
E-business Integrated Test Framework Model

Pasha Vejdan Tamar
Department of Information Technology

Tarbiat Modares University
Tehran, Iran

pvejdan@modares.ac.ir

Abbas Asosheh
Department of Information Technology

Tarbiat Modares University
Tehran, Iran

asosheh@modares.ac.ir

Received: August 10, 2011- Accepted: December 29, 2011

Abstract-- There is an increasing need for an integrated test framework which can do conformance and
interoperability testing in all layers of e-business standards without any dependence on a specific standard. In this
paper a knowledge framework was provided for designing a model for e-business integrated testing by combining
identified design factors from testing experience and conducting the CEN (European Committee for Standardization)
GITB (Global Interoperability Test Bed) project feasibility study. Also, it was shown that abstracting of test scenarios in a
modular manner makes them easily understandable, independent from test beds and standards and, furthermore,
more reusable. Embedding a test case tool in the test framework provides the capability of automatic generation of
executable test cases, and simultaneously makes them more manageable. A modular test bed design, by considering
some interfaces to pluggable adaptors and applying event driven execution model, make it configurable and
applicable to the various test types. By embedding management components into the test bed, more controlling and
monitoring were provided over the test and its steps as, functional requirements for the current test beds.

Keywords- E-business Test Framework, Interoperability Test, Conformance Test, Test Case, Test Bed,

I. INTRODUCTION

Before being able to work together using
electronic beds such as the Internet, Business partners
or associates in a community should know in what
information, when, and how to participate. Therefore,
defining standards begin by expanding the use of
internet. These standards specify the requirements and
conditions of proper conduction of electronic
interoperability transactions. B2B standards prescribe
specifications of business processes, business
documents; and the messaging infrastructure. Some of
the standards explain specifications for a single layer

or parts of functionality of a layer and conversely
some others such as ebXML specifications work for
all layers. Specification of electronic interoperability
standards are mainly grouped in three layers: 1)
messaging layer defines specification for
packing/unpacking, sending/receiving, reliability,
security, speed and quality of exchanged messages, 2)
document layer defines syntax and semantics of the
body and header of business documents; and 3)
business process layer defines messages'
choreography, interactions and flow of roles messages
and along with rollback/recovery from the failure of
business processes.

Some software solutions which support the
development of standards are emerging, but these
solutions do not usually cover all the specifications or
standards. Also, the cost of replacing legacy software
systems is very high for organizations. They want to
enable electronic collaboration with others under
different standards while maintaining legacy systems,
thus they use middleware software. Also, even though
software systems are implemented for electronic
collaboration under the same standards, in some cases
these standards include defects or some ambiguous
requirements and in some other cases, they may be
flexibly designed for software vendors to be creative
and make specializations in some fields. Therefore, a
software solution needs to be tested to prevent the
emergence of late-time errors, which often leads to
complex and costly corrections and unsatisfied users.
Testing can find errors; in advance, assess and verify
quality of solutions; and also prevent from the
problems of collaboration between e-business
systems, which may lead to irreversible damage to
businesses.

Because of reasons mentioned above, e-business
systems are required to be tested from two aspects of
conformance to standards and interoperability with
each other. Conformance test is testing whether the
system can provide all the requirements specified in
the specifications or standards. Thus, conformance
test items are set exactly according to standard
specification and this type of testing can be performed
for a single system. Testing requirements for a
conformance test are identified and the related test
cases are defined in the interaction of domain expert
and test engineer. Then, system vendors in interaction
with domain and test experts test the designed system
for business using the test bed. In addition, the
interoperability test tests the ability of a system under
certain specifications or standards in the partnership
with other systems under the same or different
standards, networks and independent from a particular
programming language or operating system in order
to correctly perform business processes and detect
interoperability runtime unknown errors.
Interoperability tests should be run between two or
more systems to determine whether the systems can
perform a general task together in a real operational
environment. Interoperability test items should be
determined together by the domain and test experts
and system vendors with reference to standards and
application operational scenarios.

To run tests on electronic collaboration, a
framework is required which includes a set of utilities
and documents about rules, definitions and
documentations for testing design, execution and
documentation. Using the concepts of the test, the test
cases and test bed development occur. A test case
includes the stages and steps which should be
performed in a test, the parameters that must be
considered at test time and conditions that must be
satisfied to show that the system under test is
functioning properly. To automate the testing process,
test cases are in the form of high-readable machine
codes and data which are often based on XML. Test

framework includes the required documents about the
model, rules and grammar of a test case composition.
Composed test cases are used by the test bed to
execute and lead test toward testing SUTs. So, the test
bed refers to a set of hardware and software tools and
components, which are defined by test framework and
developed and implemented for a specific test
objective in order to test SUTs by test cases.

There are different test frameworks that are
designed and implemented to e-business
interoperability testing, most of which focus on
testing requirements of specific standards or
communities, And, even within the same standard,
they may address only specific interoperability layer
or functions of a layer. The objective of this article
was to draw features and designs of a test framework
used for integrated test conformance and
interoperability of e-business systems in all
interoperability layers without affiliation to any
specific standards or specifications.

In the following parts, the problems of the test
frameworks are represented based on specific e-
business standards or communities; then, by
analyzing features of the new test frameworks that
aim to apply integrity features and refer to the
recommendations of the first phase of GITB project,
the required design factors of an integrated test
framework are obtained. Then, based on those factors,
the required concepts are developed for a framework,
which included design and production model of test
cases and test execution model and the required
components of test bed. The discussion is summarized
at the end.

II. REVIEW OF EXISTING E-BUSINESSES TEST
FACILITIES

Simultaneous with forming community for
electronic collaborations and their support, different
standards have gradually developed and then testing
requirements have raised for the systems developed
based on the specification of these standards and
communities; thus, testing approaches and
frameworks related to each of these specification have
also emerged. These initial test frameworks have
specific purposes and have been designed for partial
or full requirements of a specific standard or
community. For example, ebXML test framework
IIC1.1 [5,16] which was designed for all collaboration
layers of this standard in theory, but has been only
developed by organizations such as KorBit and NIST
for testing ebXML messaging service specification
(ebMS) implementer systems. WS-I test tool is used
for assuring functionality and compatibility of the
developed web services against the guidance and
documents of WS-I profiles. Moreover, Rosetta Net
Self Test Kit (RNSTK) is a package provided from
Rosetta Net Community that verifies the existing
product according to RNIF specification provided
from Rosetta Net.

Those test frameworks have problems such as the
following cases: they are designed for specific
standard testing requirements and are not usable in

other standards or specifications or can be used with
many challenges. Test cases and test beds strongly
depend on each other and are not reusable with other
test beds or test cases. They do not cover all testing
requirements in all the interoperability layers; instead,
they are designed to test the requirements of one or
two layers or to test them partially.

On the other hand, there are test frameworks such
as TTCN-3 0F

1 from ETSI 1F

2 and TestBATN 2F

3[3,13,14,15]
from Turkey which apply modularity and use
different adaptors for different standards and
specifications and could be used in domains further
than their original domains. Also, OASIS TaMIE 3F

4

Technical Committee has represented eTSL4F

5[4,6] and
eTSM5F

6 [17] since 2006; recently, Xtemp 6 F

7[18]
defined an event-driven execution model and an
XML-based scripting markup for test cases in order to
provide appropriate background for fulfilling integrity
in the e-business test frameworks. Execution model of
Agile Test Framework (ATF) [11] and NIST Athena
TestBed are based on eTSL v 0.78.

Finally, since 2007, an international activity has
started in European Committee for Standardization
(CEN) in order to create a Global Interoperability
Test Bed for e-business systems. This activity is
supported by most of e-business test correlated
organizations such as EIC7F

8, ETSI, NIST 8F

9, KorBIT,
AIAG 9 F

10 and IAI. The purpose is to establish a basis
for a test framework (i.e., GITB) for effective
development of globally distributed e-business test
beds. Since October, 2008, the activity has continued
in the form of a project with three phases: Feasibility
Study, Conceptualization of the target architecture
and Realization. The project's first phase ended in
December, 2009, and its final document was
published in February, 2010, which was entitled
16093 CWA10F

11. In January, 2011, the project entered
its second phase and its draft CWA was open for
public comments until 31 October 2011 [2].

CWA 16093's document included valuable reports
from testing requirements in three business domains:
1) "Long Distance Supply Chains in the Automotive
Industry", 2) "Health Level (HL7) v3 Scenarios" and
3) "e-Government-Public Procurement – CEN/BII
Scenarios" and presented a summary of the existing
testing capabilities (testing frameworks and
methodologies, testing architecture and test beds),
assessment of these testing capabilities with regard to
the requirements and the suggested GITB
requirements. Also, this document explained
alternative approaches for architecting and

1 Testing and Test Control Notation v3
2 European Telecommunications Standards Institute
3 Testing Business, Application, Transport and Network
Layers
4 Testing and Monitoring Internet Exchange
5 Event-driven Test Scripting Language
6 event-driven Test Scripting Model
7 XML Testing and Event-driven Monitoring of Processes
8 European Interoperability Center
9 National Institute of Standards and Technology
10 Automotive Industry Action Group
11 CEN Workshop Agreement

implementing a global e-business interoperability test
bed and provided some recommendations related to e-
business testing, e-business standardization, GITB
architecture and so on.

It has been expressed in e-business testing
recommendations, for future conformance and
interoperability testing, there is a need for integrated
testing frameworks which do not hard-code a specific
standard at any layer (because different communities
may use different standards) and are capable of
handling testing activities at all layers of the
interoperability stack. So, it recommended:

 E-business testing needs comprehensive testing
frameworks and methodologies covering test
execution and test case model. For this purpose
it is necessary: 1) Test case structure and
scripting grammar should be standardized.
Candidate approaches can be, e.g., the event-
driven Test Scripting Model (eTSM) being
developed under OASIS TAMIE Technical
Committee. 2) Testing frameworks and
methodologies need to be further enhanced
beyond business document testing in order to
cope with requirements related to business
process testing in complex scenarios. 3) In
developing the testing framework and
methodologies start with the requirements and
conceptualizations identified in this project to
foster shared terminology and common
understanding of the needs and key capabilities

 The Global e-Business Interoperability Test
Bed should be realized in a decentralized
approach as a network of multiple test beds and
test services. It recommends that: 1) essential
foundations include a standardized testing
framework (covering test execution and test
case model), a coherent architecture, a
common platform and access method, 2) the
functional requirements should be implemented
as plug-and-play components and leverage
existing standards (e.g. transport and
communication standards such as ebMS,
validation standards such as XML Schematron
and query mechanism standards such as
XPATH), and 3) emphasis also needs to be
given to non-functional capabilities such as
modularity and extensibility.

III. Requirements of an e-business integrated
test framework

In GITB feasability study general requirements
has been estimated and classified for an integrated test
bed according to UFig -1.

"Business-level requirements specify the subject
of testing (What type of concern to test for?).
Engineering-level requirements fall into two
categories: functional and non-functional
requirements. Functional requirements specify the
means by which the testing goal is achieved (How to
test?) Non-functional requirements specify the
additional concerns under which the testing
functionality is or needs to be achieved (e.g.,
maintainability, modularity, reusability).

Finally, the operating environment requirements
allow us to relate business requirements to detailed
concerns of defining, obtaining, and validating test
items within the specific testing environment."[1, 8]

Each of these top level requirement is also refined

into some leaf-level requirements. Since the
engineering-level requirements directly affect test
framewok design, the details of these requirements
are given in Table-1. Also, this table shows that, at
the engineering level, in order to fulfill each of the
functional requirements, which non-functional
requirements should be taken into consideration.

These requirements are achived by analayzing two
types of eBusiness domains: mature domains and
emerging domains. The Health Level (HL7) v3
Scenarios and e-Government-Public Procurement –
CEN/BII Scenarios are analyzed as mature domains
and Long Distance Supply Chains in the Automotive
Industry are analyzed as an emerging one.

IV. INTEGRATED TEST FRAMEWORK DESIGN

To fulfill the engineering level requirements of e-
businesse testing, a new test framework should be
designed. The existing test beds and test
methodologies do not fully provide the engineering-
level functional capabilities required by the use cases.
They lack several non-functional capabilities such as
modularity, extensibility and plug & playability.
Specifically, there are five cases in Table-1 in which
the union of the capabilities of the existing test beds
does not satisfy the union of functional requirements
of use cases: 1)[Fun-TCE/R01]-1, 2)[Fun-TCE/R01]-
3, 3)[Fun-TCE/R04]-3, 4)[Fun-TCE/R05]-2, and
5)[Fun-TCE/R05]-3 [1].

Moreover "The simple addition of missing
functional capabilities to existing capabilities may not
guarantee interoperability between added components
and existing capabilities... As a result, a new test
framework should be developed to satisfy the
requirements extracted from the three use cases and to
enhance the reuse of existing capabilities."[1]

In the testing literature, parts of a test framework
typically consist of two general categories of test suite
and test bed. A test suite consists of test cases and
each test case is a set of steps, variables, and
conditions, under which the test user verifies the
function of SUT. A test bed is a set of facilities which
are used by a user to test SUT(s); also, the test bed
does that by processing steps and conditions of the
test case. Therefore, the model of test framework is a
combination of two test cases and test bed models.
“The test case model describes the contents contained
in the test case and their structure; the test execution
model guides the implementation of a test bed to
validate B2B solutions and documents against the
regulations and agreements between trading
partners."[1]

This resolution is the first step in the test
framework modularity and prevents from the hard
coupling of test case and test bed while increasing the
reusability of test cases. As has been said in the
[GITB Requirements2-1] suggestion, ”…a test case
for a specific test requirement can be developed
independent from a specific test bed system. It makes
the test cases more reusable and manageable, i.e.,
once developed by domain experts, a test case may be
reused repeatedly by other test users. In addition, the
test case may be used for other test bed systems if the
systems conform to the GITB technical
requirements.”

Furthermore, designing test cases is prior to test
execution model because “most functional
requirements for test execution depend on the
functional requirements of the test case design. For
example, the definition of “capability of test
preparation and setup” for test execution depends on
how “test configuration information” is represented.
Therefore, the structure and grammar necessary to
represent a test case should be considered first."[1]

Therefore we continue first by design model for
test case and then we will explain the execution
model for an integrated test framework.

Fig 1. Top level test requirements [1]

TABLE 1. Engineering level requierments [1]

Key Capability Index for Engineering Level

Functional Requirements

Reusability Maintainability

MM
odulariity

PPlug &

PPlayability

EExtensibility

RR
obustness

Test
Execution

Model

[Fun-TCE/R01] Capability of test preparation and setup
1) Capability of providing the setup information to SUT(s)
2)Capability of requesting SUT’s parameters and information
3)Capability of test case customization
4)Capability of configuration of setup information

[Fun-TCE/R02] Capability of controlling test steps
1)Capability of display of test flow and test progress
2)Capability of requesting/storing user’s information
3)Capability of binding user’s information into test case
4)Capability of manual execution of test steps

[Fun-TCE/R03] Capability of message exchange
1) Capability of sending/receiving message payloads?
2) Capability of uploading/downloading message payloads
3)Capability of capturing message

[Fun-TCE/R04] Capability of message pre/post-processing
1)Capability of decomposing message
2)Capability of retrieving the value from message
3) Capability of generation message template from schema
4) Capability of generation test data for a specific message template
5) Capability of message transformation

[Fun-TCE/R05] Capability of message pre/post-processing
1) Capability of detecting unknown problems
2) Capability of employing the existing validation engines
3) Capability of recovery from errors
[Fun-TCE/R06] Capability of reporting
1) Capability of display of error location
2) Capability of display of test log information
3) Capability of display of the detail test result

[Fun-TCE/R07] Capability of B2B system emulation (optional)
1) Capability of emulation of an arbitrary unit

Test Case
Design

[Fun-TCM/R01] Capability of representing test configuration
information

1) Capability of representing declaration of messaging protocol
to
[Fun-TCM/R02] Capability of representing test procedural
information
1) Capability of representing message to be sent
2) Capability of representing message choreography
3) Capability of representing conditional expressions (test step) for
test case
4) Capability of representing iterative expression (test step) for test
case
5) Capability of representing manual steps

[Fun-TCM/R03] Capability of representing test verification
information

1) Capability of using external documents for verification(e.g. XML
Schema)

[Fun-TCM/R04] Capability of representing test suite which contains
a set of test cases

1) Capability of representing precedence relationships between test
[Fun-TCM/R05] Capability of representing test data

1) Capability of representing of user’s defined values
2) Capability of representation of automatically generated values (i.e.
using metadata)

A. Test Case Model
To achieve integrity in the e-business testing, the

existing problems reported from design of test cases
in the initial test tools and frameworks must be
somehow addressed and resolved. Major issues
include:
 The gap of understanding: since the

specifications of standards are written in the
form of an informal language rather than a
formal one, it leads to a gap in understanding
and the incidence of misunderstanding between
the test agents (test users, software vendor and
test engineers) in perception of concepts of
standards.

 Test dependency: the existing test suites have
been designed for a specific testing tool or for a
specific standard specification and they may not
be reused for other test tools or other standards.

 Hard coupled test information: a test case at
runtime includes a lot of information about test
procedure, assertion and environment. In the
existing test suites, this information is hardly
coupled with each other. However, these test
cases work well in test tools, but their
understanding for test users and also their
maintenance are challenging.

 Fixed coded test cases: once created for a test
bed, initial generation of test cases can be used
repeatedly. But, any change in them such as
customization or data changing during the test is
impossible; for making changes, test cases
should be re-reviewed and re-coded, so does the
test.

 A Long and costly production process:
production and maintenance of test cases are the
most expensive and time-consuming part in the
e-business testing since there is a need to
analyze the behavioral, technical and content
aspects of standards; also, knowledge about the
test such as features of test beds, execution
model and scripting language is required and,
finally, long scripts should be produced for a lot
of tests.

The set of above issues makes the process of
producing test cases complex, lengthy and costly,
difficult to maintain, less reusable, without
customization and applying the test runtime data.

More, it will be shown that, application of design
factors such as abstracting, modularity, event-driven,
automation and capability of customization in an
integrated test framework design can resolve the
existing problems of test suites.

1) Test Case Structure (Layers and modules)
To resolve the understanding gap and dependency

problems in the test cases, layering can be reused.
Layering in the test case production is done by
separating it into two "abstract test case" and
"execution test case" layers. Abstract test suite is for

creating common understanding among test human
agents (domain expert, test user and test engineer).
The form and syntax of abstract test suite may vary
according to users or specifications. Abstract test
suite is made from base of standard and application
specification in interaction with the domain expert
and test user. Thus, abstract test suite can be read and
understood by the domain expert and test user.
Therefore, it is made of compositions and terms that
are familiar to both of them. An "abstract test suite" in
a test framework based on test environment
information (including partners, services and related
messages) may be in interaction with a test case
generation tool and may be converted to the readable,
interpretable and executable scripts by test bed called
"execution test suite".

In the [GITB Requirements 2-3] suggestion, the
advantages of this type layering are expressed as
follows: “1) an abstract test case can be developed in
a more generic manner without considering details of
test bed system and 2) many test cases used for the
existing test frameworks may be executed by a GITB
test bed as an executable test case.” Also, abstracting
makes automation and management of test case
production process easier using a tool. Using its
ability, the capabilities of test case customization,
making specific messages templates and using test
users' data are also provided.

Test case separation in two abstract and execution
layers is an issue that is currently used by TestBATN
and ATF test frameworks. Abstract layer in the
TestBATN framework is called "test scenario".

As said earlier, a test case includes information
about procedures, assertions and environment of test.
Hard coupling of these groups of information in the
test suites makes them too big for maintenance and
too hard for reuse. By breaking down each type of
this information into separate modules, these
problems can be overcome. Procedure module in the
abstract test case “…includes the partners’ life cycles
and actions during testing. Actions are abstract
descriptions and contain no message instances. For
example, the usage script may say “A buyer sends a
purchase order message to a supplier.” The specific
buyer, purchase order, and supplier instances are not
yet specified. On the other hand, the procedural script
in the executable test case represents a business
transaction that will be executed and contains specific
instances and references to the actors in the business
process."[10].

Before verifying a test item such as a document or
message against an assertion, some conditions must
be provided. “These activation conditions render the
verification rule independent from the testing
procedure since the rule is not activated at a specific
step of testing procedure. Consequently, verification
scripts may be reused readily within a new testing
procedure because the verification script is
independently executed by the events during the test
procedure."[10]. Assertion module in the abstract test
case is human readable and its verifier may be
unknown. When that verifier is known, and assertion

codes are developed by an executable language, it
will be verification script of the executable test case.

Test environment information introduces and
identifies test participants and the services that each
participant provides or use along with the
specification of type and format of messages used by
each service. Test environment information in the
abstract test case does not have any information of
specific participant; instead, it specifies them as
"seller application" or "buyer application" and so on.
Also, templates of messages are defined without
creating specific instances. But, runtime information
includes test harness based on specific participant
instance information, specific messages' instance
created based on message templates and test users'
information.

Designing test cases in two abstract and
executable layers is indeed done by applying [GITB
Requirements 2-3] suggestion. In order to make them
modular in the above manner, [GITB Requirements 2-
4] suggestion of CWA 16093 is applied. Thereby,
[Fun-TCM/R01], [Fun-TCM/R02], [Fun-TCM/R03]
and [Fun-TCM/R05] requirements of those
documents are also addressed; accordingly, some of
test execution requirements are affected.

2) Executable Test case structure and scripting
grammar

The execution test cases are conversion of abstract
test cases so that they can be executed by the test bed.
Therefore, it is necessary to standardize their structure
and syntax because only the standardized test cases
can be identified, interpreted and executed by means
of a test bed; i.e., the underlying common
understanding between test agents. Also, it provides
the possibility of test repeating and the portability
from a test bed to others. Hence, a test suite is
generally a series of data and codes written in XML
scripts according to [GITB Requirements 2-2].

CEN 16093 CWA Report suggests the event-
driven scripting model (eTSM) developed by OASIS
TAMIE TC as a candidate approach to
standardization. The recent work of this committee
has been provided with the title of Xtemp, which is
briefly reviewed below:

Xtemp
Xtemp has a simple structure and a limited but

sufficient number of instructions; so, its
implementation is easy for extension and evaluation.
It is based on XML that leads scripting to work
normally with most of e-businesses profiles, which
are XML-based. Also, portability of scripts, models
and engines of test is guaranteed. Its execution model
is event-driven and independent from time, which
makes test scripts equally applicable to validate
both real-time and deferred events. Coordination of
test case execution into the test suite and test
workflow status has been shown as events. This
makes management of the large test suite much
easier. It is independent from any platform and

protocol. It is also provided and supported by OASIS
TaMIE and its documents are available.

Using Xtemp structure and grammar enhances the
satisfaction of engineering requirements stated in the
abstract layer, specially [Fun-TCM/R02 -1,2,3,4,5]
and [Fun-TCM/R02 -1].

3) Test Case Generation and Management tool
As said earlier, application of abstracting and
consequently modularity to the structures of test cases
provides a suitable background for their automatic
generation and effective management by a test case
generation and management tool. Using Test Case
management tool has been carried out in earlier
TestBATN test framework as Test Design GUI,
which is used for dynamic definition of test scenarios
for creating corresponding TDL11F

12 [13, 14, 15]
Furthermore, NIST has implemented a test case
generation method using a tool in the healthcare
domain, the essential goal of which is to facilitate
specification, generation and traceability of test cases
[10].

Using a tool in generation and management of test
cases leads to the automation of test case generation
process and makes it possible to develop, implement
and maintain test cases and auxiliary materials of
different standards and group them in test suites.
Also, the capability of test case customization and
application of user actual data along with creating
message instances from message templates become
feasible.

As can be seen in Fig -2, the working method in a
test case generation and management tool can be this
way. By using the designed abstracting forms'
instance such as an abstract test rule form for
representing business process, message template
form, environmental information template form and
test abstract assertion form in the abstract test case's
specific GUI, requirements of test cases are defined
and saved in the abstract modules' corresponding
tables in the abstract test cases' repository. These
abstract test cases which have been created for a
standard or a type of test could be reused for
generating executable test cases for different test
models and test conditions.

Furthermore, test agents in interaction with a
management GUI of the tool can do some extra and
management actions as follows: in test configuration
and runtime: getting additional test configuration
data, creating message instance from message
templates, grouping test case in test suites, test case
customizing, applying test harness configuration data,
determining test pluggable modules such as
verification or messaging modules, applying users'
proprietary data and creating validation context files
with the expected values. Then, the tool using abstract
test cases and applying this extra information based
on a scripting standard such as XTemp and its
constructs can generate execution test cases.

12 Test Description Language

Test case tool provides the ground for controlling
and changing test steps which helps to test control and
running in more or less than its prospected steps. Test
case tool can be used to fulfill all GITB engineering
functional requirements, specially [Fun-TCM/R04]
and [Fun-TCM/R05]; also, it helps to fulfill non-
functional requirements' modularity and extensibility
in test cases.

B. Execution Model in Integrated Test FrameWork
Execution model is architecture of testing tools for

test execution. This model shows the test bed
components and their orchestration together in
interaction with the test environment to fulfill test
process. The integrated test bed execution model
wants to show that it is able to test any system under
any standard and in any interoperability layer and that
it can enrich the testing process by providing test
management capabilities.

Integrated test bed architecture should be able to
cover a range of standards and all interoperability
layers and should be implemented quickly. This
requires the existence of pluggable and Plug-n-Play
test components. Pluggable components provide the
capability of testing different standards; also, they
cause some components of the test to be reused
commonly for different standards, solutions, test
modes and test configurations. A precise and
specified definition of test component interfaces
makes test bed capable of automatically detecting and
connecting the test components which are adaptors to
the corresponding interfaces for different standards
and specifications. Plug-n-Play feature makes it easy
to setup test bed and automation of test process.

To be used in different test environments, the test
bed structure should be lightweight and easily
maintainable. Design factors such as modular design
and event-driven execution model can be of help in
this process. Modular design provides better resource
management and reduces maintenance cost while

increasing reusability. Also, an event-driven structure
causes a test bed with agility to manage different
resources because components can interact with each
other without any direct connection between
themselves. It also manages a range of components
without any heavy load over the test engine. "When a
component attempts to interact with another
component, it sends data to an event board instead of
the target component. The event board stores various
types of interaction data as events so that every
component can inquire and retrieve a specific event.
All the activities of the pluggable components and the
test infrastructure are coordinated via events."[9]

An efficient test bed must have appropriate
interaction with test users on setting up, running and
completing test time in order to be able to obtain or
provide the required information from them and
provide the necessary assistance for error correction
in their application systems. The existence of
management and detailed test report components can
be useful in these cases. Test management component
provides the capability of controlling test steps by the
user, setting up test bed, applying actual and not
predetermined runtime data, supplementary utilities
such as graphically displaying the test flow, test
evaluation by users and test bed interactions with the
SUTs. Furthermore, the existence of detailed test
reporting component causes additional reporting of
test log and result and can get detailed reports from
the exact locations of errors, detail of test results and
analytical results.

According to the above description, an integrated
test framework's conceptual architecture model could
be seen in Fig-3. In this design, some experiences
were applied in e-businesses test. Like IIC1.1
framework, the central component of the test is test
engine; however, messaging and evaluation
components like TestBATN and ATF frameworks
could be considered as pluggable adaptors. It can be

Fig 2. Test Case Tool

Fig 3. integrated test framework conceptual model

also considered that interfaces were well-defined and
adaptors must be properly bound to them so as to be
detected and connected by the test bed in the Plug-n-
play manner. By selecting Xtemp execution model for
executive test cases, every event in the bed and bed
interactions with the outside world were necessarily
managed by an event board and test engine. Hereby,
features such as reusability and easy management of
various resources were obtained. Also, like
TsetBATN framework, by designing test management
GUI component, test run-time control is provided. By
embedding report generator engine and defining its
functional specifications, lack of available beds in the
test reporting is addressed. By categorizing test
verification and validation adaptors, test coverage is
increased.

Integrated test bed components included central
component, test adaptors interfaces and test
management components. Central component is the
module pre-defined by the execution model. Test
interface adaptors are discoverable modules.
Managerial components are for controlling,
conducting and providing the test's required outputs.

1) Test bed central component
Test engine is the test central component. Here, it

was considered to have the test engine structure
similar to ATF; however, its managerial duties are
extended. Test engine is the test bed brain that
controls the entire test process. It reads and interprets
a test case, coordinates interfaces and other test
components, conducts the execution of test with the
SUTs which should be tested and also interacted with
management components and provides test
management. The test engine has the following three
major internal modules:

 TEST SCRIPT INTERPERTATION MODULE: module
reads the presented executable test case and then
separates it to test procedures to define test
execution steps, test assertions to evaluate the
messages, documents and transactions and
configuration information to set up a test-bed
and discovers and plugs appropriate test
interface adaptors, and finally, to put them to the
Test Bed Setup and Management Module.

 Test Bed Setup and Management Module: This
module allows the executable test case to the
interpreter module and uses its configuration
profiles for discovering and connecting the
appropriate test adaptors. It defines a process
model for the test according to test procedure,
discovers instances of pluggable adaptors,
management components, test engine, their
messages and calling sequence. Then, puts it to
Test Steps Execution Module. Also, this module
in interaction with test users and manager using
Test Bed Management GUI provides control of
test steps and test effective management.

 Test Steps Execution Module: this module
interprets the Test Bed Setup and Management
Module defined process and executes each
activity of process by calling a function.

2) Interfaces of Test Adaptors
Interface of test adaptors provide test bed

interactions with the SUT and test pluggable module,
test engine places and call them dynamically
according to configuration specifications. In the
integrated execution model, they are reference models
specific to messaging protocols or testing assertion
phrases. A test bed could have multiple adaptor
instances to each interface and recall appropriate
instance during test execution inside test service at

each step. By designing these interfaces, [GITB
Requirements 3-1] from CWA16093 report was used
which led to the fulfilment of [Fun-TCE/R03] to
[Fun- TCE/R05] engineering-level requirements.

The following interfaces are defined for an
Integrated Test Framework:
 Messaging Adaptors' Interfaces

TestBATN test framework [15] has broken
interface functionality of messaging adaptors to two
interfaces which makes their corresponding adaptors
more reusable and lightweight.
o Transport adaptors' interface: this interface

facilitates using adaptors for receiving or
sending messages by protocols such as TCP,
HTTP, SMTP, etc.

o Packing/Unpacking adaptors' interface: this
interface makes it possible to use adaptors which
are used in packing and unpacking messages
according to higher layer communication
protocols such as SOAP or ebMS. With this
mechanism, to support an SOAP connection
over HTTP, one HTTP adaptor is selected to
transport interface and one SOAP adaptor is
selected for packing interface. From this
adaptor’s descriptive files, test engine knows
that HTTP adaptor divides it into two pieces
after receiving messages. It is also clear that
SOAP adaptor takes these inputs and produces
four message pieces in which the content of the
first piece is HTTP header, the second is SOAP
header, the third is SOAP body and the last
includes appendices. For this output pieces,
adaptor descriptors also describe data types. In
this way, evaluation of a message contents is
easier to a message evaluator adaptor.

 Verification of Adaptors' Interfaces
This interface is designed for plugging test
verification and evaluating adaptors to test bed
and general classification which can be as follows.
This type of classification is used to show
verification coverage of an integrated test bed;
many of them could be plugged and used
simultaneously by a test bed.
o Content validation adaptor: these type

pluggable adaptors are used in the validation of
contents against a schema in order to generate a
verdict and a structured test report about
validation; e.g., XML schema validation
adaptors or Schematron validator.

o Message verification adaptor: these types of
pluggable adaptors are used to perform complex
testing over any content of messages. And, its
example is XPATH verification adaptors.

o Transaction verification adaptor: this type of
adaptor is designed to verify transactions of a
process. Currently, no well-known verification
has been introduced for this type of adaptor; this

is one of the main weaknesses of the existing
test beds, which is emphasised in CWA 16093
report.

3) Test Bed Management Components
Management components have been embedded in

test bed to enrich the control and management of test
execution by the test manager and help test users in
preparing various reports for the identification of
faults in their systems.
 Test bed management GUI

The idea of this component is driven from
TestBATN framework [14] , but more
functionality has been defined to cover testing
requirements. This component is an interface
between Test Bed Setup and Management Module
and Test Report Engine with test managers and
test users for supervising test execution,
controlling test routine, managing test bed
resources and the required test reports. It is
intended for the following functional
characteristics:
- Updating test bed materials such as deploying

libraries of adaptors and new functions,
- Enabling users to view and lead the execution

of test cases,
- Controlling the SUTs according to the

entered instructions during the testing by test
bed manager,

- Interfacing between test users and Test Report
Engine to get test verdict and reports,

- Controlling test steps to run the test step by
step or even stop it,

- Providing graphical and displaying facilities
such as sequencing model and test flow to
achieve real-time monitoring to test
executions.

 Test Report Engine and its Interface
Report engine is used for reporting test summary,
test results and other detailed and analytical
reports for test users. Report engine uses event-
board test transactions to produce necessary test
reports. This engine also has interface for several
report adaptors which support different report
purposes according to test use cases. Test Report
engine allows this output for test users through
GUI. Some of the expected functional features
from these test reporting components are:
- Concluding and providing test final verdict,
- Providing verifications of test steps,
- Showing accurate error locations,
- Providing Test Log report, and
- Providing analytical reports and business

intelligence.

Test Engine, Test Report Engine and Test Case
Tool Engine components are neither standard-specific
nor use-case-specific; so, they are designed as
infrastructure components and are according to CWA
16093 [GITB Requirements 3-3]. Also, these
components Along with Test Bed Management GUI
and Test Case Management GUI provide fulfillment
capability of [Fun-TCE/R01] for [Fun-TCE/R06]
requirements. Since Test Report Interface component
can vary from test types and use cases, its design is
also pluggable and corresponds to [GITB
Requirements 3-2].

V. TESTING PROCESS IN AN INTEGRATED TEST
FRAMEWORK

Fig-4 shows activity diagram of the integrated test
framework architecture with phases and supported
processes. It is the same as the one defined for ATF
[9, 12], with the simple deference of adding test case
tool role. There is a design phase between the
conceptual phase and implementation phase, the
activities of which are independent from
implementing a special test bed; therefore, this phase
artifacts are reuseable in different tests. Also, there
are three roles representing test bed agents which are:
Test Services Provider, Test Bed Manager and Test
Framework Manager. These roles and their activities
lead to more modularity and reusability.

In the following sections, some of the supported
key processes are presented by applying them to the

test process of "Sync Shipment Schedule" messaging
in AIAG IV&I 12F

13 as a simple expample:
- Analyzing Test Requirements: by referring to the
standard specifications, Test Case Developer specifies
the functions of SUT which are required to be
verified. In the present example, "Sync Shipment
Schedule" message was issued when the customer
made a decision that the supplier should replenish the
consumed kanban(s). This message should be
conformed to OAGIS13 F

14 -AIAG BOD
(SyncShipmentSchedule.xsd in OAGIS9) and
messaging between the parties should be conformed
to the RAMP 14F

15 profile. Fig-5 shows the interaction
diagram in testing customer application. So, two test
requirements were considered: conformance test to
BOD sent by customer application against OAGIS-
AIAG BOD schema and messaging behavior in
conformance with RAMP profile [7].

13 Inventory Visibility and Interoperability
14 Open Applications Group Integration Specification
15 Reliable Asynchronous Messaging Profile

Fig 4. Integrated test frameworks activity diagram

Fig 5. RAMP interaction diagram
- Abstract Test Case Composition: Test case
abstracting includes abstracting test procedure and
test assertions and defining templates of test
environment information and test messages. Test
procedure abstracts are explained in pseudo codes
format in Table-2; afterwards, they can be mapped to
executable scripts.

TABLE 2. Abstract Test Procedure

StandardId=1
ProcdureId=1
ProcdureDesc="Customer-SyncShipmentSchedule"

Partner(A," Customer");
………………….
Start(A);
Wait(2s);
read("CreatSequence");
Verify(" CreatSequence");
send(A," CreatSequenceResponse");
Wait(2s)
read("syncShipmentSchedule");
Verify("syncShipmentSchedule");
send(A," Acknowledgment");
wait(2s)
read(Terminate);
Verify("Terminate");
ReportResult();

Test assertions are taken from standard
requirements. For example, Test Assertion for
conformance test to BOD is demonstrated in Table-3.

TABLE 3. Test Assertion abstract

TestSuiteId =1
AssertionId=1
AssertionDesc=”BOD Conformance ”

Expected event:
receiving BOD message instance from SUT

Comparing condition:
compare it with reference instance

Moreover, environment information pattern for
this test is as given in Table-4.

TABLE 4. Test Environment pattern

TestSuiteId =1
EnviromentId=1
EnviromentDesc=”Customer testing environment ”

Party Message I/O protocol

Customer
App

CreatSequence O

RAMP
CreatSequenceResponse I
syncShipmentSchedule O

Acknowledgment I
Terminate O

Test Case Provider produces an abstract test case
in interaction with Test User and Standard Expert and
by using Test Case Tool; then, they are saved in
abstract test case repository.

- Design and Register Pluggable Test Components:
In this testing, the pluggable adaptors are required as
below: A BOD comparison with the sync Shipment
Schedule document validation, a SOAP messaging
adaptor with RAMP messaging, a HTTP adaptor with
message transportation and also a XPATH engine
with RAMP profile verification over the received
messages. Test Service Provider designs these
adaptors in accordance with specification of test
interfaces and, then, deploys and registers them in test
framework to be accessible. Table-5 shows a sample
of adaptors' registration information.

TABLE 5. Pluggable Addaptor registry

Interface I
d Name description address

Message
Verifier 1

XPATH
Validator

The
interface
definition

of the
XPATH
verifier

http://localhost/
testbed/verifier/

xpath

Messag
Transport 2 HTTP

send/Reciv
es

messages in
HTTP
format

http://localhost/
testbed/

Messaging
/HTTP-1

.

..

Now, after designing and registering the above
adaptors, Test Bed Manager searches and selects their
specification to be used in the next step.

- Generate Test Harness and Deploy Test Bed: After
designing test cases abstract and test pluggable
components, Test Bed Manager provides test
environment data which include: configuration
information data describing the participants and
destination SUTS (Port, IP, URL), pluggable test
components, the protocols and the schemas used by
business documents and other necessary information
to test bed mounting. Then, these data are fed to the
Test Case Tool and test harness script is generated by
it. After that, this script is fed to test engine and it
configures test bed automatically by calling and
plugging test components.

Also, in this stage, Test Case Developer generates
messages which should be sent by test bed such as
CreateSequenceResponse from their templates
existing in the test case tool abstract repository.

- Generating Executable Test Cases: Executable test
cases include test verification and procedure scripts.
Test Case Developer generates them by a test case
tool; also, the test case tool does that by mapping
abstract test cases to a scripting language constructs
such as XTemp.

- Executing Test and Test Reports: Finally, when all
components are mounted and test parties are ready,
test engine starts test execution by calling functions in
correspondence with test script steps. Test report
engine provides test reports (verdict and detailed
reports) from testing stages.

VI. CONCLUSION

In this article, it was mentioned that, in e-business
testing, there is a need for an integrated test
framework currently in order to provide the capability
of conformance and interoperability testing in all
layers of e-businesses wholesale without any
dependence on any standards or specifications. Then,
the current testing experiences were reviewed and
summarized and requirements and suggestions of
CEN CWA 16093 document's engineering level were
made as an official reference. Finally, the article
proceeded to provide a conceptual model for an
integrated e-business test framework.

The first step was to model test cases using
abstracting and modularity factors. Test cases were
considered in two layers; the first one was the abstract
layer and the second one was the executable layer.
The abstract layer was for abstracting test
requirements to make common understanding among
test agents; it also provided a suitable context for the
generation and management of test cases by a tool. To
enhance reusability, test cases were separated into
three modules of test procedure, test assertion and test
environment. By providing a test case tool, it was
shown that, in addition to providing abstracting
facilities, this machine along with test agents in an
intermediate step could accept test specific and
environment information by abstract test cases from
its repository and could map them to executable test
cases. Accordingly, it speeds up and facilitates
generation process of test cases and provides
capabilities such as: customization of test cases and
applies test users' data for test cases.

The modularity and event-driven factors were
applied to the test execution model. The components
and interfaces of test execution model were grouped
in three categories of Test Central Component (Test
Engine), Test Adaptors Interfaces (Messaging
Interfaces and Verification Interfaces) and Managerial
Components (Test Bed Management GUI, Test
Report Engine and its interface). This modular and
component oriented structure made test bed adaptable
for different test requirements. Test Engine was the
test bed infrastructure and was independent from test
type. It had three major roles of a) interpreting test
cases, b) configuring test bed and c) managing test
execution. Test interfaces defined high level
functionalities and requirements about the
corresponding adaptor instances, which made it
possible to implement an interface in different ways
while implying test bed for testing different standards
or specifications and test requirements in e-business
different layers. Moreover, a Test Bed Management
GUI in interaction with Test Engine made it feasible
to have more control and monitoring over test steps
and process. Test Report Engine and Test Report

Interface provide detailed and analytical reporting
capability for different test usage.

ACKNOWLEDGMENT
The authors would like to thank ICT Research

Institute for providing their e-commerce lab, which
was founded in 2010 at Tarbiat Modares University.

[1] CEN WORKSHOP AGREEMENT CWA 16093,
2010, " Feasibility Study for a Global eBusiness
Interoperability Test Bed(GITB)",
ftp://ftp.cen.eu/CEN/Sectors/TCandWorkshops
/Workshops/CWA16093TestBed.pdf

[2] CEN WS/GITB doc N006, 2011, " Terms of Reference
for the GITB–Phase 2 Project
Team",

[3] DOGAC ASUMAN et al,2010," Electronic Health
Record Interoperability as Realized in Turkey’s
National Health Information System ", Methods of
Information in Medicine (2011) Volume: 50, Issue: 2,
Pages: 140-149

http://www.ebusiness-testbed.
eu/dynamics/modules/SFIL0100/view.php?fil_Id=1010

[4] Durand, J. (2007) "OASIS ebXML IIC TC." Event-
driven Test Scripting Language.

[5] Durand Jacques & Michael Kass, The ebXML Test
Framework And the Challenges of B2B
Testing,

http://kavi.oasis-
open.org/committees/download.php/22445/eTSL-draft-
085.pdf.

[6] Durand J., Kulvatunyou S., Woo J., & Martin Monica
J., 2007," Testing and Monitoring E-Business using the
Eventdriven Test Scripting
Language",

http://ebxmltesting.nist.gov/

www.mel.nist.gov/msidlibrary/doc/eTSL.p
df

[7] FERRIS Chris & FLOWER Tim, 2005, " Reliable
Asynchronous Messaging Profile Version
1.0",

[8] IVEZIC Nenad, et al, 2009," Towards a Global
Interoperability Test Bed for eBusiness Systems ",
Proceedings of the 2009 eChallenges Conference
Istanbul

http://www.ibm.com/developerworks/webservice
s/library/specification/ws-b2b/ IBM-WS-RAMP-
20050826.pdf

[9] IVEZIC Nenad, WOO Jungyub & CHO Hyunbo,2010,
" Towards Test Framework for Efficient and Reusable
Global e-Business Test Beds", In Proceedings of I-ESA
2010 Conference, Coventry, UK, 2010.

[10] IVEZIC Nenad & WOO Jungyub,2010, " Testing
Interoperability Standards – A Test Case Generation
Methodology", proceedings of the international
conference on interoperability for enterprise software
and applications A-ESA 2010

[11] JUNGYUB Woo , June 2007,Agile Test Methodology
for B2C/B2B Interoperability ,Department of Industrial
and Management Engineering Pohang University of
Science & Technology

[12] JUNGYUB Woo , Nenad Ivezic & Hyunbo Cho, 2011,
"Agile test framework for business-to-business
interoperability", Springer Science+Business Media,
Inf Syst Front, DOI 10.1007/s10796-011-9303-3

[13] NAMLI Tuncay, el at,2008," Testing the Conformance
and Interoperability of NHIS to Turkey’s HL7 Profile
", 9th International HL7 Interoperability Conference
(IHIC) 2008, Crete, Greece, October, 2008, pp. 63-68.

[14] NAMLI Tuncay, ALUC Gunes & DOGAC
Asuman,2009," An Interoperability Test Framework
for HL7-Based Systems ", IEEE TRANSACTIONS
ON INFORMATION TECHNOLOGY IN
BIOMEDICINE, VOL. 13, NO. 3

[15] NAMLI Tuncay, DOGAC Asuman, SINACI Ali Anil
& ALUC Gunes,2009, " Testing the Interoperability
and Conformance of UBL/NES based Applications " ,
Middle East Technical University

[16] OASIS ebXML Implementation, Interoperability and
Conformance Technical Committee(IIC), 07 March
2004,ebXML Test Framework Committee
Specification, Version 1.1, OASIS http://www.oasis-
open.org/committees /download.php/9888/IIC_ebXML
TestFramework_v1.1_10_11_04_final.pdf

[17] OASIS TAMIE, 2010, "eTSM-wd-
rev06",

[18] OASIS TAMIE, 2011," XTemp: XML Testing and
Event- driven Monitoring of Processes
",

http://www . oasis-
open.org/committees/download.php /37387/ eTSM-
wd-rev07.pdf

http://docs.oasis-open.org/tamie/v1.0/200906/xtemp-
1.0-csd01.pdf

Abbas Asosheh has received his B.Sc.
in Communication Systems from
Isfahan University of technology,
Isfahan, Iran, in 1987. He received his
M.Sc. in High Frequency
Communication System from Sharif
University of technology, Tehran,
Iran, in 1991 and Ph.D. in Quality of

Service Enhancement in Voice over IP Network from The
School of Physical Science and Engineering, Kings’
College London, UK, in 2005. He was the project manager
in Iranian Research Institute for ICT (ex ITRC) Tehran, Iran
from 1989 to 1994, the lecturer at Emam Hossein
University of technical science, Tehran, Iran from 1988 to
1991, the lecturer at Sharif University of technology,
Tehran, Iran from 1990 to 1991 and the lecturer at Tarbiat
Modares University, Tehran, Iran, from 2006 till now. His
research interests include Next Generation Network,
Network Traffic Modeling, Wireless Network, Network
Security, Service Oriented Architecture, Internet Data
Centre, Distributed Enterprises and Intelligent
Transportation Systems.

Pasha Vejdan Tamar received his
B.Sc.degree in Computer Engineering
from Electrical Engineering Faculty of
Sharif University of Technology,
Tehran, Iran. He also received his
M.Sc. degree in Information
Technology from Faculty of
Engineering Tarbiat Modares
University, Tehran, Iran. His research

interests include e-business modeling and standardization,
e-business testing & e-Strategy.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Right
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages false
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages false
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages false
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A0648062706410642062900200644064406370628062706390629002006300627062A002006270644062C0648062F0629002006270644063906270644064A06290020064506460020062E06440627064400200627064406370627062806390627062A00200627064406450643062A0628064A062900200623064800200623062C06470632062900200625062C06310627062100200627064406280631064806410627062A061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0020064506390020005000440046002F0041060C0020062706440631062C062706210020064506310627062C063906290020062F0644064A0644002006450633062A062E062F06450020004100630072006F006200610074061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002000d>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002000d>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b0020006e0061002000730074006f006c006e00ed006300680020007400690073006b00e10072006e00e100630068002000610020006e00e1007400690073006b006f007600fd006300680020007a0061015900ed007a0065006e00ed00630068002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003b303b903b1002003b503ba03c403cd03c003c903c303b7002003c003bf03b903cc03c403b703c403b103c2002003c303b5002003b503ba03c403c503c003c903c403ad03c2002003b303c103b103c603b503af03bf03c5002003ba03b103b9002003b403bf03ba03b903bc03b103c303c403ad03c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f006200650020005200650061006400650072002000200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005E205D105D505E8002005D405D305E405E105D4002005D005D905DB05D505EA05D905EA002005D105DE05D305E405E105D505EA002005E905D505DC05D705E005D905D505EA002005D505DB05DC05D9002005D405D205D405D4002E002005DE05E105DE05DB05D9002005D4002D005000440046002005E905E005D505E605E805D905DD002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV <FEFF005a00610020007300740076006100720061006e006a0065002000410064006f00620065002000500044004600200064006f006b0075006d0065006e0061007400610020007a00610020006b00760061006c00690074006500740061006e0020006900730070006900730020006e006100200070006900730061010d0069006d006100200069006c0069002000700072006f006f006600650072002000750072006501110061006a0069006d0061002e00200020005300740076006f00720065006e0069002000500044004600200064006f006b0075006d0065006e007400690020006d006f006700750020007300650020006f00740076006f00720069007400690020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006b00610073006e0069006a0069006d0020007600650072007a0069006a0061006d0061002e>
 /HUN <FEFF004d0069006e0151007300e9006700690020006e0079006f006d00610074006f006b0020006b00e90073007a00ed007400e9007300e900680065007a002000610073007a00740061006c00690020006e0079006f006d00740061007400f3006b006f006e002000e9007300200070007200f300620061006e0079006f006d00f3006b006f006e00200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c002c00200068006f007a007a006f006e0020006c00e9007400720065002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00610074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002c00200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002000e9007300200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c00200020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002000d>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e000d>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f3007700200050004400460020007a002000770079017c0073007a010500200072006f007a0064007a00690065006c0063007a006f015b0063006901050020006f006200720061007a006b00f30077002c0020007a0061007000650077006e00690061006a0105006301050020006c006500700073007a01050020006a0061006b006f015b0107002000770079006400720075006b00f30077002e00200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000700065006e007400720075002000740069007001030072006900720065002000640065002000630061006c006900740061007400650020006c006100200069006d007000720069006d0061006e007400650020006400650073006b0074006f00700020015f0069002000700065006e0074007200750020007600650072006900660069006300610074006f00720069002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043f044004350434043d04300437043d043004470435043d043d044b044500200434043b044f0020043a0430044704350441044204320435043d043d043e04390020043f043504470430044204380020043d04300020043d043004410442043e043b044c043d044b04450020043f04400438043d044204350440043004450020043800200443044104420440043e04390441044204320430044500200434043b044f0020043f043e043b044304470435043d0438044f0020043f0440043e0431043d044b04450020043e0442044204380441043a043e0432002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e00200020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f0062006500200050004400460020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020006e00610020006e0061006d0069007a006e006900680020007400690073006b0061006c006e0069006b0069006800200069006e0020007000720065007600650072006a0061006c006e0069006b00690068002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF004d00610073006100fc0073007400fc002000790061007a013100630131006c006100720020007600650020006200610073006b01310020006d0061006b0069006e0065006c006500720069006e006400650020006b0061006c006900740065006c00690020006200610073006b013100200061006d0061006301310079006c0061002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

