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Abstract—In multiuser wireless systems, waveform adaptation is one of the interference management methods in 
which the users adaptively change their transmitting waveforms in signal space to enhance the system performance 
subject to some Quality-of-Service (QoS) requirements. In this paper, the uplink scenario of a Multi Carrier Code 
Division Multiple Access (MC-CDMA) is considered under slow and frequency selective fading. An admissibility test 
under maximum received power constraint is presented to check that if there exist feasiblepowers and waveforms for 
network users to hold the QoS constraint of each user above a predetermined level. In our set-up, a number of 
licensed (fixed) and unlicensed (agile) users share some orthogonal carriers to send data to a common receiver (or co-
located independent receivers), subject to specific target SINRs for users. We analyze this system as a non-cooperative 
separable game and show the existence of Nash equilibrium point for this joint power control and codeword 
adaptation game.An iterative distributed algorithm based on better response strategy is presented which at the 
receiversresults in an ensemble of well-known Generalized Welch Bound Equality (GWBE) optimal waveforms and 
orthogonal waveforms for oversized users in addition to optimal transmission power for each user. We investigate the 
properties of fixed point and the effect of algorithm on the performance of fixed users’ network. Finally the algorithm 
will be confirmed by the numerical examples. 

Keywords-Unlicensed communication; interference avoidance; MC-CDMA; waveform adaptation; transmitter 
optimization. 

I. INTRODUCTION

The increasing demand for personal high data rate 
wireless applications and the limited spectrum range 

have tended to change the policy of licensed spectrum 
usage, allowing unlicensed systems to transmit on 
temporary unused licensed frequencies. Spectrum 
sharing provides the capability to maintain the QoS of 



fixed users with avoiding interference to the agile 
users by coordinating the multiple-access of fixed 
users as well as allocating communication resources 
adaptively to the changes of radio environment[1]. 

For a multiple-access channel, the main limiting 
factor is the multiple-access interference (MAI). 

Several works performed to overcome the effect of 
MAI in a multiple access system. These works fall 
under two major areas: optimization of received 
power, and signal design. Interference Avoidance (IA) 

is an efficient technique by which transmitters in a 
wireless communication system are optimized against 
changing patterns of interference subject to required 
QoS. Centralized algorithms for constructing optimal 
spreading codes and powers in single cell 
Synchronous CDMA subject to required SINR for 
each user is presented in [2, 3], where admissibility 
region and user capacity of CDMA systemare 
mentioned. A distributed algorithm based on 
distributed noncooperative game theory under ideal 
channel (slow and frequency non selective fading 
channel with unit gain) is proposed [4-7]. Extensive 
simulations have shown that the algorithm reaches 
aGWBE ensemble of codewords and powers for 
usersfor which the sum ofallocated powers among all 
valid power allocations for the given target SINRs is 
minimum[3]. 

High data rate communication systems require 
modulation techniques that improve the band 
efficiency and system robustness against fading. 
Multi-carrier code division multiple access (MC-
CDMA)is one of the modulation methods that can be 
used to accomplish these demands[8]. In MC-CDMA, 
instead of applying spreading sequences in the time 
domain, we can apply them in the frequency domain, 
mapping a different chip of a spreading sequence to 
an individual OFDM subcarrier[9]. Greedy 
interference avoidance algorithm is typically applied 
to uplink MC-CDMA dispersive channel with fixed 
and equal power for all users[10, 11]where no 
constraint except unity norm of spreading sequencesis 
considered. It is shown that, greedy interference 
avoidance monotonically increases sum capacity (or 
equivalently decrease the total squared correlation) of 
channel and hence, the codeword ensemble derived 
from algorithm, maximizes the sum capacity. 
Recently a game theoretic algorithm based on[4-7, 10, 
11]has been proposedto joint transmitter adaptation 
and power control[12]. In these works all of the users 
adapt their waveforms in white noise background. An 
analytical study is performed on the fixed points for 
mixtures of fixed and agile users in [13] where the 
power of users are fixed and equal.  

In this paper we use the adaptive greedy 
interference avoidance approach as well as power 
allocation, to mitigate the interference seen by each 
agile user at corresponding receiver subject to the 
constraint on SINR and the received power of each 
user. In other words ourgoal is to generalize the 
algorithm presented in [4-7, 10, 11] to a situation in 
which the channel between users and base station is 
non-ideal. Also we show that although some users are 
not able to change their waveforms, almost 
always,our algorithm converges to received power set 
and spreading code ensemble that along with fixed 
users’ powers and waveforms well known as 

Generalized Welch Bound Equality (GWBE) 
sequences.  

The paper organized as follows. We describe the 
system model and problem statement in Section II. In 
section  IIIwe formulate the problem as a non-
cooperative game and verify the existence of Nash 
equilibrium for the game. Then we propose our 
waveform adaptation algorithm in section IV. 
Behaviour of waveform adaptation algorithm in 
network with mixtures of fixed and agile users, and 
numerical results obtained from simulations are 
presented in Sections 5 and 6, respectively. Finally we 
present the conclusions. 

II. SYSTEM MODEL AND PROBLEM STATEMENT

A. SystemModel 
We consider the uplink of a synchronous MC-

CDMA system, where there are K simultaneous users 
that spread data on N orthogonal subcarriers using 
different spreading codes. The transmitted signal of 
the data symbol for k th user, ( )ks t 1,...,k K  in l
th pulse duration is 
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where kb  and kp  are the symbol transmitted by k th
user and its power, respectively. i

kc for 1,...,i N is
the i th chip of the spreading sequence corresponding 
to user k  and df  is the subcarrier separation. ( )p t in
Equation (1) is a time shifted rectangular signaling 
pulse, given by 
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The received signal corresponding to k th user is 
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where i
kh is the frequency response of frequency 

selectivechannel to i th subcarrier of k th user and dt
is the time delay. The received signal to the base 
station can be expressed as: 
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where ( )n t  is the additive Gaussian noise at the 
receiver. Let us represent the vector of MC-CDMA 
spreading code of user k as kc . Hence, Equation (4)
can be written in matrix form as 
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Since user’s data are spreaded over multiple carriers, 
the channel gain matrix of k-th user is a diagonal 
matrix 

1 2( , ,..., )N
k k k kH diag h h h

and
1 2[ , ,..., ]N T

k k k kc c cc  are the N N  channel matrix 
and spreading sequence vector of user k ,
respectively, and n is an independent and identically 
distributed (i.i.d.) Gaussian vector with covariance W
, which is independent of the transmitted symbols. We 
note that all user spreading codes take values in the 
N  dimensional sphere with radius 1, i.e. 
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For the next analysis we define 
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and
2 ,r

k k k kp p H c  (8) 

as normalized received spreading sequence and 
received power, respectively. 

B. Structure of Optimum Linear Receiver 
It is well known that the MMSE receiver is the 

optimumlinear receiver for multiuser detection, 
optimum in the sense of maximizing the SINRof each 
user.As mentioned in[3, Sec. III], MMSE receiver and 
matched filter (MF) show the same performance in 
presence of white noise at the optimal solution 
presented in [3] (i.e. optimum in the sense of 
maximizing the sum capacity or equivalently 
minimizing the TSC with minimum sum power that 
achieve users to their target SINRs). Thus, we assume 
that matched filters are employed at the receiver to 
detect user symbols. Since the receiver has no a priori 
knowledge about transmitted codewords,the 
orthogonal projection model is used to identify the 
users codeword at the receiver. Thus the use of 
normalized received codeword of users instead of 
transmitted codeword for matched filter is more 
relevant. Inthis case, the decision variable kd  for user 
k  is: 
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So the SINR for user k becomes: 
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where 

,T
k k k k k kp H H R R c c  (11) 

is the interference plus noise covariance matrix and 
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isthe covariance matrix of received signal. 

The interference function of user k  can be defined 
as denominator of k th user’s SINR  

( ) ( ).r T r
k k k ki  c R c  (13) 

Note that the interference function of user k  is 
independent of power kp .

C. Admissibility of users 
In our setup individual users adjust their spreading 

sequence and powers to meet a set of specified target 
SINRs  * * * *

1 ,..., ,...,k K    . But for this reason, the 
admissibility condition must be satisfied. K users 
with the above target SINRs are admissible in CDMA 
systems with processing gain N , if there exist an 
allocationof signature sequences and powers such that 
the SINR of the usersare at least equal to their target 
SINRs. The user capacity or admissibility region is 
defined to bethe set of all admissibleSINR 
requirements 

Admissibility condition is presented for the case 
that no power constraint is considered[3]. 

K users with SINR requirements 
 * * *

1 ,..., ,...,k K    are admissible in the system with 

processing gain N  if and only if 
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where  *
ke  is the effective bandwidth and defined 

as
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This is because the user capacity region canthen be 
described as the region where the sum of the 
effectivebandwidths of the users does not exceed the 
processing gain.The bound (14) known as user 
capacity or admissibility region[2, 3]. 

As mentioned in[2]this result assumes that there is 
no constraint on the received power and thus the 
scenario of colored additive noisehas no effect on this 
user capacity region.  

If we put received power constraint on individual 
users, constructing the capacity region becomes very 
complicated. In[3] the capacity region for special case 
in which the target SINR of users are the same, is 
computed. We can test the admissibility of users with 
given target SINRs and received power constraints by 
following theorem. Note that in this theorem white 
noise is considered.  



Theorem 1: K  users (each having target SINR *
k

1,...,k K  ) are admissible in the system with 
processing gain N  ,received power constraint P  and 
noise covariance matrix 2 I  if and only if the target 
SINRs pass the following test 

1) Compute the parameter  *
ke   for all users. 

2) Sort effective bandwidth of users from largest 
to smallest 

3) Consider the j  largest users as oversized if for 
users 1 tojwe have  
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4) We must have 
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Note that admissibility condition without power 
constraint is an especial case of Theorem 1 ( P   ).

The admissibility region with equal received 
power constraint is the set of all SINR requirements 
that pass the above admissibility test. 

III. FORMULATION AS NONCOOPERATIVE GAME

As mentioned in[6] the users of the system can be 
considered as player of a non-cooperative game. The 
game is non-cooperative in the sense that each user 
maximizes his utility without considering how the 
selected strategy affects other users’ performance.  

In this paper the transmitters adapt their received 
powers and codewords by adapting their transmitted 
waveforms to mitigate the interference, subject to 
constraints on users’ SINRs and transmitted codeword 
norm. Thus we model our game based on received 
power and codeword.In our paper we consider the 
utility function of a givenuser to be the product 
between its received power and its 
correspondinginterference function. 

r
k k ku p i   (19) 

Note that our aim is to adapt the received power 
and codeword in order to maximize the performance 
of the network. Thus (19)cannot be written in the form 

T
k k k k k k ku p H H  c R c

andoptimized in kc  and kp . The utility function (19) 
can be written in the following form  

  , , , 1,...,r r r
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where rC  is the received codeword matrix whose 
columns are normalized received codewords, and r

kp
is the vector of received powers in that k th received 

power excluded. Moreover the utility function is 
decreasing function of interference for constant 
receivedpower r

kp . We say that a utility function 
satisfying the above property is separable, in regard to 
the two parameters, received power and codeword. 
Similarly a game with such a utility function is named 
separable game [14]. Thus we can separate the joint 
power and sequence control game G  into two 
subgames. We analyze these two subgames separately 
in following subsections. 

A. Codeword adaptation subgame 
In this section we present the codeword adaptation 

subgame cG  assuming that the received powers of 
users are constant. We find the best response of this 
subgame. For this subgame, each userselectshis 
strategy to maximize their corresponding utility 
function for a given set of received powers, that is 

max , 1,...,
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We can easily rewrite the utility function (19) as 
below 
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that is in form of scaled Rayleigh quotient. Note that 
this does not change the value of the utility function 
for a given unit norm received signature sequence. 
Recall from linear algebra[15, p.348] that Rayleigh 
quotient is minimized by the eigenvector 
corresponding to the minimum eigenvalue of the 
interference plus noise covariance matrix.This implies 
that the best strategy for agile user k is a greedy 
interference avoidance procedure[13] in which user k
’s received spreading sequence r

kc  is replaced by the 
minimum eigenvector of matrix kR  which minimizes 
the effective interference corrupting user k ’s signal at 
the receiver[16]. We show that this choice of received 
spreading sequence r

kc  is equivalent to replace the 
spreading sequence of user k  by the minimum 
eigenvector of matrix 1

k k kH H R .As mentioned 
before, the solution of problem (21) is the 
inferioreigenvector of matrix kR , i.e. 

min , 1,..., ,r r
k k k k for k K R c c  (23) 

where min
k  is the minimum eigenvalue of matrix kR .

Using Equations (7) and (23) we have 
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and hence 

 1 min .k k k k k kH H  R c c  (25) 

It is worth mentioning that, the equality 
 eig AB = eig(BA)  implies that min

k is the minimum 

eigenvalue of 1
k k kH H R , as well. Moreover, norm of 

k k k kH Hc c  is independent of k kH c . Thus, (23), 
(24) and (25) are reversible. 

In each spreading sequence update we have: 

   1 , 1,...,k kt t k K   c x  (26) 

where  k tx  is the minimum eigenvector of

 1
k k kH t H R  and t  is the adaptation instance.

In [17]the interference avoidance problem for 
fixed power is modeled in a game theoretic framework 
and is formulated as a potential game. The existence of 
Nash equilibrium and convergence properties, for best 
and better response iterations (wherein users choose 
sequences that maximize or increase their utility, 
respectively) of potential games are then derived. It is 
shown that eigen-iterationsalgorithm(26)for 
interference avoidance converges to the globalsolution 
when noise is added[17]. This algorithm was 
previously shown to convergeto the global optima 
only using class warfare techniques[18]which are not 
amenable to a distributed implementation. 

The received codeword matrix rC  is the Nash 
equilibrium of codeword adaptation subgame if for 
every 1,...,k K
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Where kC  is the strategy space of cG  for user k . In 
other words kC  is the set of all unit norm vectors in 

N . Thus kx  is the best strategy of sequence control 
subgame for user k .

B. Power adaptation subgame 
In power control subgame pG , the codeword of all 

users assumed to be fixed. Individual users try to 
maximize their utility functions subject to the target 
SINR constraint met. i.e. 

*

max , 1,...,
k

k ctep

k k

u k K

subject to SINR 


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Note that power adaptation subgame can be 
considered as a convex game according to definition 
stated in [19], since the user utility function is linear in

kp . Thus according to [19, Theorem 1] there exist an 
equilibrium point for power control subgame.  

As in [20] we can change the inequality constraint in 
(28) to the equality constraint. Thus we can rewrite the 
problem (28) as follows 
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u k K
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
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The solution of (29)is straight forward and the best 
response strategy for received power adaptation 
subgame for user k  is:
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Thus from (8) we have 
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Where supP  is maximum power that can be transmitted 

by user k .

C. Existence of Nash equilibrium for joint power and 
Codeword Adaptation Game 
According to [14, Theorem 2]Nash equilibrium of 

the power and sequence control game exists if 3 
properties are satisfied. Now we check these 3 
properties as follows. 

1) Property 1: the Game Is Separable 
We checked this property in section  III where we 

presented the utility function.  

2) Property 2: the Power Is Continuous Function 
of Given Interference 

[14, Property2]: Given any interference ki there is a 
power  *r

k kp i  that maximizes the utility of userk,
that is 

    * , max ,r
k k k k k kp

u p i i u p i  (32) 

and the function  *r
k kp i  is a continuous function 

of ki .
It is easy to show that this property is satisfied. 

Given any interference ki , the k-th user can adjust 
his power so that the utility function is maximized. 
From (31) the optimum power can be chosen as 

   2* *
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Clearly this power is a continuous function of ki .
3) Property 3: There Exist a Nash Equilibrium for 

Sequence Control Game 
[14, Property3]: For any rp there exists an 

equilibrium point  *r rC p  in the subgame  c PG

such that the function   * ,r r r
k ki C p p is continuous 

asa function of rp , for 1,...,k K .
As mentioned in Sec.I, according to [17, Sec.V], 

for a given rp , codeword adaptation subgame has a 
Nash equilibrium  *rC p . It is shown in [14, 
Proposition4] that the interference function 

  *,r r r
k ki p S p  is a continuous function of rp .

Thus properties 1-3 in [14] is satisfied and joint 
power and sequence control game has Nash 
equilibrium. 

D. Controlled Better Rasponse Strategy Instead of 
Best Response Strategy 
As mentioned in[21], applying (26) may lead to 

new user spreading sequences that are distant from the 
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Where kC  is the strategy space of cG  for user k . In 
other words kC  is the set of all unit norm vectors in 

N . Thus kx  is the best strategy of sequence control 
subgame for user k .

B. Power adaptation subgame 
In power control subgame pG , the codeword of all 
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maximize their utility functions subject to the target 
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considered as a convex game according to definition 
stated in [19], since the user utility function is linear in

kp . Thus according to [19, Theorem 1] there exist an 
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response strategy for received power adaptation 
subgame for user k  is:
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Where supP  is maximum power that can be transmitted 

by user k .

C. Existence of Nash equilibrium for joint power and 
Codeword Adaptation Game 
According to [14, Theorem 2]Nash equilibrium of 

the power and sequence control game exists if 3 
properties are satisfied. Now we check these 3 
properties as follows. 

1) Property 1: the Game Is Separable 
We checked this property in section  III where we 

presented the utility function.  

2) Property 2: the Power Is Continuous Function 
of Given Interference 

[14, Property2]: Given any interference ki there is a 
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Given any interference ki , the k-th user can adjust 
his power so that the utility function is maximized. 
From (31) the optimum power can be chosen as 

   2* *
supmin ( ) ,r

k k k k k kp i H t P i c  (33) 

Clearly this power is a continuous function of ki .
3) Property 3: There Exist a Nash Equilibrium for 

Sequence Control Game 
[14, Property3]: For any rp there exists an 

equilibrium point  *r rC p  in the subgame  c PG

such that the function   * ,r r r
k ki C p p is continuous 

asa function of rp , for 1,...,k K .
As mentioned in Sec.I, according to [17, Sec.V], 

for a given rp , codeword adaptation subgame has a 
Nash equilibrium  *rC p . It is shown in [14, 
Proposition4] that the interference function 

  *,r r r
k ki p S p  is a continuous function of rp .

Thus properties 1-3 in [14] is satisfied and joint 
power and sequence control game has Nash 
equilibrium. 

D. Controlled Better Rasponse Strategy Instead of 
Best Response Strategy 
As mentioned in[21], applying (26) may lead to 

new user spreading sequences that are distant from the 



current user spreading sequence in signal space, and/or 
(31) may cause abrupt power variation. This behavior 
is not desirable since it may lead to increase the error 
probability at the receiver, especially when connection 
loss between the transmitter and the base station 
occurs. Thus, as in [6], the users change their 
spreading sequence and powers in small increments. 
We define the spreading sequence update rule as 

     
   

1 ,k k
k

k k

t m t
t

t m t




 



c x
c

c x
 (34) 

where 

    sgn T T
k k k km t H H t c x

and   limits the Euclidean distance between two 
successive updates in signal space.Also we define the 
power update rule as 

 
*

2

( )
( 1) (1 )

( )
k k

k k
k k

i tp t p t
H t


    
c

 (35) 

where 0 1  . The disadvantage of better response 
strategy is lower speed of convergence in compare 
with best response dynamic. 

IV. DYNAMIC WAVEFORM ADAPTATION 
ALGORITHM

In this section we present our waveform 
adaptation algorithm considering non ideal channel 
between users and base station, and SINR. A formal 
statement of the algorithm is given below:

1) Initial setup: Start with randomly selected 
spreading sequences, powers, and channel gain 
matrices.

2) Admissibility Check: IF the target SINRs 
satisfy the admissibility condition (14) GO TO step 3 
ELSE STOP: users are not admissible. 

3) Convergence Check: IF the difference between 
two successive convergence factor (such as SINR) are 
greater than ε GO TO step 4, ELSE STOP: an optimal 
configuration has been reached. 

4) Adaptation Stage: FOR each user 1,...,k K
DO: 

a) calculate current correlation matrix using 
Equation (11) and then  1

k k kH t H R .
b) Determine the minimum eigenvector  k tx .
c) Replace the current spreading sequence 

using update Equation (34). 
d) Replace the current power using update 

Equation(35). 
5) GO TO step 3. 
Extensive simulations showed thatthis algorithm 

converges to optimal fixed point stated in [3] for 
white noise and to optimal fixed point stated in [18] 
for colored noise. In next section we study the 
behaviour of waveform adaptation algorithm in a 
network with mixture of agile and fixed users. 

V. BEHAVIOUR OF WAVEFORM ADAPTATION 
ALGORITHM IN NETWORK WITH MIXTURES OF FIXED 

AND AGILE USERS

In our scenario we consider a mixture of fixed and 
agile users. The fixed users are able only to adjust 
their powers to meet the SINR constraint, as in 
current wireless networks. With no loss of generality 
we assume that the agile (unlicensed) users is 
numbered from 1 to aK K . Thus, 

     



1 1

2

a

a

a f

K KT Tr r r r r r
i i i i i i

i i K

N

p p



  

 



 
R R

W

R c c c c

I

   (36) 

where aR  and fR  are the covariancematrices of 
agile and fixed users received signals, respectively. 

Note that from agile users’ point of view, the fixed 
user signals can be viewed as colored noise. It is 
shown that if there are aK N  agile users, then the 
interference experienced by at least one agile user can 
be reduced (while not increasing the interference seen 
by other agile users)unless the set of agile user 
codewords is containedin the space spanned by the

aK eigenvectors of fR with the smallest 
eigenvalues[13, Theorem 3]. Thus to achieve 
minimum interference, the  , 1,...,r

k ak Kc  must 
reside in the space spanned by the aQ K
eigenvectors of fR  with smallest eigenvalues. 
Thisfeatureisofbenefit, 
onaverage,tothefixedusersaswell.  

In this work we focus on situation in which the 
number of agile users is greater than processing gain 
of CDMA system.Note that in this scenario the 
unlicensed and licensed users use the same spectrum. 

A. Formulation at the fixed point 
Codeword adaptation rule in (34) implies that, in 

fixed point of waveform adaptation algorithm, the 
received codeword of each user is minimum 
eigenvector of interference plus noisecovariance 
matrix.As shown in (23) 

min , 1,..., ,r r
k k k k ak K  R c c  (37) 

(23)followed by (11) implies that r
kc  is the 

eigenvector of received signal covariance matrix as 
well. i.e. 

 minr r r
k k k k k kp   Rc c c  (38) 

Furthermore(30)implies that the received power of 
user is  

 * min *r
k k k k kp e      (39) 

B. Properties of Codeword Ensembles at fixed point 
We can show that in fixed point of the algorithm 

the, the covariance matrixes of agile and fixed users 
commute1 and this implies that aR  and fR  are jointly 

                                                          
1Two matrices A and B which satisfy AB BA are said to be 
commuting under matrix multiplication. 

Fig. 1 Illustration of power distribution of optimal fixed point.

Fig. 2 Monte Carlo simulation to investigate occurances of 
oversized agile user in presence of fixed users with randomly 
chosen codewords and powers in each run. N=8, K=16, …, 25 and 
Ka=11.

diagonalizable. In other words at the fixed point of 
algorithm, the agile and fixed users share the same 
basis functions. 

As stated in [18] at optimal fixed point of 
interference avoidance algorithm with fixed power and 
colored noise, the power distribution of users is classes 
of water fillings. Thus, a fixed-pointensemble in 
general has a received codeword power distribution as 
depicted inFig. 1. 

In Fig. 1 , ,I II III    are the distinct eigenvalues of 

matrix R  corresponding to user codewords, 
2 2 2

1 2, , ..., N    are the eigenvalues of fixed users 
covariance matrix fR  and 1 2, ,..., N    are the basis 
vectors which diagonalize aR and fR . It is easy to 
show that if users 1 to k  has codewords 
corresponding to I , then the relation between 
powers and corresponding eigenvalues are as below 

   * 2 2

1 1

k k

I i I j
i j

e    


 

     (40) 

Where k  is the maximum index of basis vectors 
corresponding to eigenvalue I . This relation is true 
for users with other corresponding eigenvalues as 
well.

We can name the users with codeword 
corresponding to eigenvalues ,II III   as oversized 
agile users in the presence of fixed users.  

C. Effect of Waveform Adaptation Algorithm on 
Fixed Users 

In this section, we present the properties of optimal 
power and spreading code ensemble obtained using 
algorithm stated in the previous section and analyse 
the effect on fixed users performance. We will show 
that almost always, although the fixed users unable to 
change their codewords, their codewords are the 
inferior eigenvector of corresponding interference 
plus noise covariance matrix. 

Extensive simulations showed that for normal 
choice of agile user target SINRs, almost never a user 
is oversized. We show this by considering following 
trial.

Suppose that there are 11aK   agile users with 
SINR requirements of  

 * 1, 1.2, 1.4, 1.6, 1.8, 2, 2.5, 3, 3.2, 3.5, x 

and fK  fixed users in 8N  signal dimensions. We 
compute the SINR requirement of agile user 11, “x” 
to be oversized. In this way we repeat the trial 
100,000 times for various number of fixed users 
( 5,...,14fK  ) and randomly generated fixed user 
codewords and powers. The results are depicted inFig. 
2. We can see that the user 11 is oversized when it’s 
target SINR is very large compared with other target 
SINRs. 

Thus we can restrict ourselves to situation in which 
no agile user is oversized. In this case agile users have 
a power and codeword ensemble that satisfiesa 
simultaneous water filling like solution.The following 
theorem shows the effect of algorithm to fixed user 
performance. 

Theorem 2: For aK N  at the fixed point of 
algorithm, the codeword of fixed users are the inferior 
eigenvector of their corresponding interference plus 
noise covariance matrix, if and only if the covariance 
matrix of agile users is invertible. 

Proof: we define the N K  received spreading 
sequence matrix 1 ,...,r r r

K   C c c  and received power 

vector 1 ,...,r r r
Kp p   P , where r

kc  and r
kp  are 

received spreading sequence and powers of user k
obtained from (7) and (8), respectively.  
We can rewrite Equation (38)as follows 

 min , 1,..., ,r r r r
k k k k k ap k K     Rc c c  (41) 

Where   is the eigenvalue of received signal 
covariance matrix R corresponding to received 
codeword of user k . From Equation (41) we have 

    ;

1,..., 1,..., ,

Tr r r r r
i i i i k k

a a

p

k K and i K K

 

   

R c c c c
 (42) 

Multiplying Equation (42) by  Tr
ic  from left and 

 Tr r
k kp c  from right yields 
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diagonalizable. In other words at the fixed point of 
algorithm, the agile and fixed users share the same 
basis functions. 

As stated in [18] at optimal fixed point of 
interference avoidance algorithm with fixed power and 
colored noise, the power distribution of users is classes 
of water fillings. Thus, a fixed-pointensemble in 
general has a received codeword power distribution as 
depicted inFig. 1. 

In Fig. 1 , ,I II III    are the distinct eigenvalues of 

matrix R  corresponding to user codewords, 
2 2 2

1 2, , ..., N    are the eigenvalues of fixed users 
covariance matrix fR  and 1 2, ,..., N    are the basis 
vectors which diagonalize aR and fR . It is easy to 
show that if users 1 to k  has codewords 
corresponding to I , then the relation between 
powers and corresponding eigenvalues are as below 
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Where k  is the maximum index of basis vectors 
corresponding to eigenvalue I . This relation is true 
for users with other corresponding eigenvalues as 
well.

We can name the users with codeword 
corresponding to eigenvalues ,II III   as oversized 
agile users in the presence of fixed users.  

C. Effect of Waveform Adaptation Algorithm on 
Fixed Users 

In this section, we present the properties of optimal 
power and spreading code ensemble obtained using 
algorithm stated in the previous section and analyse 
the effect on fixed users performance. We will show 
that almost always, although the fixed users unable to 
change their codewords, their codewords are the 
inferior eigenvector of corresponding interference 
plus noise covariance matrix. 

Extensive simulations showed that for normal 
choice of agile user target SINRs, almost never a user 
is oversized. We show this by considering following 
trial.

Suppose that there are 11aK   agile users with 
SINR requirements of  

 * 1, 1.2, 1.4, 1.6, 1.8, 2, 2.5, 3, 3.2, 3.5, x 

and fK  fixed users in 8N  signal dimensions. We 
compute the SINR requirement of agile user 11, “x” 
to be oversized. In this way we repeat the trial 
100,000 times for various number of fixed users 
( 5,...,14fK  ) and randomly generated fixed user 
codewords and powers. The results are depicted inFig. 
2. We can see that the user 11 is oversized when it’s 
target SINR is very large compared with other target 
SINRs. 

Thus we can restrict ourselves to situation in which 
no agile user is oversized. In this case agile users have 
a power and codeword ensemble that satisfiesa 
simultaneous water filling like solution.The following 
theorem shows the effect of algorithm to fixed user 
performance. 

Theorem 2: For aK N  at the fixed point of 
algorithm, the codeword of fixed users are the inferior 
eigenvector of their corresponding interference plus 
noise covariance matrix, if and only if the covariance 
matrix of agile users is invertible. 

Proof: we define the N K  received spreading 
sequence matrix 1 ,...,r r r

K   C c c  and received power 

vector 1 ,...,r r r
Kp p   P , where r

kc  and r
kp  are 

received spreading sequence and powers of user k
obtained from (7) and (8), respectively.  
We can rewrite Equation (38)as follows 

 min , 1,..., ,r r r r
k k k k k ap k K     Rc c c  (41) 

Where   is the eigenvalue of received signal 
covariance matrix R corresponding to received 
codeword of user k . From Equation (41) we have 
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Tr r r r r
i i i i k k

a a

p

k K and i K K

 

   

R c c c c
 (42) 

Multiplying Equation (42) by  Tr
ic  from left and 

 Tr r
k kp c  from right yields 
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After somemathematical manipulations we have 
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for 1,...,ai K K  , or equivalently  

    min ; 1,..., .
T Tr r

i i a i i a ai K K   c R R c R  (45) 

For an invertible aR , Equation (45) can be reduced to 
min , 1,..., .r r

i i i i ai K K   R c c  (46) 

As a consequence, Equations (37) and (46) imply that 
all user spreading codes are the eigenvectors 
corresponding to the minimum eigenvalue of 
theirinterference plus noise covariance matrix. The 
inverse proof is straightforward. It is obvious from 
Fig. 1 that aR  is invertible if the following inequality 
is satisfied. 

 2 2 0, 1,...,i i N       (47) 

where 2
i  is the i th eigenvalue of fR  and   is 

satisfy the following equality 

 
2 2

*

1 1

1
aKN

i
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i i
e 






 

 
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 
   (48) 

An important property ofGWBE sequences is that, 
each sequence is the minimum eigenvector of its 
corresponding kR [22]. This means that, minimum 
interference plus noise energy is experienced by each 
user. 

Note that in this analysis we considered the general 
form in which the fixed users assign their codewords 
arbitrarily. Where fixed users assign their codewords 
orthogonally, the result is more straightforward. In 
this case, when (47) is not satisfied for some i , the 
fixed user corresponding to eigenvalue 2

i  will be 
orthogonal to all the agile users and other fixed users. 
In other words this user is oversized. Thus we can 
consider the SINR of fixed users in admissibility 
condition (14). Furthermore we can use the 
admissibility test in theorem 1 for agile and fixed 
users if received power constraint is 
considered.Another property of optimal Nash 
equilibrium is that, the matrix R  is scaled identity 
matrix. 

VI. SIMULATION RESULTS

In this section, we provide numerical examples to 
verifyour theoretical findings and algorithm. 

First, we consider processing gain 8N  , 5fK 
unconstrained fixed users and 8aK   agile users 
withthe following target SINRs  

 * 1,1,1.5,1.5, 2, 2, 2.5, 2.5,3 

Which satisfy admissibility condition stated in(14). 
Background noise is also white with covariance 
matrix 8 80.1 W I and the simulation constants are 
     and tolerance is 5   .We run the 
algorithm with randomly chosen initial sequences and 
powers for agile users and following Walsh-
Hadamard orthonormal sequences and arbitrary 
powers for fixed users.The channel matrices are 
chosen arbitrarily as well. 

1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1
8 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1

T
 
     
     
 

    
     

F

 2.9202,1.9519,1.3692, 2.1239,0.5135P  
After the waveform adaptation algorithm 

performed, we obtain received codeword matrix r
aC

and received power vector r
aP . The eigenvector and 

eigenvalue matrices of the covariance matrices 
corresponding to the agile and fixed users is 
illustrated at the bottom of thenext page. It can be 
seen that, two covariance matrices use the same basis 
vectors and that the sum of eigenvalues corresponding 
to identical eigenvectors is the constant 4.13and 

4.23  . This verify the water filling property 
shown in Fig. 1 and equations (47)and (48). Note that 
the last 3 eigenvectors in aU  is the linear 
combination of the first 3 eigenvectors in fU . This 
can be shown by projection of last 3 eigenvectors in 

aU  onto the eigenvectors in fU . For instance,we do 
this for last eigenvector in aU  (say  5

au ). 

 5 [0.9042    0.0184   -0.4266 0 0 0 0 0]a f u U

Note that this vector has unit norm. Thus the space 
spanned by the last 3 eigenvectors in aU  also 
spanned by first 3 eigenvectors in fU .
Furthermore, one can show that the walsh-Hadamard 
codeword assigned to each fixed user is the inferior 
eigenvector of its corresponding interference plus 
noise covariance matrix. The covariance matrix of 
received signal is  

84.23R I

In the second example, we consider the signal 
space dimension 4N  and white noise with 
covariance matrix 40.1W I . The simulation 
constants are      and tolerance is 5   .
Also the number of users and target SINRs are 
supposed to be 7K  (with 5aK   agile users) and



 0.0634   -0.2409   -1.7141    1   -1     1    -1    -1
 -0.0634    0.2409    1.7141   -1   -1     1    -1    -1
 -0.3750    1.4864   -0.8061   -1    1    1     1    -1
 0.3750   -1.4864    0.8061  1

8f U
  1    1     1     1    -1

  1.1518    1.2106    0.4559    1   -1    -1     1    -1
 -1.1518   -1.2106   -0.4559   -1  -1    -1     1    -1
  1.5902   -0.5167   -0.4520   -1    1    -1    -1    -1
 -1.590

 
2    0.5167    0.4520    1    1    -1    -1    -1

0  0  0  0.5135  1.3692  1.9519  2.1239  2.9202f diag
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-1   -1    1   -1    1    0.6564   -1.3980    0.7841
-1   -1    1   -1   -1   -0.6564    1.3980   -0.7841
-1    1    1    1   -1    1.7280     0.1141    0.0322
-1    1    1    1    1   -1.7280   -0.1

8a U
1141   -0.0322

-1    1   -1   -1    1    0.4686    1.4229    0.8693
-1    1   -1   -1   -1   -0.4686  -1.4229   -0.8693
-1   -1   -1    1   -1   -0.6031   -0.0891    1.6212
-1   -1   -1    1    1    0.603

 
1    0.0891   -1.6212

1.2098  2.0061  2.1781  2.7608  3.6165  4.1300  4.1300  4.1300a diag
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* {1,1.1,1.2,1.3,1.4,1.5,1.6}  , respectively. Finally 
we consider the received power constraint, 4P  . In 
our simulations we assume that, the fixed users adjust 
their powers to meet their SINR constraints. Note that 
the sum of effective bandwidths based on (15)is equal 
to 3.9332 < 3.9384and Equation(18) is satisfied. We 
begin our simulation with randomly generated 
spreading codes, powers and following channel 
matrices.

 
 
 
 
 

1

2

3

4

5

6

0.7744,0.5968,0.8818,0.9997

0.9886,0.4762,0.5393,0.4142

0.7645,0.4665,0.6445,0.9304

0.7289,0.6214,0.5250,0.6646

0.9737,0.4744,0.6825,0.9141

0.4260,0.8150,0.9874,0.

H diag

H diag

H diag

H diag

H diag

H diag











  
 7

5700

0.4803,0.8112,0.9457,0.7665H diag

We define the aN K  matrix aC  in which the 
columns are the transmitted spreading sequences by 
agile users. The algorithm yields the matrix aC  and 
transmitted power vector P  as follows. 

0.7906 0.1046 0.4709 0.1083 -0.0934
-0.2789 0.2953 -0.5694 -0.7993 -0.9818
-0.1667 -0.8205 0.0874 0.2560 -0.1391
-0.5191 -0.4783 0.6681 -0.5328 0.0899

 
 
 
 
 
 

C

[ 4.9547 3.3874 5.3339 4.8884 6.1251]P
The received signal correlation matrix is: 

45.9878 ,R I

which is within (10-4) tolerance from the 
corresponding matrix implied by [3]. This 
corresponds to a GWBE set.  

We complete our work by illustrating the tracking 
ability of the algorithm for slowly changing channel. 
We assume that a steady state configuration is 
reached. Then we change the channel gains randomly 
by (0 ~ 10)%  of initial values. Fig. 3shows that user 
SINRs, transmitted power and received powers vary 
smoothly afterthis channel variation. 

We have a discontinuity at the instance of channel 
variation. The channel variation results in variation of 

k kH c  in equations (7), (8) and (10).Consequently, 
we have abrupt changes in users' SINRs and received 
power at the variation instance.Since the SINR of 
users is no longer equal to target SINRs, the algorithm 
continues to adapt, yielding the new powers and 
codeword vectors. Because the algorithm uses the 
better response strategy, transmitted powers change to 
their new values smoothly. 

Note that convergence speed after channel 
variation is more than convergence speed with 
randomly chosen channel. 

VII. CONCLUSION

In this paper, the problem of adaptive and 
distributed joint power and spreading sequencecontrol 
for uplink of synchronous single cell MC-CDMA 
systemis modeled and analyzed by a game-theoretic 
approach. The best strategy of two subgames of this 
separable game is derived.Itis shown that the 
proposed game has at least one Nash equilibrium 
point. Distributed algorithm ispresented based on 
greedy interference avoidance. 



(a)

(b)

(c) 

Fig. 3 Channel variation tracking. (a) SINR variation. (b) Received 
power variation. (c) Transmitted power 

The behavior of the presented waveform 
adaptation algorithm in the presence of some users 
with fixed waveforms is analyzed and it is shown that 
interference plus noise corresponding to each fixed 
user has minimum energy inthe direction ofits signal. 

almost always, the waveform adaptation algorithm 
converges to a Nash equilibrium in which the  

Finally,our theoretical results confirmed by the 
numerical examples. We have shown by simulation 
the ability of the presented algorithm to track the 
small changes in channel gains. 
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