Ontology patterns are mainly inspired by software engineering and knowledge engineering [20]. In the following, some previous works in the field of ontology matching by considering the ontology patterns is described. The paper in [21] involves testing the impact of ontology refactoring on the results of three matcher, namely HMatch, Falcon-AO, and ASMOV. In this paper, some modeling errors via name structure analysis were found and three refactoring operations were applied. By considering semantic structures, authors in [22] analyzed collections of OWL ontologies in order to determine the number of occurrences of several combined name and graph patterns. These structures ranged from simple subsumption to more complex constructions. The goal of this paper is to facilitate automatic alignment among different models by finding such patterns in the given ontologies. In [23], the authors concentrate on detection and mutual matching of semantic structures in ontologies. The authors use the equivalence relation, as well as analyzing homogeneous correspondence. Research in [24] presents a simple method of tracking name patterns over OWL ontology taxonomies. This method helps to detect several probable taxonomic errors and modeling inconsistencies with respect to their set-theoretic interpretations. In [25] authors applied weights to the edges of WordNet hierarchy to improve the semantic word similarity. Furthermore the distance of two words and depth of words in semantic similarity assessment are utilized. This approach can be applied for inconsistencies detection phase of matching process.

Until now ontology refactoring is employed in many different areas [26-29], but the impact of ontology refactoring on the ontology matching field is rarely discussed [21, 23, 30]. In this paper, we focus on this matter. In [26], the authors focus on the detection of anomalies as an important criterion for verification. In this paper, some approaches for the syntactic verification of ontologies are explained and definitions are extended with respect to the existence of rules. Furthermore, novel measures are introduced for detecting the parts of the ontology that may create problems for maintainability. This paper [27] proposed an approach for refactoring multimodal knowledge on the basis of a generic data structure in order to support the representation of multimodal knowledge. Moreover, how this data structure was created from given documents (i.e. the most general mode of knowledge) was explained, along with how different refactoring could be performed by considering various levels of formality. In [29], the authors present the semantic knowledge wiki, Know WE, used to capture and share ontological knowledge for the effective elicitation of problem solving knowledge. Also, a distributed knowledge acquisition process and refactoring phase are shown. In [30], a semi-automatic process for lifting meta-models into ontologies is proposed that allows creating the semantic integration of modeling languages. In so doing, implicit concepts in the meta-model are changed to explicit concepts in the ontology. The application of refactoring patterns on the resulting ontologies could improve automation support for semantic integration tasks. The paper [28] presents a method to develop conceptual schemas as refinements of more general ontologies. For obtaining final conceptual schemas, three activities are performed: refinement, pruning, and refactoring. The refinement phase is done to execute a set of additive operations to the ontology to create necessary elements. Afterwards, in the pruning phase, some unnecessary elements are deleted. Then, a pruned ontology is obtained. At the end, the pruned ontology can be improved by using refactoring operations to obtain the final conceptual schema.

IV. METHODOLOGY

In this part, an approach is proposed to improve the quality of the matching results. The aim of this approach is improving the alignment results by finding the inconsistencies before matching process. Our previous works [31], [32] focus on only lexical and structural patterns, but in this work we concentrate on some new inconsistency patterns. To accomplish this aim, a pre-processing phase is added to matchers. In the pre-processing phase, at first, a comprehensive survey to find the inconsistencies in input ontologies are performed. Then various lexical and structural patterns, which have been modeled by different developers, are detected. Afterward, some refactoring operations are applied on these patterns for repairing
the ontologies. Finally, these repaired ontologies are used as inputs of the matching process. This process is evaluated by ASMOV [33]. Experimental results indicate that better outcomes can be achieved by applying the pre-processing phase as opposed to original ones. In the following the details of work is elaborated.

A. First step: Inconsistency Detection Phase

In this step, some inconsistencies were detected based on our preliminary analysis of many ontologies. For detecting lexical inconsistencies, the name of entities, especially classes in OWL ontologies are analyzed. The lexical feature consists of all information readable by humans in the ontology. Various ontologies use different methods for defining the names of homogeneous concepts, especially for compound words. In OWL ontologies, different styles in concept naming lead to many obstacles for calculating lexical similarities in matchers.

In ASMOV, three lexical concepts in OWL ontologies are considered: id, label, and comment. ASMOV uses the Lin method [34] for calculating the lexical similarity. As an instance, in two ontologies of a conference track, namely Conference and Ekaw two different class naming for a similar concept is discovered, <Conference#conference-www> ~ <Ekaw#website> and also <Conference#contribution> ~ <Ekaw#rejected-paper>, both of them couldn’t be found by lexical similarity phase of ASMOV. Therefore, to solve these kinds of problems, some lexical patterns and inconsistencies are detected based on naming ontology design patterns [35] for the purpose of unifying the naming for these different styles of naming. To accomplish this, we used one refactoring operation called renaming operation (RN), which is described in the next section. By doing this, calculating the lexical similarity in matchers, which is done by different methods, can do better than before. Thus, better results can be obtained from the matching process.

Structural patterns are based on the fact that the taxonomic structures of ontologies are often varied and confusing. One reason for this is that different developers have dissimilar viewpoints for developing ontologies. Therefore, they utilize different hierarchies and granularities for defining the entities of ontologies in the same domain. For example, in two ontologies of the conference track namely Conference and Ekaw, realize that there are two different granularities in concept naming for the similar concept “author”. In Conference, three levels of granularity for “author” is found which include: contribution_regular-author, contribution_co-author, and Conference _1st-author. However, in Ekaw, there was only one level of granularity for author, namely Paper_author. Furthermore, many problems for calculating the relational similarity by some matchers have been recognized. The relational or hierarchical similarity phase in most matchers is computed by combining the similarities between the parents and children of entities that want to be compared. By considering the problems mentioned above and matcher’s work, we realized that different taxonomic structures and different granularities in peer ontologies cause many problems in the matching process. For solving this problem, another refactoring operation, called restructuring operation (RS), is employed for assimilating the structural features of OWL ontologies. Our results show that, in most ontologies, there are significant number of occurrences of the aforementioned patterns.

B. Second step: Refactoring phase

In this phase, by refactoring operations some patterns and inconsistencies, which are detected in previous phase, are repaired. All cases of the modeling errors detected via some patterns mentioned earlier can be repaired by two refactoring operations. The detection of these patterns is the starting point for a refactoring. Generally, refactoring is a process for performing some changes in the internal structure of the software in order to make it easier to understand and to modify without changing its discernible behavior. In this literature, the refactoring process of an ontology matching field is applied. Thus, some changes are done in ontologies by a semi-automatic process. By doing this, new and more understandable versions of ontologies for users and matchers are produced. These versions of ontologies can be utilized more effectively by different ontology matching tools.

There are three general refactoring operations: adding operation (ADD), restructuring operation (RS), and renaming operation (RN). These operations consist of different steps depending on the detected situation [21]. In this paper, RN and RS are used for lexical patterns and structural patterns, respectively. More desirable results in lexical similarity of matchers can be obtained by applying the rename operations for the name of the classes. The rename operations are done by considering the name of the classes in the ontology that have the same taxonomic structures in the peer ontology. Furthermore, by considering the parent-child relations and various granularities used in peer ontologies, restructuring operations are applied for assimilating the structural features of the OWL ontologies. Experimental results show that, better results can be achieved from the structural similarity phase of matchers by transforming a part of ontology into another one. We carry out our experiments on seven pairs of ontologies from the conference track. The reason for choosing these seven pairs among other ontologies is described in the next section.

The number of RN and RS operations applied on these seven pairs of ontologies is explained in the following. In four pairs of ontologies, <Cmt-ConfOf>, <Cmt-Ekaw>, <Conference-Ekaw>, and <Edas-Ekaw>, RN operations are applied more than RS operations, because of the many different lexical patterns find in these pairs. Besides, in other ontology pairs, <Cmt-Sigkdd>, <Conference-ConfOf>, and <ConfOfSigkdd>, RS operations are utilized more than RN operations, because these pairs of ontologies have different hierarchical structures and RS operations is used for assimilating the taxonomies.
C. Data set

Some ontologies from OAEI is selected to evaluate this work. The OAEI offers several tracks and subtracks concentrated in different types of matching problems. Our approach was tested on the Conference Track [36]. They are described in OWL-DL and published in the RDF/XML format [37]. This data set is a well-known data set to the organizers and has been used in many ontology matching evaluations. The Conference dataset can be viewed as a much more challenging test cases in contrast to other ontologies of OAEI, such as the Benchmark dataset [38], [39]. Our experiment was carried out on six out of sixteen ontologies of the Conference Track. These ontologies are cmt, confOf, ekaw, conference, edas, and sigkdd. The reason for selecting these six ontologies among others is that reference mapping (also referred to as the gold standard) is available for all possible combinations of these selected ontologies. To evaluate the accuracy of the matching process, it is necessary to determine both the number of correctly found correspondences and the number of incorrectly found correspondences.

D. Implementation

Our implementation is based on the employment of Java language with Jena API in Net Beans IDE. Furthermore, protégé and the Ontology Pre-Processor Language (OPPL) were used for manipulating ontologies written in OWL. OPPL is a domain-specific language, based on the Manchester OWL Syntax. OPPL instructions can add or remove entities and add/remove axioms to entities in OWL ontology. The OPPL Instruction Manager is a Java library that processes OPPL instructions to make changes in OWL ontology. This language is also suitable for defining independent modeling macros that can be applied across ontologies [40].

E. Practical Example

Presented in this section is a practical example to clarify the proposed approach by testing the work with ASMOV matcher. Figure 2 illustrates different styles in class naming and various taxonomic structures for defining the same concepts in a part of two ontologies, namely ConfOf and Sigkdd.

Fig. 2: Different class naming and taxonomic structures using Protégé software [41]

The inconsistencies are located in two peer ontologies are detected with OPPL. After that the ontologies are manipulated by applying the refactoring rules on each one. Then assimilated ontologies are delivered to ASMOV matcher as inputs. The alignment results are shown in figure 3.

Fig. 3: Correspondences found by ASMOV after refactoring [6]

V. EVALUATION OF THE MATCHING RESULTS

For evaluating the matching results three standard measures, precision, recall, and F-measure is used. Precision is defined as the number of correctly found correspondences divided by the total number of found correspondences. Recall is considered as the number of correctly found correspondences divided by the number of reference alignment. A perfect precision score of 1.0 means that every correspondence computed by the algorithm was correct (correctness), whereas a perfect recall scores of 1.0 means that all correct correspondences were found (completeness).

Precision and recall are defined in (1), (2) [42].

\[
\text{Precision} = \frac{\# \text{Correctly found matches}}{\# \text{Number of all found matches}} \quad (1)
\]

\[
\text{Recall} = \frac{\# \text{Correctly found matches}}{\# \text{Number of reference alignment}} \quad (2)
\]

F-measure represents a trade-off between precision and recall and it is calculated as (3).

\[
F - \text{Measure} = \frac{2 \times \text{Precision} \times \text{Recall}}{\text{Precision} + \text{Recall}} \quad (3)
\]

Experiments were performed on seven pairs of ontologies from the conference track. The alignments generated automatically by ASMOV for these pairs of ontologies before and after of applying the proposed approach. The results were illustrated in figure 4, figure 5, and figure 6. The results of our experiments show that transformed ontologies improve the matching results with respect to the standard evaluation measures i.e. precision, recall, and F-measure.
the matching process with respect to standard evaluation measurements, i.e. precision, recall, and F-measure.

For future research, new solutions can be proposed for overcoming the uncertainty and other challenges in the field of ontology matching. Furthermore, our approach can be tested on other matching tools, especially those participating in the OAEI contest. Moreover, some detectable patterns for discovering errors of ontologies and other refactoring operations for repairing them can be extended.

ACKNOWLEDGEMENT

This research was partially supported by Ferdowsi University of Mashhad under the grant number 2/39961 to which the authors likes to extend his thanks to.

REFERENCES

Bahareh Behkamal has received her B.S degree in Computer Engineering from Azad University of Mashhad, Iran in 2005 and her M.S degree in Computer Engineering from Pnu University of Tehran, Iran in 2011. She is currently Ph. D candidate in Computer Engineering at Ferdowsi University of Mashhad, Iran. Her past research interests include Semantic Web and Ontology Matching. She has published some papers in international journals and conferences. She is currently researching in the area on Structural Bioinformatics.

Mahmoud Naghibzadeh has received his M.Sc. and Ph.D. degrees in Computer Science and Computer Engineering, respectively, from University of Southern California (USC), USA. He is now a full professor at the Department of Computer Engineering, Ferdowsi University of Mashhad, Mashhad, Iran. He is the director of Knowledge Engineering Research Group (KERG) laboratory. His research interests include the scheduling aspects of real-time systems, Grid, Cloud, Multiprocessors, Multicores, and GPGPUs. He is also interested in Bioinformatics computer algorithms, especially protein tertiary structures and protein-protein interactions.
This Page intentionally left blank.