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Abstract— Obtaining important pages rapidly can be very useful when a crawler cannot visit the entire Web in a 
reasonable amount of time. Several Crawling algorithms such as Partial PageRank, Batch PageRank, OPIC, and 
FICA have been proposed, but they have high time complexity or low throughput. To overcome these problems, we 
propose a new crawling algorithm called IECA which is easy to implement with low time O(E*logV) and memory 
complexity O(V) -V and E are the number of nodes and edges in the Web graph, respectively. Unlike the mentioned 
algorithms, IECA traverses the Web graph only once and the importance of the Web pages is determined based on 
the logarithmic distance and weight of the incoming links. To evaluate IECA, we use three different Web graphs such 
as the UK-2005, Web graph of university of California, Berkeley-2008, and Iran-2010. Experimental results show that 
our algorithm outperforms other crawling algorithms in discovering highly important pages.
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I. INTRODUCTION

One of the most challenging issues for Web search 
engines is finding high quality Web pages for users. 
To make the Web more interesting and productive, we 
need efficient ranking algorithms for crawling and 
searching. Gulli and Signorini [1] have shown that 
search engines do not index the entire Web. Therefore, 
the focus should be on the most valuable and 
appealing pages. To do this a better crawling 
technique is required and a more efficient mechanism 
has to be applied. This enables search engines to 
present the most important and relevant pages to the 
user in response to her query.

The crawler is one of the main components of the 
search engines. It is a program for the bulk 
downloading of the Web pages [2]. Crawlers are given 
a starting set of Web pages (seed pages) as their input, 

extract outgoing links appearing in the seed pages and 
determine what links to visit next based on certain 
criteria. Web pages pointed to by these links are 
downloaded and stored in a local repository. Crawlers 
continue visiting the Web pages until a desired number 
of the pages have been downloaded or until local 
resources (such as memory and storage) are exhausted 
[3, 4]. Over the time frame of crawler technology
development, the Web has been growing rapidly, and 
so crawlers need to operate efficiently and effectively. 
Most of the crawlers will not be able to visit every 
page for three main reasons:

 The network bandwidth is expensive [5].

 The crawlers may have limited storage 
capacity, so it is reasonable to expect most of 
the crawlers will not be able to cope with all 
data [6].



 Crawling takes time, so at some points the 
crawler should revisit previously scanned 
pages to prevent index inconsistency [6].

The Crawling algorithms usually use a ranking 
mechanism to calculate the importance of pages as a 
crawling priority. In other words, a ranking algorithm 
is applied to the visited Web graph and pages with 
higher ranks will have higher priority for crawling [7]. 
The design of a good crawler presents many 
challenges. The crawler must avoid overloading Web 
sites or network links. The crawler must deal with 
huge volumes of data. Unless it has unlimited 
computing resources and unlimited time, it must 
carefully decide what URLs to scan and in what order. 
The crawler must also decide how frequently to revisit 
pages it has already seen, in order to keep its client 
(e.g. search engines) informed of changes on the Web. 

In this paper, we address one of these important 
challenges: How should a crawler select URLs to scan 
from its queue of known URLs? We propose a new 
method, called IECA (Intelligent Effective Crawling 
Algorithm), which has low time and memory
complexity, and higher performance than the former 
algorithms. It acts based on the links between Web 
pages.

The remainder of this paper is structured as 
follows: The next section reviews the background and 
related work. In Section III, we introduce our 
algorithm, IECA. Experimental analysis and 
comparison to some of the well-known algorithms are 
given in Section IV. Section V and VI discuss
complexity issues of IECA and the major
contributions of the paper, respectively, and finally our 
conclusion and future work of research are presented 
in section VII.

II. RELATED WORK

Web crawlers have been studied since the advent 
of the Web. Nowadays, crawling algorithms are the 
subject of extensive researches. These studies can be 
categorized into one of the following topics [6]: 
Crawler architecture, page selection, page update 
(freshness), and change frequency estimation for the 
Web pages. This paper is placed into the page 
selection category. 

By retrieving important pages earlier, a crawler 
can improve the quality of the downloaded pages. 
Methods based on link analysis have been widely used 
to calculate the page importance such as HITS [8] and 
PageRank [9]. In the following some of the 
well-known algorithms are considered.

PageRank is a popular ranking algorithm used by 
Google to measure the importance of the Web pages. 
PageRank weights each link based on the importance 
of the document from which it originates and the 
number of outlinks in the origin document. It models 
the users’ browsing behaviours as a random surfer 
model [10, 11]. In this model a person surfs the Web 
by randomly clicking links on the visited pages. When 
she (PageRank) reaches to a Web page that does not 
have any outward link, she will randomly jump to 
another page. PageRank assumes that a user either 
follows a link from the current page or jumps to a 

random page on the Web graph. The rank of page j is 
then computed by the following equation:
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where n is the number of the Web pages, O(i) denotes 
the number of outgoing links from page i and B(j)
shows the set of pages that point to page j. Parameter 
d, damping factor, is used to guarantee the 
convergence of PageRank and remove the effects of 
sink pages (pages with no outputs).

There is a similar work in which a new metric 
called RankMass has been proposed to find highly 
important pages [12]. The RankMass metric is based 
on commonly used variations of PageRank such as 
Personalized PageRank [13] and TrustRank [14]
which assumes that users’ random jumps are limited to 
a set of specified pages. 

Najork and Wiener used the Breadth-first 
algorithm as a crawling algorithm. They examined the 
average quality of downloaded pages during a Web 
crawling and connectivity-based metric PageRank was 
used to measure the quality of the downloaded pages 
[4].

Cho, Garcia-Molina, and Page compared some 
crawling algorithms including PageRank, Backlink 
count, and Breadth-first [15]. It was found that the 
crawling based on PageRank finds the hot (important) 
pages earlier than others.

Abiteboul, Preda, and Cobena [16] proposed an 
algorithm called OPIC, to find the importance of Web 
pages online in the crawling process. In their method, 
each page has a value called cash. Initially all pages 
have the same cash equal to 1/n (n is the number of 
Web pages). The crawler will download Web pages 
with higher cash and when a page is downloaded, its 
cash will be distributed among the pages it points to.
In this method, each page will be downloaded many 
times leading to increasing crawling time. 
Unfortunately, the experiments were done on a 
synthetic Web graph including at most 600,000 nodes 
with the power law distribution. 

A site-based method named largest site first has 
been proposed [17]. In this method the sites with the 
larger number of pending pages have higher priority 
for crawling. It was found that this algorithm is better 
than the Breadth-first method.

A crawling algorithm has been proposed to 
schedule Web pages for (re)downloading into a search 
engine repository [11]. The objective of the algorithm 
is to maintain the freshness of the search engine’s 
index based on a quality metric using users’ 
experiences. 

Dasgupta, Ghosh and Kumar et al. [18] proposed a 
new crawling algorithm in order to discover newly-
arrived content on the Web. They measured the 
overhead of discovering new content, defined as the 
average number of fetches required to discover a new 
page. They showed that with perfect foreknowledge of 
where to explore for links to new content, it is possible 



to discover 90% of all new content with under 3% 
overhead and 100% of new content with 9% overhead.

ZarehBidoki, Yazdani, and Ghodsnia proposed an 
intelligent crawling algorithm based on Q-learning, 
called FICA [7] which modelled random surfer user. 
In FICA, the priority for crawling pages is based on 
the concept of punishment. In their method, the aim is 
to minimize sum of received punishments by the Web 
pages so that a page with the lowest punishment will 
have the highest priority for crawling. 

ZarehBidoki and Yazdani evaluated FICA as a 
ranking algorithm [19], the results show using FICA 
as a ranking algorithm is acceptable.

Dikaiakos, Stassopoulou, and Papageorgiou 
presented a study of crawler behaviour based on Web-
server access logs from five different sites in three 
countries [20]. Their logs capture the HTTP traffic of 
these sites for periods ranging from 42 days to 6 
months at the beginning of year 2002. Based on the 
logs, they analyzed the activity of different crawlers 
that belong to four major, general-purpose search 
engines (Google, AltaVista, Inktomi, and FastSearch) 
and one major Digital Library and search engine for 
scientific literature (CiteSeer). Their results and 
observations provide useful insights into crawler.

Baeza-Yates and Castillo [21] observed that 
although the Web graph is effectively infinite, most 
user browsing activity is concentrated within a small 
distance of the root page of each Web site. Hence, a 
crawler should concentrate its activities there, and 
avoid exploring too deeply into any one site. They 
proposed several probabilistic models for user 
browsing in infinite Web site. The proposed models 
are validated against real data on page views in several 
Web sites, showing that, a crawler needs to download 
just a few levels, no more than 3 to 5 clicks away from 
start page, to reach 90% of the pages that users 
actually visit.

III. IECA
IECA crawling algorithm model has two important 

features:

 IECA uses three elements of the Web graph in 
the importance computations of the Web 
pages, out-degree of parent nodes, in-degree 
of child nodes, and the Web structure feature 
(it is introduced in the next subsection).

 It uses the entire input links in calculations. 
When a child node has different parents in the 
Web graph, all of the discovered parents 
participate in the calculations.

In IECA, we used two introduced metric in FICA 
[7] and Average-clicks [22], the first is the link weight 
and the second is the logarithmic distance:

Figure 1.  Logarithmic distance in the crawling tree.

Definition 1. Link weight: if page i points to page j
then the weight of the link from i to j is equal to 
log10O(i) where O(i) denotes i’s out-degree.

Definition 2. Logarithmic distance: the distance 
between pages i and j is the weight of the shortest path 
(the path with the minimum value) or sum of the link 
weights in the shortest path from i to j which is 
denoted with dij. Moreover, the logarithmic distance 
between the root (starting points in the crawling 
process, seed pages) and page i is denoted with di.

For example, in Fig. 1 the weight of outward links 
in pages p, q, and s are equal to log2, log3, and log4,
respectively. The distance between p and t is 
log2+log3 and between p and v is log2+log2. Thus, 
whereas both t and v are the same number of links 
away from p (two clicks), v is closer to p in terms of 
logarithmic distance (dpv<dpt) and is more important 
than page t.

If a crawled page i has distance di from the root 
page, by using Definition 2 the distance of each of its 
child nodes is computed as follows:

ij diOd  ))(log( (2)

If Eq. (2) is used as the selection criteria, after 
passing several iterations, the values of log(O(i)) and 
di are not comparable (di would be much greater than 
log(O(i))) and almost the effect of the current link’s 
weight will be lost. So, we propose the following 
formula which is similar to the reinforcement learning 
algorithm [23].

ij dwiOd *))(log( 
35.01.0  w

(3)

The distance factor w is used to regulate the 
effects of parent nodes. For example, if there is a path 
like jlki  , then the effect of distance of i

on j is 3w . Eq. (4) shows the main formula of IECA 
which is based on reinforcement learning.
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TABLE I.  COMPARISON OF SEVERAL SHOPPING
WEBSITES (APRIL 2012).

WebSites Backlink counts Alexa 
RankGoogle Bing

www.amazon.com 1270 219 million 11
www.overstock.com 457 10 million 653
www.homeshop18.com 35 200 thousand 2017
www.shoppersstop.com 30 16600 10609
www.iloveshopping.ie 22 532 620109
www.shopgotham.com 10 453 3.1 

million

where  is the learning rate that is modelled in 
Eq. (5) and log(O(i)) is the link weight from i to j. The 
old distances, 

tj
d and

ti
d , show the distance values of 

pages j and i in time t respectively, and 
1tj

d is the 
new distance of page j at time t+1.

te *  (5)

In Eq. (5) t shows time and 1.0 is a static 
value to control learning rate,  .

Initially the crawler has little knowledge about the 
Web pages (environment), hence 1 and selects 
pages based on the current status. As it visits more 
pages, it slowly learns from environment ( 
decreases). Because of little knowledge in the initial 
stages of the crawling process, wrong choices are 
undeniable. In the next section we introduced an 
interesting feature of the Web structure that solved the 
problem.

A. An Interesting Feature of the Web Graph
To better clarify our idea we would introduce two 

rules: 

Rule 1. There is a simple rule in the Web graph. 
The more important a web page is, the more backlinks 
it should have.  To check validity of the rule 1 several 
shopping Web sites are compared in table I.

The Breadth-first crawling algorithm traverses a 
Web graph by following its links. The distance of each 
crawled page from the root (seed pages) is always less 
or equal than of the uncrawled pages. The Breadth-
first ordering is not the best method for the crawling 
[15], but it can discover pages with high PageRank in 
the initial stages of the crawling process. Important 
pages have many backlinks from different Websites, 
so in the Breadth-first algorithm high-quality pages 
have more chance to be find earlier (rule 1), Najork 
and Wiener experiments show our suppositions is true 
[4]. In their Experiments PageRank was used as the 
benchmark. Fig. 2 shows the average PageRank 
(unnormalized) of all downloaded pages on each day 
of the crawl.

The average score of crawled pages on the first day 
is 7.04, more than three times the average score of 
2.07 for crawled pages on the second day. The average 
score decreases to 1.08 on the first week, then to 0.84 
after the second week, and 0.59 after the fourth week.

Figure 2.  Average PageRank score by day of crawl [4].

IECA is based on the breadth first algorithm with a 
new definition of distance between web pages. Its 
traversal is similar to the Breadth first traversal, 
especially in the initial stages of the crawling process 
(because the Web graph is incomplete).

To use the Web structure feature (Rule 1), the first 
solution is merging Backlink count and IECA. But this 
point should not be ignored that Backlink count 
assumes the Web environment is flat and there is no 
difference between links from different Web pages 
with different weightings. Thus, it suffers from link 
farms. A link farm is a collection of artificial highly 
interlinked Websites created for the sole purpose of 
trying to hoodwink a search engine into thinking that 
particular Websites were more popular than they really 
were. As a substitute of the Backlink count method, 
we introduce a new definition.

Definition 3. P-C1

t

t

tt
i

j
ij d

d
ddf ),(

coefficient: it is possible a page 
has several parents (several backlinks), thus to make 
distinction between parents, we define a function as 
follows:

(6)

in the above formula each incoming link is weighted 
based on the parent node and child node distances (j is 
child of i). In other words, the weighting function 
shows how many times the child node compared to the 
parent node is further than the root pages. The more 
the distance, the more valuable the incoming link is. 
For example if the parent node distance is 1 and the 
child node distance equals 2, the weight of the 
incoming link is 2. Note that the parent node distance 
is always less than or equal to the its child node 
distance(s) (because we choose a Web page that has 
the minimum distance from queued pages).

We change Eq. (4) as the following using 
),(

tt ij ddf factor.
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According to Eq. (7), the distance would be 
reduced if the Web page has a lot of valuable 
in-degrees.

1 Parent-Child.



Eq. (6) applies in situation that the signs of the 
parent node and child node distances are the same, but 
by using Eq. (7), some pages will get negative 
distances if they have a lot of valuable input links. 
However, it is impossible for the Web pages to have 
negative distance in Eq. (7) - the logarithm of a 
negative number is not defined. To fix the problem, 
we change Eq. (6) as the following equation (Eq. (8)).
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Parent node and child 
node have the same 
sign.

(8)
Otherwise.

Rule 2. In this section we would introduce the 
second rule.We believe in different stages of the 
crawling process, different fraction of the parent node 
distance should be transfer to the child node (

ti
d ). In 

the initial stages of the crawling, the discovered pages 
usually are more important and they should have low 
distances compared to the pages that are discovered in 
the middle or end of the crawling process. So in the 
initial stages of the crawling process, the amount of 
transferred distance (

ti
d ) should be lower than the 

transferred distance in the final stages of the crawling 
process. Therefore, the transferred distance is 
considered as a variable (

tit d*)1(  ), Eq. (9).
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Experimentally, we found t , should be linearly 

decreased. We should set t so that when it is close to 
 , we have navigated almost the whole of the Web 
graph and there are not any uncrawled pages in the 
queue. If t reaches  too early, the throughput of 
the algorithm will be decreased. 

At the first glance, P-C coefficient may seem 
redundant because if a page has a good parent (low 
distance), its distance will be decreased. However, in 
the initial stages of the crawling process, backlinks are 
very important, so we should make relationship 
between Web structure feature (rule 1) and the 
obtained knowledge by the crawler. Therefore we 
change Eq. (9) to Eq. (10).

Figure 3.  The relationship between t and crawled Web pages
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In other words, we can explain Eq. (10) in another 
form (Eq. (11)):

)featurestructure
web(*-t)environmen webfrom

knowledge(obtained*)-(1distance

t

t


 (11)

t is balancing factor in time t. We use t to 
create balance between gained knowledge by the 
crawler and the Web structure feature. Hence, in the 
early stages of the crawling process the crawler has no 
background about Web structure, t has its maximum 
value. Over times as it accumulates more knowledge 
about the environment, t will be reduced linearly. If 

the initial value of t be in the range of [0.3, 0.35], the 
algorithm will have the highest throughput, and at the 
end of crawling process it will reach 1.0 . In the 
experiments, we modelled the balancing factor, t as 
in Eq. (12): 

0.35pagesb        We
crawledofPercentage*28.0


t (12)

The effect of the Web structure feature ( t ) for 
discovering hot pages is shown in Fig. 3. Eq. (10) is 
used when the Web page has been previously 
discovered and now it is in the queue (a queue for 
storing the list of URLs to download and a page with 
minimum distance has the highest priority to be 
selected for crawling), so its distance will be updated 
by discovering each of its parents. For the new 
discovered pages we can not use Eq. (10), because 
their previous distances )(

tj
d are not available. To 

overcome this problem, we introduce a new formula 
for the pages that are seen for the first time in the Web 
graph. As was mentioned, a page that has been 
discovered in the initial stages of the crawling process 
is usually more important than a page that will be 
discovered at end of the crawling process. Therefore, 
Eq. (13) is used for calculating the distance of recently 
discovered pages.
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The pseudo code of the proposed crawling 
algorithm is shown below.

Algorithm 1. IECA Crawling algorithm.
1.  d
2.  input: staring_URLs, k = 250000, t = 0,
3.           b = 0.1, size = 0, distance = 0.3,
4.  enqueue(URL_queue, starting_URLs, distance);
5.   while (not empty(URL_queue))
6. (URL, distance) = dequeue(URL_queue);
7. size = size + 1;
8.     t = size div k;
9.    if ((size % k) == 0)

-0.28*percentage of crawled Web pages + 0.35; 

12.    end if
- ;

14.         crawl_page(url);
15.        for each child u of url
16.            if ((d[u] !=  crawled_pages))
17.                du = (1- -
                           + (1-   –
distance));    18.               // du is a new distance for page u
19.                    enqueue(URL_queue(u, du));
20.                    d[u] = du;
21. else if (d[u] ==     // u is a new discovered Web 
page
22.                   du = (1-
23.                     enqueue(URL_queue(u, du));
24. end if
25.       end for
26. end while

The URL_Queue is a priority queue, containing 
pages waiting to be crawled in which the priority is the 
distance value. In this mechanism, the distance of each 
page, in addition to its URL, is inserted into the 
URL_queue and the pages are sorted by their distances 
in ascending order. d[j] shows the current distance 
value of node j and is set to a big value initially. The 
crawled_pages variable includes recently crawled 
pages. The crawl_page(url) function fetches a page 
from the Web and extracts its links. The 
enqueue(queue (element, d)) function inserts an 
element with distance d into its position in the priority 
queue. dequeue(queue) removes the element at the 
beginning of the priority queue along with its distance 
and returns them.

The number of iterations or t is incremented after 
crawling every k set Web pages. We found that k

are suitable. The 
variable distance is a temporary variable, which is 
used to keep the distance of parent node. Starting 
pages should have an initial distance (when a page is 
discovered the distance of its parent is required). To 
have the minimal effect of parent node on the 
distances of child pages, we initialized the distances of 
starting pages with a small number, like 0.3. Because 

t is less than 1, so the dependency of it on the root 

selection is very low. For example if page j is l links 
farther away than the root page (l clicks), then the 
distance effect of the root page on this page is a factor 
of (1- t) l+1.

IV. EXPERIMENTAL RESULTS

In this section, we report the results of our 
algorithm evaluation. For evaluation of IECA, we used 
three different Web graphs, the UK-2005 [24, 25], 
Web graph of Berkeley University2, and Iran-20103

 Breadth-first: The crawling process is done in 
the breadth-first order. Initially, the algorithm 
starts with some starting URLs as the roots of 
the crawling tree.

.
Our goal was to compare IECA with other crawling 
algorithms to see which one of them finds more 
important pages (high PageRank) faster. We would 
compare our algorithm with the following crawling 
algorithms:

 Backlink count: In this algorithm, pages with 
more input links are crawled first [15], that is, 
pages with more input links have higher ranks.

 Batch PageRank: This strategy calculates an 
estimation of Pagerank, using the pages seen 
so far, every K pages downloaded. The next K 
pages to download are the pages with the 
highest estimated Pagerank. This strategy was 
also studied by Cho et al. [9, 15], and it was 
found to be better than Backlink count. 
However, Boldi et al. [26] showed that the 
approximations of Pagerank using partial 
graphs can be very inexact.

 Partial PageRank: This is like Batch pagerank, 
but in between PageRank re-calculations, a 
temporary pagerank is assigned to new pages 
using the sum of the PageRank of the pages 
pointing to it divided by the number of 
out-links of those pages [27].

 OPIC: In this algorithm, all pages start with 
the same amount of cash [16]. Every time a 
page is crawled, its cash is distributed to its 
outward links. In each step the next page for 
crawling is the one with the highest amount of 
cash up to now.

 FICA: It is an intelligent crawling algorithm 
based on reinforcement learning. The priority 
for the crawling pages is based on the received 
punishments by each Web page. Pages with 
the lowest punishments have the highest 
priority for crawling.

IECA uses algorithm 1 for the crawling process.
Initially, we start crawling the Web with every 
algorithm with some starting URLs. To reach the 
highest coverage on the Web graph, we select starting 
URLs (seeds) in the range of 5000 to 17000. Every 
time by crawling k new Web pages (k is set to 
250,000), we run one of the above ranking algorithms. 
Afterward, we sort the Web pages in the queue 

2 This data set has been gathered by WIRE Crawler-2008.
3 This dataset has been crawled by Heritrix crawler-2010.



according to the produced ranking. This process 
continues until a specified portion of the Web is 
crawled. The general crawling is depicted as 
algorithm 2. All methods would run in this way with 

their own ranking criteria [15]. Unlike other ranking 
algorithms, IECA, FICA, and OPIC are scheduling 
algorithms and they do not require any additional 
ranking stage.

TABLE II.  ALGORITHM THROUGHPUTS IN  THE DIFFERENT WEB GRAPHS.

Algorithm
Fraction of crawled hot pages Average 

ThroughputBerkeley 
(4 million Web pages)

UK 
(10 million Web pages)

Iran 
(3 million Web pages)

IECA 75% 57% 80% 71%
FICA 70% 49% 65% 61%

Partial PageRank 73% 53% 73% 66%
Batch PageRank 69% 51% 72% 64%

OPIC 68% 51% 70% 63%
Backlink Count 65% 49% 74% 62%

Breadth-first 65% 48% 68% 60%

Algorithm 2. The general crawling algorithm.
1.   input : starting_urls, k = 250,000 
2.   enqueue(URL_queue, starting_URLs)
3.    while (not empty(URL_queue))
4.           url = dequeue(URL_queue);
5.           crawl_page(url);
6.           for each child u of url
7.                  if ((u URL_queue) && (u crawled_pages))
8.                         enqueue(URL_queue, u);
9.                   end if
10.               if (crawled_pages.count() % k == 0)
11.                       reorder_queue(URL_queue);
12.               end if
13.        end for
14.   end while

The enqueue(queue, element) function appends an 
element to the end of the queue, dequeue(queue)
removes the element at the beginning of the queue and 
returns it, and reorder_queue(queue) reorders the 
queue using one of the ranking algorithms below:

 Breadth-first
              do nothing
 Backlink count
           for each u in URL_queue

       backlink_count[u] = number of u input links
         sort URL_queue by backlink_count[u]

 PageRank
      solve the following set of equations:
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        where B[u] shows list of pages linking to u and O[Pi] is the 
        number of links in  page Pi sort URL_queue by PR(u)

The OPIC algorithm runs with a different 
procedure [16]. To be fair, we set OPIC to crawl each 
page only once but the received cash is changed every 
time we visit its link in other pages.

The aim of the crawling is to find hot pages. To 
achieve it, we choose the PageRank algorithm as 
benchmark. First, the ranks of the entire Web pages 
are computed using PageRank algorithm on the entire 
Web graph. At this point a perfect algorithm would 
have visited pages r1. . . rq, where r1 is the page with 
the highest Pagerank value, r2 is the next highest, and 
so on. In a set of K pages, gathered from a running 

algorithm, a page is hot if it exists in the first K hot 
pages of the benchmark ranking. 

Clearly, the algorithm which retrieves the most hot 
pages will be better than others. We define throughput 
at each step as a fraction of crawled hot pages to all 
discoverable hot pages. The performance of the ideal 
algorithm is of course 1.

We compared the aforementioned algorithms 
compared to IECA in figures 4-6 on the three different 
Web graphs. The damping and 

t were set to 0.85, 0.1, and 0.35, respectively. As the 
following figures show, IECA outperforms all other 
algorithms in the three tested Web graphs. For 
example, in Fig. 5, when 45% of pages are crawled,
IECA finds about 57% of hot pages whereas Partial 
PageRank, Batch PageRank, FICA, and OPIC find 
53%, 51%, 49%, and 51% of hot pages, respectively. 
In other words, during the crawling process in the UK 
Web graph, the popular Batch PageRank algorithm 
and the simple crawling algorithms such as the 
Backlink count and the Breadth-first algorithms have
similar throughputs. Table II shows the improvement 
of IECA compared to others when 45% of the Web 
graphs are crawled.
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Figure 4.  Berkeley -2008 (4 million Web pages).
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Figure 5.  The UK-2005 (10 million Web pages).
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Figure 6.  Iran-2010 (3 million Web pages).

V. COMPLEXITY OF IECA
The complexity of IECA algorithm in the average 

case is O(E*log(V)).

Proof. The average time of insertion or deletion for 
a binary tree of size M is log(M). Each edge of the 
graph is traversed at most once and for each such edge 
the priority queue will be updated. Thus in the average 
case, we have E insertion or deletion so that the time 
of all insertions or deletions is O(E*log(V)). We use a 
binary tree for queue management, so the complexity 
of our algorithm in the average case is reduced to 
O(E*log(V)). While the complexity of PageRank in 
the worst case is O(V*E) in which V and E  are the 
number of nodes and edges, respectively. However, 
based on [13] it is around O(100*E) (i.e. 100 iterations 
for an acceptable ranking is sufficient). In 
PageRanked-based crawling algorithms (Partial 
PageRank and Batch PageRank) we run PageRank K
times and in each step V/K nodes will be added to the 
number of available nodes (discovered nodes). 
Therefore, in the first run of PageRank we have V/K
nodes, in the second run we have 2V/K nodes, in the 
third run we have 3V/K nodes and finally in the last 
run we have KV/K =V nodes. Let's suppose by adding 
V/K nodes to the available nodes, E/K edges will be 
added to the available edges. With this assumption the 

complexity of crawling algorithm based on PageRank 
is of 

O(100*E/K + 100*2E/K + 100*3E/K + . . . +     
100*E) = O (50*E*(K+1)).

Thus, IECA is faster than crawling algorithms 
based on PageRank by a factor of (50*(K+1))/log(V). 
For example, if we have 10 billion pages (V=1010) and 
we run the PageRank algorithm for 200 times 
(K=200), the complexity of any crawling method 
based on PageRank is O(10050*E) whereas IECA 
complexity is O(10*E). Moreover, IECA has low 
memory complexity and it only needs a distance 
vector of Web pages O(|V|). We also experimentally 
verified the IECA complexity. Fig. 7 shows a Web
graph from the crawler view. The Web graph from the 
crawler view is divided into three parts as the 
following:

 First part. Crawled Web pages. It includes 
the pages that are downloaded by the crawler.

Figure 7.  The Web graph from the Crawler view.

 Second part. Discovered Web pages.
List of URLs that are visited by the crawler 

and are inserted into the URL frontier, a
priority queue containing pages waiting to be
crawled.

 Third part. Undiscovered Web pages, the 
pages that their URLs are not visited by the 
crawler.

In IECA the Web graph is traversed only once and 
only second part of the Web graph is participated in 
the importance computation of the Web pages, unlike 
the PageRank based algorithms, they use the first and 
second parts of the Web graph in the importance
computation in each iteration. To clarify the issue, 
IECA and PageRank based algorithms are compared in 
terms of the number of the nodes in the memory in 
different snapshots of the crawling process. Fig. 8
shows the obtained results of the experiment.
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Figure 8.  Number of the Web pages in the memory in different 
snapshots , UK Web graph (10 million Web pages)

According to Fig.8, when 52% of the Web pages 
are crawled, IECA, Batch PageRank, and Partial 
PageRank would need 200,000, 5 millions, and 5 
millions Web pages for page importance 
computations, respectively.

VI. MAJOR CONTRIBUTIONS OF THE PAPER
The main contributions of the paper are:

1. This paper introduces an algorithm called 
IECA (Intelligent Effective Crawling 
Algorithm), whose goals is to find more 
important pages faster in the crawl in 
comparison with crawling algorithms 
presented in the literature.

2. In IECA links are selected according to 
metrics such as link weight (based on 
out-degrees), logarithm distance, and 
P-C coefficient, but introduces the use of 
reinforcement learning to balance these 
factors during the progress of the crawling in 
an adaptive way. 

3. We tested IECA using several real Web 
graphs and show that it achieves the objective 
of downloading important pages early in the 
crawl. We also evaluated of IECA on the 
Web graph of Iran.

4. IECA is easy to implement with low time 
O(E*logV) and memory complexity O(V)-V
and E are the number of nodes and edges in 
the Web graph, respectively.

5. IECA with less complexity has higher 
performance compared to previous
algorithms.

6. IECA does not need to save the matrix of 
Web graph, and only a vector of Web graph 
nodes for saving the distance of pages is 
enough.

7. IECA traverses the Web graph only once and 
it does not have any iteration during the 
crawl.

VII. CONCLUSION AND FUTURE WORK

In this paper we proposed a new crawling 
algorithm called IECA. This algorithm selects each 
page based on its background knowledge from visited 
pages and the feature of the Web environment. In fact 
it makes a relationship between the obtained 
knowledge by the crawler and the Web structure 
feature. For evaluation of IECA we used three
different Web graphs (the UK-2005, Berkeley-2008,
and Iran-2010). The results show IECA is an efficient 
crawling algorithm with low time and memory 
complexity. 

There are two directions in which we would like to 
extend this work. One direction is to execute IECA as 
a crawling algorithm on a dynamic Web graph and the 
second direction is to evaluate IECA as a ranking 
algorithm.
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