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Abstract — Most of today’s Internet services utilize user feedback (e.g. clicks) to improve the quality of their services. 

For example, search engines use click information as a key factor in document ranking. As a result, some websites cheat 

to get a higher rank by fraudulently absorbing clicks to their pages. This phenomenon, known as “Click Spam”, is 

initiated by programs called “Click Bot”. The problem of distinguishing bot-generated traffic from the user traffic is 

critical for the viability of Internet services, like search engines. In this paper, we propose a novel classification-based 

system to effectively identify fraudulent clicks in a practical manner. We first model user sessions with three different 

levels of features, i.e. session-based, user-based and IP-based features. Then, we classify sessions with two different 

methods: a one-class and a two-class classification that both work based on the well-known K-Nearest Neighbor 

algorithm. Finally, we analyze our methods with the real log of a Persian search engine. Experimental results show that 

the proposed algorithms can detect fraudulent clicks with a precision of up to 96% which outperform the previous 
works by more than 5%. 

Keywords-bot; click spam; user session modeling; classification; 

 

 

I. INTRODUCTION 

Over the last decade, search engines have provided 
free, easy and quick access to the vast amount of 
information available in the Internet. Whenever a query 
is submitted to a search engine, many relevant web 
pages are retrieved and returned back to the user. The 
search engines rank results based on many factors 
including link structure [1], textual features [2] and so 
on. Today, search engines incorporate user feedback 
(e.g. clicks) as an important factor in document ranking 
in order to return better results [3, 4, 5]. Since most of 
users only pay attention to the top results [6], malicious 
web sites abuse and manipulate the search result page 
by forging user clicks in order to raise their input traffic 
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[7, 8] and rank to top positions. Attackers can generate 
fake clicks by hiring people or using bots. Bots are 
automated software programs issuing too many queries 
or producing excessive clicks. Because these clicks are 
not performed by real users, this phenomenon is called 
“Click Spam”. Hence, the problem of distinguishing 
spam traffic from the real user traffic is critical for the 
performance and economy of search engines. 
Specifically, this kind of traffic could harm search 
engines by increasing the response time of real users, 
consuming search engine bandwidth, changing search 
result ranking and negatively influencing other 
decisions (like query auto-completion or query 
recommendation) that are made based on user histories 
[9].  
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On the other hand, the main source of search 
engine’s revenue is from the online advertising. The 
online advertising annual revenue was reported $72.5 
billion in 2016 which has increased by 21.8%, 
compared to 2015 [10]. In this regard, search engines 
are seen as ad networks which usually display ads in 
two different ways: 1) showing ads or sponsored results 
that are relevant to the user query beside the search 
results (like the Google AdWords [11] model) and 2) 
displaying ads in related web sites or publishers (like 
the Google AdSense [12] model). Advertisers are 
charged based on the number of clicks on their ads 
which is according to the famous Pay-Per-Click (PPC) 
model [13]. In the latter case where search engines 
display ads in website of relevant publishers, they give 
a portion of the click revenue to the publisher that the 
click is done through it. This kind of click spam may be 
issued by publishers or advertisers. An unethical 
publisher is motivated to make more money and an 
advertiser is induced to deplete its competitors budget. 
Ad networks should detect such clicks because they 
may lose their credit and reputation among advertisers, 
if this problem is not unraveled properly.  

Based on the above discussion, there are two 
different kinds of click spam in search engines: 1) click 
spam on organic search results with the goal of raising 
website ranking in the search engine result page and 2) 
click spam on sponsored results to exhaust advertisers’ 
budget. The latter is also referred to as “Click Fraud”, 
since it is directly linked to the flow of money. 
Regardless of the click spam type, search engines 
should effectively detect and distinguish them from the 
normal traffic. However, the focus of this paper is on 
the first type of click spam.  

In the early years, spammers usually used a fixed 
number of IP addresses for generating their abnormal 
traffic, therefore it was easy to detect and confront them 
through IP blacklists. But, they gradually improved 
their skills such that most of today attacks are 
automated and distributed by using networks of bots 
and malwares [14, 15, 16]. Thus, identifying them has 
been a very hard and complicated task. For example, the 
authors in [15] reported a DNS changer malware that 
could affect 4 million users and made its owners $14 
million by click fraud over a period of four years. As a 
result, many researchers have concentrated in recent 
years on the problem of identifying bot-generated 
traffic in search engines and other similar web services.  

In this paper, we propose a novel classification-
based method to detect invalid clicks. Our proposed 
method consists of the following three steps: 1) 
Modeling user sessions, 2) Classifying user sessions as 
either normal or abnormal, 3) Updating the training 
dataset to enhance the classification accuracy. One 
main contribution of this work is that unlike the 
previous algorithms, we consider all major aspects of 
user behaviors through extracting three levels of 
features (session, user and IP) to precisely characterize 
bots and humans. More importantly, our system is 
designed to work in an online environment through 
combating the processing and storage overhead of 
running classification algorithms. Finally, the results of 
our experiments confirm the superiority of the proposed 
method by more than 5% (with respect to the precision 

parameter) in comparison with a couple of recent 
algorithms.  

The rest of the paper is organized as follows: 
Section II discusses the related work. In Section III, we 
first describe the set of features we use to model user 
sessions and then propose our click spam detection 
algorithm which works based on a modified version of 
the K-Nearest Neighbor classification algorithm. 
Section IV presents the evaluation results and finally, 
we conclude the paper in Section V.  

II. RELATED WORK 

In the last decade, there has been an increasing 
interest in identifying click frauds over the Internet. 
Juels and Stamm [17] describe the advertising network 
model and discuss the issue of click fraud in these 
networks. They provide a complete taxonomy of hit 
inflation techniques and devise a stream analysis 
algorithm to detect different fraud attacks. Stone-Gross 
et al. [18] use search log of a large online ad exchange 
to investigate a variety of characteristics about invalid 
user activities, including behaviors related to click 
fraud. The approach proposed by Dave et al. [19] can 
find users that have the highest revenue for each 
publisher and identify fraudulent publishers through 
comparing the revenue generated by their users and the 
revenue generated from the users of honest publishers. 
This method could catch six different classes of click 
attacks. Oentaryo et al. [20] introduce a system to detect 
click fraud patterns in online advertisements using 
different data mining techniques. Kitts et al. [21] 
describe a data mining system to combat click fraud 
which is the result of their 5-year experience in 
Microsoft adCenter. PremiumClicks [22], Bluff ads 
[23], and bot signatures creation [24] also help to 
identify authenticated users from automated bots to 
mitigate click fraud. The above works concentrate on 
the detection of click fraud and hence, they are not 
directly related to our work.  

There are some works that consider both click fraud 
and click spam together. Yu et al. [25] present 
SBotMiner, a system that can automatically identify 
bot-generated search traffic. They gather a group of 
users who share at least one identical query and click, 
and examine the aggregated properties of their search 
activities. This system can detect distributed low-rate 
bot-generated search traffic. Kang et al. [26] propose a 
semi-supervised system for identifying spam traffic 
from that of genuine human users. They first use the 
CAPTCHA technique along with some simple 
heuristics to extract a large set of training samples from 
the data log, and then develop a semi-supervised 
learning algorithm to improve the classification 
performance. Wang et. al. [27] propose a Sybil 
detection system which identify fake identities using 
server side clickstream models. They group similar user 
click-streams into the same cluster by calculating the 
distances between click-stream sequences. Similarly, in 
[28], the researchers propose an unsupervised system 
which can cluster similar users by partitioning a 
similarity graph on click-stream data. This system uses 
iterative feature pruning to partition the user clusters.  

The other category of approaches investigates user 
session activities for detecting click spam. In [29], 

Volume 10- Number 2 – Spring 2018 64 

 [
 D

ow
nl

oa
de

d 
fr

om
 jo

ur
na

l.i
tr

c.
ac

.ir
 o

n 
20

24
-0

4-
11

 ]
 

                               2 / 9

https://journal.itrc.ac.ir/article-1-330-en.html


Sadagopan and Li model each user session as a 
sequence of 2-tuples (user action, page number) with a 
Markov chain and calculate the distance of every 
session from the average using the Mahalanobis 
distance measure. A high distance implies an abnormal 
session and all clicks done in such a session are 
considered as spam. Li et al. [30] also model user 
sessions but with a sequence of 3-tuples (user action, 
action objective, time interval between actions). They 
also propose two bipartite-graph propagation 
algorithms (called user-session and session-pattern 
graphs) to achieve a higher precision and recall in click 
spam detection. Wang and et al. [31] use a hierarchical 
clustering technique to partition different user 
behaviors and detect abnormal activities. Also, their 
proposed tool can predict users’ future behavior. At last, 
Shakiba et al. [32] devise a stream clustering approach 
to identify malicious behaviors by leveraging linguistic 
features and behavioral characteristics of users.  

In this work, we consider different characteristics of 
click spam behavior through extracting various session-
based, user-based and IP-based features. Then, we 
propose a classification method to identify fraudulent 
clicks in a fast and practical manner. 

III. THE PROPOSED METHOD  

Like other recent works, our work focuses on 
identifying abnormal user sessions. But, we expand it 
by using user-level and IP-level information. Fig. 1 
shows a schematic view of the processing flow in our 
system. It consists of two phases: offline and online. In 
the offline phase, we produce an initial set of training 
samples. Classifying sessions as normal/abnormal and 
updating the training dataset are done in the online 
phase. We discuss the details of two phases in the next 
sections. 

A. Data Model 

The data used in this work is derived from the user 
activity log of a popular Iranian local search engine 
(parsijoo.ir). The majority of users working with this 
search engine is from the domestic Intranet. Each time 
a user submits a query, clicks on a result or clicks on 
next page links, the search engine creates a new record 
in the user activity log. This record includes time 
information, submitted query, page number, clicked 
URL, IP address and user ID. It is notable that the first 
time a user enters the search engine website, a unique 
user ID is assigned to him and then stored in the cookie 
of his browser. The user ID never expires, unless the 
user cleans his cookies. Records are processed 

sequentially based on their time information and then 
features are calculated.  

Now, we briefly describe the features we use in the 
classification process. The features are categorized into 
three levels (session, user and IP) as explained below, 
respectively.  

1) Session-Level Features 
At the first level of features, we examine the within-

session activities. When a user opens the search engine 
website in his browser, a unique session ID is assigned 
to him by the webserver. This session ID expires after a 
certain period of inactivity (usually 30 minutes) and 
then a new session ID is assigned to the user again on 
his next visit. During the session, the user might 
perform different activities in the website: he may 
submit a query, browse result pages, click on search 
result links, click on sponsored links, click on a specific 
page number, revise his query and so on. In this study, 
we only consider three types of activities:  

𝑄𝑖: Submitting a query (which 𝑖 refers to different 
queries). For example, Q1 represents a query and Q2 
represents another query which is different from Q1. 

𝑊𝑖: Clicking on a web result or any other link on the 
page (which 𝑖 refers to different URLs). 

𝑁: Clicking on different page numbers of search 
results. This click can be on the “Next Page” link, 
“Previous Page” link or a specific page number link. 
We take into account the following important features 
for identifying session-level spams: 

 Markovian probability of session activity 
sequence: this feature (proposed in [29]) is 
calculated by multiplying the probability of the 
individual state transitions within the session.  

 Total number of web clicks (W)  

 Total number of query submissions (Q)  

 Total number of next clicks (N)  

 Total number of session activities (sum of Q, W 
and N)  

 Proportion of clicks on distinct URLs to the total 
number of web clicks  

 Proportion of clicks on distinct domains to the 
total number of clicks  

 Rate of query submissions inside the session  

 Rate of clicks inside the session  

Fig. 1: System overview 
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 Rate of Next clicks inside the session  

 Rate of all activities inside the session  

The last six features, to the best of our knowledge, 
are introduced here for the first time and the rest have 
been used in previous works as well [29]. The value of 
all features is normalized into the range of [0-1] using 
the Min-Max normalization method. 

2) User-Level Features 
The session-level features are calculated per each 

user session, but a user may have established multiple 
sessions thus far. Since a unique user ID is assigned to 
each user (which is valid as long as the user does not 
delete the cookie information in his browser), we can 
capture the whole user activities through extracting 
user-level features. More precisely, the user-level 
features are exactly the same as session-level ones, but 
they are averaged over all sessions belonging to the 
same user. 

3) IP-Level Features 
Many of bots do not execute JavaScript and/or they 

disable cookies, hence the search engine falsely assigns 
a new user ID as well as a new session ID, for each of 
their requests. Thus, only session-level and user-level 
features are not enough to characterize spam clicks; we 
need to use IP information as well. As a result, we 
consider the following IP-level features: 

 IP type (Local Iran IP / Global IP)  

 Total number of activities sent by IP address  

 Total number of web clicks made by IP address 

 Total number of queries submitted by IP address  

 Total number of next clicks made by IP address 

 Proportion of distinct clicked URLs to the total 
number of web clicks made by IP address  

 Proportion of distinct clicked domains to the 
total number of web clicks made by IP address  

 Proportion of total number of users to the total 
number of activities made by IP address2 

B. Training Dataset 

Because of the search engine scalability issue, it is 
practically impossible to manually label search log 
records as bot/human for generating training dataset. In 
some services like email or electronic banking, every 
user must pass CAPTCHA challenge [33] in order to 
access the service but this strategy is not good for search 
engines, since the goal of search engines is to respond 
user queries as quickly as possible with minimum user 
interactions. However, Costa et al. [34] proposed the 
image clickable CAPTCHA idea which makes such a 
CAPTCHA less frustrating and humans can solve it 
quickly and accurately. But as mentioned, showing 
CAPTCHA to all users is not a good idea. Kang et al. 
[26] proposed an approach for training data generation 
which is 0-cost. They suggested to show CAPTCHA 
only to users that exceed from some heuristic 

                                                        
2 Unlike real users, most of bots receive a new user ID per each request. 
3 More precisely, if 𝑡 = (𝑡1, 𝑡2 , … , 𝑡𝑚) and 𝑥 = (𝑥1 , 𝑥2 , … , 𝑥𝑚) , then  ‖𝑡 −

 𝑥‖𝐿2
=  √(𝑡1 −  𝑥1)2 + ⋯ + (𝑡𝑚 −  𝑥𝑚)2. 

thresholds. They showed that with this approach, on 
average, only less than 1% of whole users are requested 
for CAPTCHA verification while most of them do not 
verify the challenge. It means these users are bot 
programs which could not have resolved the 
CAPTCHA challenge. Similar to this work, we here use 
some simple heuristics such as user activity volume in 
a short time intervals and IP blacklists to generate an 
initial set of abnormal sessions. In this scenario, if the 
user behavior exceeds from some defined thresholds, 
we present a CAPTCHA to him. The user may not 
respond, respond wrongly or respond correctly to the 
challenge. In the first two cases, we label the user 
session as bot. In the other side, among all user sessions 
which have the minimum distance from the average 
activity, we randomly select some sessions and label 
them as normal. Thus, we collect an initial set of 
normal/abnormal sessions. Finally, we calculate the 
session-level, user-level and IP-level features (as 
described before) for these sessions and use them as the 
initial training dataset. As we will say later, the dataset 
is updated during the classification process. 

C. Classification Algorithm 

In order to classify sessions, we use the famous K-
Nearest Neighbor (KNN) algorithm [35] which is a 
non-parametric method used frequently for 
classification and regression purposes. In this work, we 
devise two variants of KNN algorithm, i.e. two-class 
and one-class classification. It is worth mentioning that 
the KNN algorithm suffers from two key problems: 1) 
memory consumption, 2) computational complexity. 
The first problem arises because of storing the whole 
training data in memory and the second is caused by 
calculating the distance of a new point from all training 
samples. As the number of training samples increases, 
these two problems become more challenging, but we 
try to tackle them by revising the KNN algorithm. 

1) Two-Class Classification Algorithm 
As suggested by its name, this classifier uses both 

“abnormal” and “normal” samples in the training 
dataset. Assume that 𝑚 is the number of features we 

have calculated for each sample. Let 𝑇 = {(𝑥𝑖 , 𝑦𝑖}𝑖=1
𝑁  

denote the training dataset, where 𝑥𝑖is a training sample 
(a vector in the 𝑚-dimensional feature space) and 𝑦𝑖 is 
the corresponding class label, i.e. 0 as normal and 1 as 
abnormal. For a test object 𝑡 , its class label is 
determined in two steps:  

First, the distance of the test object from every 
training sample is computed using the Euclidean 
distance:  

𝑑(𝑡, 𝑥𝑖) =  ‖𝑡 −  𝑥𝑖‖𝐿2
   (1) 

where ‖𝑥‖𝐿2
 is 𝐿2  norm of 𝑥  vector3 . The 𝐾 training 

points that have the smallest distance from the test 
object constitute its neighborhood. In the rest, we use 
𝑁𝑁  to indicate the neighborhood of our test object. 
Second, the class label of the test object is determined 
by the majority vote of training samples in its 
neighborhood, i.e.:  
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𝑦′ =  
𝑎𝑟𝑔𝑚𝑎𝑥
𝑦 ∈ {0,1} ∑ 1

(𝑥𝑖
𝑁𝑁,𝑦𝑖

𝑁𝑁)

, 𝑖𝑓 𝑦𝑖
𝑁𝑁 = 𝑦 (2) 

where (𝑥𝑖
𝑁𝑁 , 𝑦𝑖

𝑁𝑁) is the 𝑖th training sample in 𝑁𝑁 and 
𝑦′ is the predicted class label. Bear in mind that we use 
0 and 1 to refer to normal and abnormal class labels, 
respectively.  

In (2), all training samples equally impact on the 
determination of class label 𝑦′ , but it is more logical to 
weigh the contribution of neighbors, in a way that the 
closer neighbors contribute more compared to the 
farther ones. For example, a common weight scheme is 

to give each neighbor a weight of 1 𝑑2⁄ , where 𝑑 is the 

distance between the test object and the neighbor. 
Consequently, we can rewrite (2) as follows:  

𝑦′ =  
𝑎𝑟𝑔𝑚𝑎𝑥

𝑦  ∑
1

𝑑2
(𝑡, 𝑥𝑖

𝑁𝑁)
(𝑥𝑖

𝑁𝑁,𝑦𝑖
𝑁𝑁)

, 𝑖𝑓 𝑦𝑖
𝑁𝑁 = 𝑦 (3) 

where 𝑑(𝑡, 𝑥𝑖
𝑁𝑁) is the distance of test object 𝑡 from 𝑖th 

training point in its neighborhood. 

We also introduce a counter field 𝑐𝑖  and add it to 

each training sample, i.e. 𝑇 = {(𝑥𝑖 , 𝑦𝑖 , 𝑐𝑖)}𝑖=1
𝑁 . This 

field describes the number of samples that a training 
point can represent. In other words, a point in the 
training dataset can be representative of more than one 
sample. Thus, instead of adding more and more data 
points to the training dataset for the sake of improving 
the classification accuracy, we can update this field for 
those training points that are close to the test object. As 
a result, we can limit the number of training points 
based on the available memory (we discuss more about 
this issue in Section III.D). We also incorporate this 
counter in the classification score of test object 𝑡:  

𝑠𝑐𝑜𝑟𝑒(𝑡) =  

∑
𝑐𝑖

𝑑2
(𝑡, 𝑥𝑖

𝑁𝑁 )
∗ 𝑦𝑖

𝑁𝑁𝐾
𝑖=1

∑
𝑐𝑖

𝑑2
(𝑡, 𝑥𝑖

𝑁𝑁)
𝐾
𝑖=1

  (4) 

The value of classification score is normalized into 
the range [0-1]. In fact, as much as the above score is 
higher, the object 𝑡 is relatively closer to the abnormal 
points inside its neighborhood. Put it another way, a 
lower value means human behavior, while a higher 
value indicates a greater chance of bots. We set two 
thresholds for the classification score: 𝐻𝑇  (human 
threshold) and 𝐵𝑇  (bot threshold). If the calculated 
score is lower than HT, the new point is classified as 
“human” or “0”, and if the calculated score is greater 
than BT, the new point is considered as “bot” or “1”. 
Otherwise, the new point is classified as “unknown”. In 
the evaluation section, we discuss how to set theses 
thresholds.  

2) One-Class Classification Algorithm  
In the one-class algorithm, we only use “abnormal” 

samples in our training dataset. The main advantage of 
this algorithm compared with the previous two-class 
one is that the size of training dataset is reduced and 
thus, the computational overhead and the response time 
decrease substantially. Similar to the previous section, 
we first describe the one-class algorithm and then 

modify it for our work. Let 𝑇 = {𝑥𝑖}𝑖=1
𝑁  denote the 

training dataset, where 𝑥𝑖 is a training sample vector in 
the 𝑚-dimensional feature space. For a test object 𝑡, its 

class label is determined in two steps: First, like the 
two-class method, the distance of the test object from 
the training points is computed and 𝐾 points that have 
the smallest distance are considered as the 
neighborhood of 𝑡. Second, the label of test object 𝑡 is 
assigned as abnormal, if the following inequality holds:  

∑ 𝑑(𝑡, 𝑥𝑖
𝑁𝑁)𝐾

𝑖=1

∑ 𝑑(𝑥𝑖
𝑁𝑁 , 𝑛𝑒𝑎𝑟(𝑥𝑖

𝑁𝑁))𝐾
𝑖=1

<  𝛿                           (5) 

where 𝑑(𝑥𝑖
𝑁𝑁 , 𝑛𝑒𝑎𝑟(𝑥𝑖

𝑁𝑁)) is the distance of 𝑖th training 
point in the test object’s neighborhood from its nearest 
neighbor in the training dataset. Clearly, a higher value 
for the above ratio entails that the object 𝑡 is closer to 
the abnormal points inside its neighborhood. 

Again, to mitigate the memory consumption 
problem and increase the classification accuracy, we 
add a counter field to each training sample, which 

implies that 𝑇 = {(𝑥𝑖 , 𝑐𝑖)}𝑖=1
𝑁 . We first reverse the 

inequality in (5) to define the similarity between object 
𝑡 and its neighbors as follows:  

∑
1

𝑑(𝑡, 𝑥𝑖
𝑁𝑁)

𝐾
𝑖=1

∑
1

𝑑(𝑥𝑖
𝑁𝑁 , 𝑛𝑒𝑎𝑟(𝑥𝑖

𝑁𝑁))
𝐾
𝑖=1

>  
1

𝛿 
 (6) 

Then, we add the counter field as a coefficient into the 
above relation:  

∑
𝑐𝑖

𝑁𝑁

𝑑(𝑡, 𝑥𝑖
𝑁𝑁)

𝐾
𝑖=1

∑
𝑐

𝑖

𝑁𝑁(𝑥𝑖
𝑁𝑁)

𝑑(𝑥𝑖
𝑁𝑁 , 𝑛𝑒𝑎𝑟(𝑥𝑖

𝑁𝑁))
𝐾
𝑖=1

>  
1

𝛿 
 (7) 

where 𝑐𝑖
𝑁𝑁 is the counter field of 𝑖th training sample in 

the neighborhood of 𝑡. Now, we explain our strategy for 
updating the counter field of training points. Later, we 
describe our analysis about the settings of δ.  

D. Updating Training Data 

We start our algorithm with an initial set of training 
samples, but for the sake of increasing the classification 
accuracy, we need to add more training samples over 
time. Adding more samples results in a more memory 
and processing overhead in the classification process. 
Hence, we introduce a counter field for every training 
sample with an initial value of 1. After classification, if 
the test object 𝑡 is labeled as “normal” or “abnormal”, 
then the counter field of every training point in its 
neighborhood is updated in proportion to its distance 
from the test object. As much as the counter field of a 
training point has a higher value, that point will have a 
more contribution in classifying new points as “normal” 
or “abnormal”.  

One advantage of the proposed system is that it can 
be easily deployed in an online environment. If a 
session is classified as “abnormal”, the CAPTCHA 
challenge will be shown to the user. If the user cannot 
resolve the challenge, the corresponding feature vector 
is added to the training dataset as “abnormal” and 
otherwise, the vector is added as “normal”. However, 
we put a limit on the number of training samples based 
on the memory and processing constraints. As a result, 
after classifying the test object 𝑡, the training dataset is 
updated according to the following scenario: 
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1. First, for every training sample 𝑖  in the 
neighborhood of object 𝑡 , if the distance of 
sample 𝑖  from the test object is less than 𝛼 
threshold and its label is the same as 𝑡 , the 
counter field of training point 𝑖 is updated as 
below:  

𝑐𝑖 =  𝑐𝑖 + (1 −  
𝑑(𝑡, 𝑥𝑖

𝑁𝑁)

∑ 𝑑(𝑡, 𝑥𝑗
𝑁𝑁)𝐾

𝑗=1

) (8) 

 Based on our experiments, the value of 𝛼 is 
set to 0.2.  

2.  Then, if all training points in the 
neighborhood set do not have the same label as 
the test object 𝑡, the new point is added to the 
training dataset as below: 

 If the size of training dataset is smaller 
than the limit, the new point is added to 
the training dataset. 

 Otherwise, we first add the new point and 
then find two closest samples (with the 
same label) in the training set and merge 
them together. For merging, we calculate 
the average of feature vectors and sum up 
their counters. It means two points 
(𝑥𝑖 , 𝑐𝑖)  and (𝑥𝑗 , 𝑐𝑗)  are deleted and the 

new point (
𝑥𝑖+ 𝑥𝑗

2
, 𝑐𝑖 + 𝑐𝑗) is added to the 

training dataset. 

IV. EVALUATION AND DISCUSSION 

A. Evaluation Model 

In this section, we evaluate the result of our 
proposed methods in different aspects and compare 
them with previous methods. We use one week of user 
activity log (1 Dec 2016 – 7 Dec 2016) for generating 
the training dataset which contains more than 6 million 
requests and over 1.5 million unique sessions (note that 
DDoS attacks are abandoned by the front firewall and 
thus, there is no record belonging to such attacks in the 
log). Also, we use the log of the next week (8 Dec 2016 
- 14 Dec 2016) for evaluation and test purposes. We 
first model all sessions according to the features 
introduced in Section 3.A and then use them in our 
classification algorithms. We validate our training 
dataset under two conditions: with and without 
updating the training dataset. Then, we evaluate the 
performance of our classifiers and choose the best value 
for various thresholds using experimental results. We 
finally compare the precision of our work with some of 
last related works. 

B. K-Fold Cross-Validation 

We prepare a dataset with 10000 samples (5000 
normal and 5000 abnormal), which are labeled 
manually. For validation and comparison purposes, we 
use the popular K-fold cross-validation technique [36] 
in which the dataset is randomly partitioned into K 
equal-sized subsets. From K subsets, one is retained as 
the validation data for testing the model, and the 
remaining are used for training. The cross-validation 
process is then repeated K times, while each of the 𝐾 
subsets is used exactly once as the validation data. The 
cross-validation method uses the classification 
accuracy measure, defined as: 

𝐶𝐴 =  
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝐹𝑁 + 𝑇𝑁 + 𝐹𝑃
  (9) 

where “True Positive (TP) / True Negative (TN)” is the 
 number of points which are correctly 
classified as abnormal/normal. Also, “False Positive 
(FP) / False Negative (FN)” is the number of 
“normal/abnormal” points which are incorrectly 
classified as “abnormal/normal”. All these values can 
be counted simply, because each point in the dataset is 
labeled either normal or abnormal. Therefore, the 
classification accuracy is calculated as the proportion of 
true results (true positives and true negatives) among all 
cases examined. Moreover, like other works in the 
literature [29, 30], we evaluate the performance of our 
classification algorithm using the precision measure: 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
  (10) 

The results from the K folds are averaged to get the final 
value. We use 10-fold cross-validation (i.e. K=10).  

C. Evaluation Results 

First, we investigate the impact of neighborhood 
size, or K in the KNN algorithm, on the accuracy of our 
algorithms. Initially, the counter field of all training 
samples is “1”. We apply our cross-validation twice, 
once without updating the counter filed of training 
samples, and another time with updating the counter 
field. The result of validation for both classifiers is 
shown in Fig. 2 (the left and the right figures refer to the 
result of two-class and one-class classifiers, 
respectively). In both, the comparison of two cases 
(with and without counter) for different values of 
neighborhood size shows that with updating the counter 
field, the classification accuracy is enhanced up to 3%. 
Also, we see that when using the counter field, two 
classifiers would be less sensitive to the value of K, 
which alleviates one of the KNN challenges. Based on 

Fig. 2: The impact of neighbourhood size on the accuracy of proposed methods (left: 

two-class classification, right: one-class classification) 

Volume 10- Number 2 – Spring 2018 68 

 [
 D

ow
nl

oa
de

d 
fr

om
 jo

ur
na

l.i
tr

c.
ac

.ir
 o

n 
20

24
-0

4-
11

 ]
 

                               6 / 9

https://journal.itrc.ac.ir/article-1-330-en.html


this result, we select K=5, which yields the most 
accuracy. 

Now, we discuss how to choose the best values for 
𝐻𝑇, 𝐵𝑇 and δ thresholds. Fig. 3 depicts the frequency 
distribution of session scores obtained from the two-
class method in 10 equal-sized bins in the range [0-1]. 
From the figure, we can see that when the counter is not 
used, 92% of sessions have a score less than 0.1 and 7% 
of sessions have a score higher than 0.9, while after 
adding and updating the counter field, 95% of sessions 
get a score less than 0.1 and for only 4.5% of sessions, 
the score is greater than 0.9. According to the algorithm, 
we know that a higher score implies that the session is 
more likely to be abnormal. Hence, we set 0.1 and 0.9 
for 𝐻𝑇 and 𝐵𝑇 thresholds, respectively.  

From Fig. 3, we can also see that in the counter-
sensitive method, 2.5% fewer sessions are classified as 
abnormal. Therefore, for more experiments, we 
randomly sample 200 sessions with a score in the range 
of [0.9-1] to evaluate the classifier precision manually 
and determine what proportion of sessions is correctly 
classified as abnormal. The results are shown in Table 
1.  

The results in Table 1 reveal that the proposed 
counter-sensitive algorithm can identify abnormal 
sessions with a precision of about 95.5% which has up 
to 10% enhancement comparing with the no-counter 
algorithm. In addition, it can be observed that without 
using the counters, the system has more false positives, 
while with the counters, we can catch abnormal 
sessions with a more precision and as a result, fewer 
sessions are labeled as abnormal. A deeper 
investigation of sessions which are incorrectly detected 
as abnormal demonstrates that the normal points in the 
training data cannot cover all aspect of real user 
behaviors. Since our goal is just to detect abnormal 
sessions, we can simplify the problem and focus only 
on abnormal points by using the one-class classification 
algorithm.  

 

   Table 1: Precision of two-class classification for sessions with score 

range of [0.9-1] 

 #Session #Correct Precision (%) 

Without Counter 200 170 85 

With Counter 200 191 95.5 

 

Table 2: Precision of one-class classification for sessions with 

different score ranges  

Score Range #Session #Correct Precision (%) 

[0.5-0.6) 41 2 4.87 

[0.6-0.7) 23 3 13.04 

[0.7-0.8) 18 5 27.77 

[0.8-0.9) 19 17 89.47 

[0.9-1) 15 14 93.33 

[1-∞) 84 83 98.80 

 

Unlike the two-class algorithm, the calculated score 
of one-class classification in (7) lies in the range [0-∞). 
Similar to the above analysis, we first obtain the 
frequency distribution of session scores. The bin size is 
0.1, but we aggregate scores greater than 1 in the last 
bin. The results are displayed in Fig. 4. 

Again, we randomly sample 200 sessions from 
those with a score greater than 0.5 and examine the 
precision of one-class algorithm in detecting abnormal 
sessions. The results are shown in Table 2. Remind that 
as much as a session gets a higher score, it is more likely 
to be abnormal. Because the detection of spam behavior 
requires a high precision, we take sessions with a score 
greater than 0.8 as abnormal. As a result, we consider 
1.25 for 𝛿 threshold in (7), resulting to a precision of 
about 97%. In other word, just 3% of sessions (with a 
score greater than 0.8) are wrongly classified as 
abnormal. It must be noted the setting of our thresholds 
is data-dependent and thus they cannot be generally 
configured to the same values. The above analysis 
confirms that the proposed one-class classification has 
a higher precision on our data. Moreover, since we do 
not need to store normal points in the training dataset, 
the computational and storage overhead of the system 
is reduced substantially. 

D. Comparison with Previous Works 

Finally, we compare the performance of our 
algorithm with two previous click spam detection 
methods [29, 30], known as typical/atypical and 
bipartite algorithms, respectively. For the 
typical/atypical algorithm, we model each user session 
as a sequences of (user action, page number) with a 
Markov chain and calculate the distance of each session 
from the average using Mahalanobis distance measure 
and then, consider the sessions belonging to the top one 
percentile of the distance distribution as abnormal.  

Fig. 3: Score frequency distribution of sessions for two-class 
classification algorithm 

Fig.4: Score frequency distribution of sessions for one-class 
classification algorithm 
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Table 3: Precision obtained with difference algorithms 

Algorithms Precision (%) 

Typical/ATypical 89 

Bi-partite graph propagation 91.5 

Proposed two-class algorithm 95.5 

Proposed one-class algorithm 96.61 

 

Also, in the bipartite algorithm, we first model user 
sessions as sequence of (user action, action objective 
and time interval between actions) and then apply the 
user-session bipartite graph propagation algorithm on 
these sessions. Finally, we consider sessions with a 
score higher than 0.9 as abnormal. In addition, we 
randomly sample 200 sessions for manual 
investigation.  

The precision of the three approaches are illustrated 
in Table 3. Our two-class approach outperforms the 
previous works by 4% and more interestingly, the one-
class approach shows about 5.1% improvement. It 
should also be noted that both typical/atypical and 
bipartite algorithms work only in offline environment, 
while our proposed algorithms are able to detect click 
spams in online environment with a lower memory and 
CPU overhead. 

 

V. CONCLUSION 

In this paper, we propose a couple of novel and 
efficient classification-based algorithms for detecting 
spam sessions and clicks. We first present some 
important features of normal/abnormal behaviors in the 
web which are helpful in distinguishing humans from 
bots. Then, we propose our two-class and one-class 
classification algorithms to detect click bots. The 
proposed algorithms work based on the KNN algorithm 
and we overcome the problem of classic KNN 
algorithm including high memory consumption and 
excessive processing by using a simple counter field 
which is updated regularly with the new data. Our 
proposed algorithms can detect spams with a precision 
of up to 96% which is higher than previous algorithms. 
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