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Abstract—Energy detection has been adopted as an alternative spectrum sensing method for cognitive radios due to its 
low computational complexity and not requiring a priori information about the signal to be detected. However, noise 
uncertainty and hidden terminal problem make energy detector practically challenging specially in low signal-to-noise 
ratio (SNR) regime. Collaboration among multiple cognitive radios has been recognized as a practical strategy to 
improve the reliability of spectrum sensing. In this paper, a cooperative spectrum sensing framework is proposed to 
blindly determine the occupancy of a wideband spectrum. Specifically, contrary to conventional energy detector, the 
proposed method does not require any knowledge of noise variance to detect the presence of primary signals. 
Moreover, diversity achieved by cooperation enables the framework to maintain a reasonable performance even in 
low SNR values. Simulation results confirm the effectiveness of our proposed method in improving both the 
probabilities of detection and false alarm.  
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I. INTRODUCTION 
The increasing demand for radio spectrum has 

resulted in overcrowding the utilized bands and the 
need for higher data rates. Considering the limitations 
of the natural frequency spectrum, it becomes obvious 
that the current strategy of static frequency allocation 
schemes cannot accommodate the requirements of 
high data rate devices. Consequently, innovative 
techniques are needed to efficiently utilize the 
available spectrum. Cognitive Radio (CR) arises to be 
a tempting solution to the spectral congestion problem 
by introducing opportunistic usage of the frequency 
bands that are not heavily occupied by licensed users 
[1-3]. As a matter of fact, recent measurements by 

Federal Communications Commission (FCC) have 
shown that 70% of the allocated spectrum in US is not 
utilized [2].  

It is well known that the realization of the 
spectrum access largely depends on finding the 
spectrum holes, i.e. spectrum sensing [4, 5]. As a 
result, sensing accuracy has been considered as the 
most significant factor to evaluate the performance of 
CR networks. Hence, recent researches have been 
focused on improving the sensing accuracy 
considering the practical constraints. Generally, 
spectrum sensing techniques can be classified into 
three main categories: energy detection [6, 7], matched 
filter detection [8], and cyclostationary feature 
detection [9]. If the secondary user (SU) has no a 



priori information about the features of the primary 
signals except local noise statistics, then the energy 
detector is the optimal method [10]. When some 
knowledge about the primary user (PU) signal such as 
pilots, preambles, or synchronization messages are 
known to the SUs, the matched filter is usually the 
optimal detector [11]. On the other hand, the 
cyclostationary feature detectors can differentiate the 
primary signal from the interference and local noise by 
exploiting certain periodicity existed in the received 
signal if the modulation schemes of the primary 
signals are known. This advantage is gained at the 
expense of more computational complexity [12]. In 
this paper, we will adopt the energy detector as the 
building block for the proposed spectrum sensing 
technique due to its advantages from implementation 
viewpoint. 

There are several factors which make energy 
detector practically challenging: i) the performance of 
energy detector highly depends on noise power which 
cannot be accurately estimated [13], ii) destructive 
channel conditions between the PUs and the SUs can 
greatly degrade the detection performance [10-13].  

Several papers have studied the role of noise 
uncertainty on the performance degradation of energy 
detector and proposed methods to overcome this 
problem. As a case in point, [14] has shown that under 
additive white Gaussian noise (AWGN) assumption, 
the variance-based methods have better performance 
than energy detection with noise uncertainty. In 
addition, Taherpour et al. in [15] proposed a wideband 
spectrum sensing scheme based on generalized 
likelihood ratio detector under noise uncertainty 
assumption.   Furthermore, in [16], a two-stage 
algorithm has been introduced which is robust against 
noise uncertainty.  

However, these schemes cannot mitigate the multi-
path fading and hidden terminal problem. In order to 
improve the reliability of spectrum sensing, multiple 
secondary users can collaborate to conduct spectrum 
sensing and take advantage of spatial diversity. It has 
been shown that cooperative spectrum sensing 
techniques can alleviate the problem of corrupted 
detection [10-13, 17].  The authors in [18] proposed a 
cooperative blind combination technique  based on the 
principle of maximizing the SNR. The algorithm does 
not need any prior knowledge of the primary and noise 
signal, but it is required to estimate the covariance 
matrix of the received signals. In addition, [19] 
performs a blind spectrum sensing based on empirical 
characteristic function of the observed sample vectors. 
However, these methods may encounter severe 
degradation when the utilized approximations 
(covariance matrix or samples' characteristic function) 
are not reasonably precise. 

Motivated from all the above and as an alternative 
approach, the aim of this paper is to utilize the 
Bayesian estimation introduced in [16] to propose a 
cooperative spectrum sensing framework without the 
utilization of any approximation. Specifically, we have 
proposed Generalized Bayesian Estimation Energy 
Detection (GBEED) technique in which multiple SUs 
collaboratively determine the presence or the absence 
of PUs in a wideband spectrum. To eliminate the 
dependency of the conventional energy detector to the 
noise variance, we utilize the non-informative prior 

probability distribution [20]. Thus uncertainty in noise 
variance estimation does  not affect the performance of 

 
Fig 1.  Scheme of SUs, FC and PU location. 

the derived algorithm. Simulation results confirm the 
effectiveness of GBEED algorithm in the fading 
environment and the presence of noise uncertainty 
even in low SNR regime. 

Notation: Throughout the paper, we use uppercase 
boldface letters to represent matrices and lowercase 
bold letters to denote vectors. �. �� stands for transpose 
of a vector. In addition, ���, ���  and ����, ��� , 
respectively, denote a real and complex Gaussian 
distribution with mean �  and variance �� . Also,  |. |  
represents  the  magnitude  of   a complex  number 
and ��. �  stands for statistical expectation. Finally, 
��� �. � denotes the determinant of a matrix and � and 
� are the proportional and approximation symbols. 

The rest of the paper is organized as follows. In 
section II, the system model and the assumptions are 
given. Section III is devoted to the cooperative 
spectrum sensing framework. In the first subsection, 
the conventional energy detector is overviewed and 
the rest of the section is dedicated to the derivation of 
the proposed GBEED algorithm. Simulation results 
are presented in Section IV. Finally, the paper is 
concluded in Section V.  

II. SYSTEM MODEL AND ASSUMPTIONS 

A. System Model 
Let us consider a CR network with �  SUs 

randomly located in a � � � area. We assume that the 
primary network consists of � distinct bands with the 
same bandwidth, i.g. � . The objective is to 
cooperatively estimate the number of occupied 
channels and determine their locations. 

Consider ������  as the � ’th sample of the � 'th 
band, received by � ’th SU; hence, ������  can be 
written as 

������ � �������� � ������,  
� � �, � , �, � � �, � , � (1) 

where ��������, ���  is the noise component and 
���  denotes the channel gain between the �’th SU 
and the PU occupies the � ’th band. Herein �� 
represents the absence  ���� or presence  ���� of the 
PU in the � ’th channel. Therefore, the hypothesis 
testing problem for �� can be formulated as follows 

����� � ��,         �� 
�����, ��

 (2) 
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����� � ��,         �� 
�����, ��

 (2) 

where �� is the primary signal in the �’th band.  
In our system model, the local power 

measurements from all collaborating SUs are collected 
at a central unit, called fusion center (FC), which may 
be either one of the secondary nodes, or a separate 
control node. Then, the final decision about the 
hypothesis testing problem is made by the FC based 
on the received local measurements. In particular, by 
the utilization of GBEED algorithm, FC firstly 
estimates the number of occupied bands and then 
determines their location within all the bands. 

B. Assumptions 
The following assumptions will be retained for 

illustrative purpose and for analytical tractability: 
1. It is assumed that the fading process remains static 

during each detection interval but it varies from 
one interval  to another, and all channel elements 
are independent and identically distributed (i.i.d)  
random variables as ��������, ���� �. 

2. SUs calculate the power of their observations in 
each band and forward them to the FC over an 
error-free channel and in an orthogonal manner, 
for example by the use of TDMA protocol. 

3. FC utilized the proposed GBEED algorithm to 
blindly make the final decision about the occupied 
channels. 

4. We assume that there is no available knowledge 
about the noise variance and the sensing channel 
gains parameter. 

III. COOPERATIVE SPECTRUM SENSING 
FRAMEWORK 

A. Conventional Energy Detection 
In a conventional energy detector, the power of the 

received signal of the �’th channel at the �’th SU is 
calculated according to   

��� � 1
� �|������|�

�

���
 (3) 

Without loss of generality, we assume that ��|��|�� �
1 [10], then for the large number of samples, by the 
use of central limit theorem, ��� can be approximated 
as [21] 

����   ��������, �� �⁄ �         
���   ���������� , ���� �⁄ �    (4) 

where ��  represents the noise variance at the SU's, 
���� � ���� � �� and ����  denotes the variance of 
channel gain between the �’th SU and the PU which 
occupies the �’th band.  

The calculated powers are then transmitted to the 
FC to make the final decision. Considering equal gain 
combiner, we have the following average power for 
each band  

�� � 1
� � ���

�

���
, � � 1,�, � , � (5) 

Without loss of generality, we assume that the vector   
� � ���, ��, � , ���� is in decreasing order.  Finally, 
the hypothesis testing problem at the FC can be 
formulated as 

��
�
����� ���� ���, ��

���                                 

��� ���� � 1
� � ����

�

���
, 1
��� � ����

�

���
�     

 (6) 

By considering the optimal likelihood ratio test 
(LRT) with a test threshold  �� , we have 

��
��
�
��

�� (7) 

Probability of detection (�� ) and probability of 
false alarm (��) are reliability and efficiency factors 
used to evaluate the sensing performance. �� denotes 
the probability that a channel is sensed to be occupied 
when it is actually occupied and �� is the probability 
that a channel is sensed to be occupied when it is 
actually idle. By the above definitions, �� and �� can 
be calculated as follows [21].      

��� � � ��� � �∑ �������� � �⁄
�∑ �������� ��√��� � 

��� � � � �� � ��

�� √��⁄ � 

(8-a) 
 

(8-b)

where ��. � is the complementary cumulative 
distribution function which calculates the tail 
probability of a zero mean unit variance Gaussian 
variable, i.e. 

���� � � 1
√��

��

�
����

� ��  

Assuming a target probability of false alarm 
��� � � , and substituting it into (8-b), the test 
threshold can be calculated as [11] 

�� � �1 � ������ √��⁄ ��� (9) 

It is obvious that sensing performance of the 
secondary network largely depends on the noise 
variance estimation. Thus the energy detection 
methods degrade significantly by existence of noise 
uncertainty. In the following subsection, we will 
propose the GBEED algorithm to combat noise 
uncertainty as well as fading effects and hidden 
terminal problem.   

B. Problem formulation 
In this paper, our objective is to find the number of 

occupied bands and their locations. Let ����� �
�������, ������, � , ��������  denotes the 
observation vector at the �’th cooperating SU. The 
conditional probability of number of occupied bands, 
i.e. �� , given the observation set �� � ����1�, 
�����, � , ������ from all the SUs can be expressed 
as 

����|��, ��, � , ���                            
� ����, ��, � , ��|��������

����, ��, � , ���  

 

(10) 

The probability ����, ��, � , ��� is the same for all 
possible values of �� and ����� can be assumed non-



informative [16]. Hence, maximizing ����|��, ��, …, 
��� is equivalent to maximize ����, ��, … , ��|� ′�.  

Let ���  � ����, ���, … , ���� , ���, … , ����, ��  de-
notes the set of unknown parameters. Then conditional 
probability of ���, ��, … , ��� can be expressed as 

����, ��, … , ��|���
� � ����, ��, … , ������, ������������

��� ���� 
 

(11) 

Calculating the above integral over the set of unknown 
parameters ���,  allows us to eliminate the need for 
exact parameter set estimation. In the following 
subsection, our aim is to introduce a model for the 
prior distribution, ��������� , hence calculating the 
integral in (11). Finally, we will propose the GBEED 
algorithm for the cooperative spectrum sensing. 
 

C. Non-informative prior probability distribution 
In Bayesian statistical inference, a prior probability 

distribution of an uncertain quantity �  is the 
probability distribution that would express one's 
uncertainty about �  before the data is taken into 
account. It is meant to attribute uncertainty rather than 
randomness to the uncertain quantity. Generally, priors 
are two types: informative and non-informative [20]. 
The informative prior refers to the case when there is a 
specific information about the variable, for example, 
noise component without uncertainty in variance  has 
an informative prior probability since we describe it as 
a complex zero mean Gaussian variable with the 
known variance. On the other hand, non-informative 
prior expresses vague or general information about a 
variable. Since we have no knowledge of the 
parameter set,  ���,  we should choose a non-
informative prior distribution for ���. 

Among different proposed non-informative prior 
distributions, the Jeffreys’ prior rule [22] is adopted 
for positive parameter like  ��� which is defined as 

��������� � ���� ����������� (12) 

where ��. � denotes the fisher information [22]. Since 
the elements of the vector ���  are independent 
variables, we have 

��������� � ���� � � ������
��

���

�

���
 (13) 

Since the received signal for different bands at the SUs 
are modeled as zero mean Gaussian variable, under 
hypothesis ��, ��� can be expressed as 

�����|��~ 1
√2��� ��|���|�

���  (14) 

Then, the Jeffreys prior for the standard deviation σ is 

���� � �����                                     

              � �� �� �
�� ���������|����

�
�    

 

 

 

� �� ��|���|� � ��
�� �

�
�      

(15)

By the definition of statistical expectation, we obtain 

����                                 

� �� �����|��
��

��
�|���|� � ��

�� �
�

����  

� � 2
�� � 1

�                                  

 

(16) 

With the same calculations, we have 

������ � 1
���

 (17) 

D. Generalized Bayesian Estimation Energy 
Detection (GBEED) 
To calculate the integral in (11), we must find the 

conditional distribution of observations,��, ��, … , ��. 
In a wideband spectrum, it is logical to assume that 
signals in different bands are independent. Then, 
according to the assumption (1) and by considering the 
independency of primary signal samples, we have 

����, ��, … , ������, ���                                  

              � � ��������, ���
�

���
    

� � � �����������, ���
�

���

�

���
 

 

 
 

 

(18) 

Consequently, we obtain 

����, ��, … , ������, ���
� � 1

�������������� ∏ ∏ ������
�������

�
�

            

��� ��� � � ���
����

��

���

�

���
� �

�� � � ���
�

������

�

���
�

 

 

 

(19) 

Then by the use of (16), (17) and (19), the integral in 
(11) can be written as (20) on the top of the following 
page. To calculate (20), we use the subsequent 
equation [24] 

� ��������
�

�
���������� �� � 1

2 ������� (21) 

where ��. �  represents the gamma function and for 
integer values is defined as ���� � �� � 1� �
�� � 2� � … � 1 . Therefore, we obtain (22-a) and 
(22-b) on the top of the following page. Finally, by 
the use of these equations, the integral in (11) is 
calculated as (23) on the top of the following page.  

To further simplify the retained equation in (23), 
we use ���� � �2��� �⁄ ����� �⁄ � ������� as an  
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we use ���� � �2��� �⁄ ����� �⁄ � ������� as an  
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approximation for gamma function. Then, the 
following two equations are derived 

���������                                                        

 � �2����� �⁄ ������ �⁄ ����� ����������  (24-a) 

������ � ����                                          
� �2��� �⁄ ����� � ��������������� �⁄ � 

��������� � ����                        
(24-b) 

Using the above equations, the negative 
logarithmic transformation of (23) is expressed as (25) 
on the top of the this page. 

Eventually, the proposed GBEED expression is 
given by 

GBEED����                                                    
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And therefore the number of occupied bands can be 
estimated as 

��� � ��� ������������� ��������� (27) 

where the "minimum operator" is used for the negative 
logarithmic scale applied in (25). Since for �� � � , 
the equation for ����� �� has singularity, we cannot 
apply the algorithm for this case; However, the 
possibility of such occurrence is very low, for example 
� �0.3���� � 0  for � � 10 . Then, the bands 
correspond to the ��� largest values (first ��� elements) 
of the vector � are considered to be occupied. Hence, 



the proposed GBEED algorithm is summarized in 
Table I. 

TABLE I: THE PROPOSED GBEED ALGORITHM 

1. The collaborating SUs individually calculate the 
power of their local observations for different bands 
(���) and forward them to the FC. 

2. The power vector � with the elements defined in (5) 
are calculated and arranged in decreasing order.  

3. FC estimates the number of occupied bands based on 
��� � ��� ������������� ��������� 

where ��������� is defined in (26). 

4. The bands correspond to the ��� largest values of the 
vector � are considered to be occupied.  
 

IV. SIMULATION RESULTS 
To evaluate the performance of the GBEED 

algorithm, different sets of simulations are presented. 
We assume that the primary network consists of 
� � ��  bands. To generate different channel 
variances, we use the model ���� � ����� � ��where � 
is a random variables  uniformly selected  in  interval 
[-5, 5] in dB. Thus we define the average SNR as 
������ � ����� ��⁄ . Furthermore, the global 
probabilities of detection and false alarm are 
calculated as  averages over different bands and for  
106 Monte Carlo runs.  

In Figure 2, the normalized GBEED value versus 
different values of �� are depicted for different 
numbers of collaborative SUs and sample numbers 
and ��� � �1���. In this figure, the correct number 
of occupied channels is assumed to be 15. As it is 
obvious from this figure, the minimum value of 
GBEED���� is occurred at �� � 1� which confirms 
the right decision. Moreover, increasing the number of 
samples and cooperative nodes, results in a sharper 
curve around the minimum point and thus a higher 
accurate estimation of occupied channels. 

The performance of the GBEED algorithm is 
compared with energy detection (ED) in the presence 
of noise uncertainty (NU) in Figure 3. In particular, we 
have depicted the average probability of miss-
detection ���� � 1 � ���  and ��  for different bands 
versus SNR, i.e. 

��� � 1
������

�

���
������� � 1

�����
�

���
  

 The estimated noise variance in ��  is modeled as 
��� � �� � �� where �  corresponds to uncertainty 
component and is uniformly generated  as  a  random 
variable in the  interval   [-1, 1].  The  threshold  of   
ED  is  set  to achieve ��� � 1��� ; however, its 
performance is degraded severely by noise uncertainty 
��� � ����. On the other hand, noise uncertainty does 
not affect the performance of the proposed GBEED 
algorithm. Hence, in the presence of noise uncertainty, 
the GBEED algorithm outperforms the conventional 
ED, enormously. Considering accurate noise   variance   
estimation, ED has better performance in terms of  

��� while in terms of ��, GBEED algorithm acquires 
higher performance. Notice that ED requires  the exact  

 
Fig 2.  Normalized GBEED value vs. �� for average          SNR= -

10dB 

 

Fig 3.  Probabilities of miss-detection and false alarm vs. SNR for 
GBEED algorithm and conventional ED in presence and absence of 
noise uncertainty.  

 
Fig 4.  Probabilities of miss-detection and false alarm vs. SNR for 
� � ���� and different number of SUs 

estimation of noise variance to achieve higher 
probability of detection which is not applicable in 
practical scenarios. Probabilities of ��� and �� versus 
SNR are illustrated in Figure 4 for different numbers 
of SUs and � � ����. For multiple SUs, it is unlikely 
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that all of them experience a deep fading, 
simultaneously. Therefore, as it is expected, increasing  

 

Fig 5.  Probabilities of miss-detection and false alarm vs. SNR for 
 and different sample numbers.  

the number of cooperating nodes improves the sensing 
performance in terms of both   and .   

Finally, the performance of GBEED algorithm is 
investigated for different sample numbers and . 
It can be seen that the performance is greatly improves 
as the sample number increases. This is due to the fact 
that according to (5), as , the variance under 
both hypotheses tends to zero. Thus the difference 
between  and  is perfectly distinguishable.  

V. CONCLUSIONS 
In this paper, we proposed a cooperative sensing 

framework to determine the presence or absence of 
PUs in different bands. Contrary to energy detector, 
our method does not depend on noise variance 
estimation. Thus the noise uncertainty does not affect 
the performance of the sensing procedure. Moreover, 
cooperation among SUs combats the destructive 
fading conditions; therefore, further increase in 
detection  performance  is  achieved Simulation results 
confirm the effectiveness of the proposed framework. 
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